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Abstract
Many important physiological processes operate at time and space scales far beyond those accessible
to atom-realistic simulations, and yet discrete stochastic rather than continuum methods may best
represent finite numbers of molecules interacting in complex cellular spaces. We describe and
validate new tools and algorithms developed for a new version of the MCell simulation program
(MCell3), which supports generalized Monte Carlo modeling of diffusion and chemical reaction in
solution, on surfaces representing membranes, and combinations thereof. A new syntax for describing
the spatial directionality of surface reactions is introduced, along with optimizations and algorithms
that can substantially reduce computational costs (e.g., event scheduling, variable time and space
steps). Examples for simple reactions in simple spaces are validated by comparison to analytic
solutions. Thus we show how spatially realistic Monte Carlo simulations of biological systems can
be far more cost-effective than often is assumed, and provide a level of accuracy and insight beyond
that of continuum methods.
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1. Introduction
Quantitative simulations of complex biological systems present difficult challenges. One
primary issue is the choice of appropriate level of detail. At one extreme, atomic-level
simulations of molecular structure require extremely short timesteps, generally on the
femtosecond scale [23]. Hence, very large amounts of computer time are required to simulate
very small amounts of cumulative “biological” time (e.g., nanoseconds). Parallel machines
allow simulation of larger systems through spatial decomposition of atoms across processors,
but to reach long “biological” times (e.g., milliseconds and beyond) one must introduce spatial
simplifications and algorithms that can be run with longer timesteps. For example, groups of
atoms or amino acids can be lumped together (coarse-grained or collective dynamics methods,
respectively), and then the movements of the aggregates can be computed with simplified
molecular mechanics algorithms [3,8]. Another example is diffusion of ions in local
(molecular) potential fields, e.g., ion channel permeation, using the Poisson–Nernst–Planck
equation [5,14]. At still higher space and time scales, however, detailed molecular structure
must be omitted and alternative models and algorithms are necessary.

At cellular scales, finite numbers of molecules interact in complex spaces defined by cell and
organelle membranes. To simulate stochastic cellular events with spatial realism at reasonable
computational cost, we have previously introduced diffusion and chemical reaction algorithms
that use Brownian dynamics for diffusion of individual molecules, ray-tracing of random walk
motion vectors to detect collisions, ray-marching to propagate rays after collisions, and Monte
Carlo probabilities to decide which collisions lead to reaction events [4,18,20]. In many
respects our ray-tracing methods are similar to those used in photorealistic computer graphics,
where rays of light are followed as they travel from light sources to strike objects, creating
shadows and reflections. In principle, light rays are infinitely long and their intensity may be
attenuated during travel. Chemical motion rays, however, have a finite initial length that
represents a possible net displacement by diffusion, and the ray length must be decremented
during tracing as necessary (ray-marching). When using this approach with Monte Carlo
reaction probabilities and typical biological systems, individual timesteps often can be on the
order of microseconds, and so biological times on the order of milliseconds to minutes are
accessible.

We first developed these methods to simulate a specific instance of chemical signaling,
diffusion, and reaction of discrete neurotransmitter molecules in synaptic spaces [4,2,18,19,
20,21,22]. In its earliest form, our simulation program MCell supported only basic planar
surfaces that represented simplified shapes of synaptic membranes [18]. Later we introduced
arbitrary triangulated meshes to represent complex curved shapes (MCell version 2 [20,21,
22,7]). In all of these earlier studies, however, diffusing molecules reacted only with static
molecules localized on surfaces. Thus, molecules diffusing in solution (volume molecules)
could not react with each other, nor could surface molecules diffuse and react with themselves.

Most signaling and metabolic pathways, on the other hand, include interactions between
various ligand molecules, receptors, enzymes, nucleic acids, etc., all of which may be moving
in solution and/or in membranous structures. For example, the epidermal growth factor receptor
(EGFR) pathway is critically important to growth, survival, proliferation, and differentiation
of mammalian cells [11]. Membrane-bound EGFRs can bind diffusing extracellular ligand

KERR et al. Page 2

SIAM J Sci Comput. Author manuscript; available in PMC 2010 February 10.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



molecules, dimerize, autophosphorylate their tyrosine residues, and subsequently trigger a host
of intracytoplasmic and intranuclear signaling network modules. Spatially realistic stochastic
simulations of cellular networks therefore require new computational tools, and in this paper
we introduce unique new MCell algorithms that allow one to model reactions between diffusing
molecules in solution, on surfaces, or both. In section 2 we describe concepts and tools for the
design of arbitrarily complex models using this new MCell version (MCell3), and in sections
3 and 4 we present and validate new algorithms and software design optimizations that can
substantially reduce computational costs. Examples of these optimizations include scheduling
of events based on molecular lifetimes, and variable time and space steps. Together with
associated tools like DReAMM1 for model development and visualization, these capabilities
open broad new avenues for quantitative spatially realistic biological simulations.

2. MCell3 simulation design
As in previous versions, MCell3 uses a Model Description Language (MDL) to define
simulation input conditions and user-requested output. The MCell3 MDL is similar to that for
MCell version 2 [20], but in some areas has changed and expanded considerably. In brief, MDL
files are human-readable text and typically are modular so that descriptions of mesh geometry,
molecules, reactions, output, etc., can be split into separate files for easy editing. A full
description is beyond the scope of this paper and will be presented elsewhere.

2.1. Meshes and mesh regions
For spatially complex models one of the biggest challenges is generation of the initial mesh
objects, which may number in the hundreds or thousands. Two general methods can be used
to create a set of meshes [22,7]: reconstruction from segmented volumetric imaging data (e.g.,
serial electron micrographs or electron microscopic tomography), or direct output from CAD
(computer-aided design) software. We presently make heavy use of the free CAD program
Blender (www.blender.org), for which we have written plug-in modules so that meshes can be
exported directly for use with MCell and DReAMM. DReAMM subsequently can be used
interactively to define and visualize named subregions (subsets of triangles) on meshes, and
to iteratively refine, simplify, extract, and merge subregions and mesh objects to optimize their
use with MCell3. DReAMM can also be used to create sophisticated animations of MCell3’s
visualization data output, but, again, a full description is beyond the scope of this paper and
will be presented elsewhere.

Simple box-shaped mesh objects are created easily with the MDL, and can include arbitrary
rectangular subregions on each side. MDL commands also can be used to copy, scale, rotate,
and translate boxes and triangulated meshes to create large repeated structures. However,
MCell3 does not perform constructive solid geometry operations to retriangulate resulting
objects. Remeshing of this sort instead can be performed with other specialized software
designed for that purpose (e.g., Blender). Each mesh triangle has a front and back face and if
necessary is divided into surface molecule locations (triangular tiles) using barycentric
subdivision (see [20] and Figure 4.2). Mesh elements can be reflective, transparent, or
absorptive to some or all defined classes of diffusing molecules. Mesh geometry that changes
shape within a single simulation is not supported explicitly, but, as with MCell version 2,
simulations can be checkpointed and restarted using different meshes to produce geometric
alterations. For example, we have previously used checkpointing and a series of meshes to
simulate an expanding pore between a synaptic vesicle and a presynaptic nerve membrane
[18,20,21].

1Both MCell and DReAMM are free to academic users and can be downloaded from www.mcell.psc.edu, which also offers extensive
tutorials and additional reference material.
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2.2. Molecules
As introduced above MCell3 supports diffusing and reacting molecules in solution (volume
molecules), as well as molecules in membranes (surface molecules). Volume molecules are
defined by a user-specified name and a three-dimensional diffusion coefficient, while surface
molecules are given a two-dimensional diffusion coefficient. Surface molecules occupy
triangular tiles on surface mesh elements, diffuse by hopping from tile to tile (section 3.3), and
can react with neighboring surface molecules (section 4.2). Volume molecules do not have
solid physical dimensions, but for the purpose of intermolecular collision detection and reaction
they do have an effective cross-sectional area (section 4.4). Molecules can be added to
simulations in a variety of ways. Specified numbers or densities can be added to mesh objects
or regions, or to arbitrary unions or intersections of volumes enclosed by mesh objects.
Molecules can also be distributed randomly in ellipsoids or cuboids of arbitrary size and
position. Addition of molecules can occur at regular intervals or at arbitrary times. Similar
methods can also be used to select molecules at random and remove them from the simulation.
Finally, it is possible to specify the explicit location and type of every molecule.

2.3. Reactions
Surface molecules are often used to represent transmembrane proteins. Such a protein in the
cell membrane has distinct extracellular, intramembrane, and intracellular domains. Similarly,
a protein in an organelle membrane has distinct cytoplasmic, intramembrane, and luminal
domains. Thus membrane proteins have a real spatial orientation with respect to the
surrounding diffusion spaces. Some bind and release ligand molecules on the same side of the
membrane, while others transport ligands across the membrane (bind on one side and release
on the other). In some cases they can also flip orientation periodically. In still other cases, they
function as voltage- or ligand-gated transmembrane ion channels. Some typical biological
examples include the following: sodium-potassium ATPase molecules, which exchange
extracellular potassium for intracellular sodium while consuming intracellular ATP; sodium,
potassium, or calcium channels; and G-protein coupled receptors, which bind extracellular and
intramembrane ligands and interact with a wide variety of intracellular signaling molecules.

Our earlier MDL reaction syntax encompassed some of this geometric complexity [20], but
the new MCell3 syntax is much more general and is also closer to standard (space-free)
chemistry notation. For example,

illustrates the MDL syntax for a reaction between two volume molecules that produce a third
volume molecule. For reactions involving surface molecules, the spatial directionality is
specified by assigning each species to a numbered orientation class. Matching absolute values
of the numerical specifiers indicate that the species are in the same class. Within each class
matching signs (+/+ or −/−) indicate that the species share the same relative orientation with
respect to the surface, while opposite signs (+/− or −/+) indicate opposite orientation.

For example, consider the simple case of a transmembrane protein that can flip orientation.
The diagram below shows a line that represents a mesh element seen in cross section, similar
to a cross-sectional view of a membrane. The front and back of the mesh element are indicated,
and could correspond to extracellular, cytoplasmic, or other regions of space depending on the
context of the simulation. A single transmembrane protein molecule is shown by an oval with
distinct spatial domains labeled T(op) and B(ottom). Again, the biological meaning of these
domains depends on the context of the simulation. As shown in the diagram, the protein might
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begin a timestep in one of two possible configurations, T-FRONT or T-BACK, and
subsequently flip to the opposite configuration:

(2.1)

Assuming the protein has been defined using a name of my_protein, the MDL syntax for this
reaction might be

(2.2)

Since the numerical class specifiers have the same absolute value, the reactant and product are
members of the same class. Hence, their relative orientations will be specified by the sign of
the numbers. Since they have opposite signs, the molecule will flip orientation in the surface
whenever the reaction occurs. As shown in (2.1) above, the molecule can start in either the T-
FRONT or B-FRONT configuration, because the change in sign indicates a change in relative,
not absolute, orientation. Thus, the same result would be obtained with

(2.3)

On the other hand

(2.4)

indicates that the reactant and product are in different classes altogether. In this case their signs
are ignored and the orientation of the product is assigned at random when the reaction occurs.

To make the syntax more compact, numerical class specifiers may be replaced with “tic marks.”
In this case the number of tic marks on each species indicates the absolute value of its class,
and the type of tic mark (apostrophe versus comma) indicates the sign. For example, in

(2.5)

the apostrophe and comma are part of the syntax, and (2.5) is equivalent to (2.2) and (2.3)
above. On the other hand,

(2.6)

is equivalent to (2.4) above.

To enforce absolute orientations and reactions occurring only on particular surfaces, a surface
designation may be added to the reaction syntax. If a molecule and the surface are in the same
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class and have the same sign, then the T(op) of the molecule is aligned with the FRONT of the
mesh element. For example, in

(2.7)

the comma again is a part of the syntax, and (2.7) specifies that the reaction can occur only if
the initial configuration is T-FRONT (left-hand side of (2.1) above). In contrast,

(2.8)

specifies that the starting configuration is B-FRONT (right-hand side of (2.1) above).

Similar concepts apply when volume molecules react with surface molecules. For example,
given a volume reactant ( VR), a surface reactant ( SR), and a surface product ( SP),

(2.9)

means that VR can react with SR when it is in the T-FRONT configuration on a mesh element
that is part of plasma_membrane. The product SP will have the same orientation as SR and
VR. In diagram form,

(2.10)

On the other hand

(2.11)

means that VR can react with the T(op) of SR no matter what its configuration, T-FRONT or
B-FRONT, or what surface mesh element it occupies. Whatever the directionality of the
ensuing reaction, the product SP will be created with the same relative orientation as VR and
SR.

Many other combinations are possible but will not be detailed here.2 To see that this syntax
covers all possibilities, note that the concept of relative orientation is reflexive (a molecule is
oriented relative to itself), symmetric (if A and B share a relative orientation, then B and A do
as well), and transitive (if A and B share a relative orientation, and B and C do as well, then A
and C will also). Thus, “relative orientation” comprises an equivalence class containing
reactants and products that must take on a specific relative orientation, and all reactants and

2For further examples see http://www.mcell.psc.edu/tutorials/tlist.htm.
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products can be assigned to exactly one such class. The numerical class specifiers are exactly
these equivalence classes. To easily confirm the behavior of directional reactions, DReAMM
can display surface molecules as directional icons such as arrows or receptor protein glyphs.
In addition, the FRONT and BACK of mesh elements can be given different colors and reversed
as necessary.

2.4. Spatial subvolumes
In a naive collision detection algorithm, the search for intersections between M reacting
molecules would scale as O(M2). In addition, the search for collisions between moving
molecules and N mesh elements (triangles) would scale as O(MN), yielding approximately O
(M(N +M)) overall and intractable run times for all but the smallest simulations. To accelerate
performance, MCell3 partitions space into cuboidal spatial subvolumes (SSVs), similar to the
method originally described for MCell version 2 [20]. Under optimal conditions, partitioning
is adjusted so that each SSV contains only a small number of triangles and also a small number
of molecules. The search for ray-triangle collisions during ray-marching thus can be limited
to the current SSV, and simply begins again if the moving molecule crosses into an adjoining
SSV. This effectively decouples execution time from N, the total number of triangles in the
model.

The search for collisions between volume molecules is somewhat more complicated and
requires new algorithms in MCell3 (section 4.4). Some molecules in surrounding SSVs may
be closer to a current SSV boundary than the length of their effective radius, and therefore they
extend into the current SSV. Hence, they must be identified and included in the list of potential
collision partners. Under some conditions this requirement can be relaxed with little loss of
accuracy (see Figure 4.3, section 4.4). Regardless, scaling of execution time approaches O
(M) rather than O(M2), making simulations with 105 or more molecules feasible even on single
processors.

2.5. Timesteps and scheduling
Previous versions of MCell were based on fixed timesteps. While the use of a fixed timestep
simplifies the program design considerably, it also introduces several computational
inefficiencies. First, unimolecular transitions (e.g., (2.1) above) are poorly served by fixed
timesteps: states with short lifetimes cannot be represented accurately, while states with long
lifetimes are visited many times before a state change occurs. Second, molecules with small
diffusion coefficients (e.g., large proteins) may require a position update far less frequently
than molecules with large diffusion coefficients (e.g., small ligands) to achieve the same
relative spatial accuracy, and thus it is wasteful to update the slow moving molecules as often
as the fast moving molecules.

To increase computational efficiency, we implemented a scheduling-based system in MCell3.
The scheduler maintains a user-specified canonical timestep ΔT during the simulation, but
allows an internal Δt to vary from molecular species to species. Thus, molecules that undergo
rapid reactions can have a shorter Δt, while slowly diffusing molecules operate with a large
Δt. This is accomplished by scheduling each molecule independently. At time T in the
simulation, all events scheduled between T and (T + ΔT) occur, but strict temporal ordering is
not enforced within each timestep. Molecule i of molecular species I maintains its own time
ti as well as the time Δui to its next unimolecular reaction (if applicable). The molecule diffuses
for a species-specific timestep ΔtI, or longer if no reaction partners or geometry could affect
it within that time, or for Δui if that is less than ΔtI. Bimolecular or surface reactions can happen
during diffusion (e.g., (2.10) above), which is modeled as a constant-velocity transit. Products
of the reaction are scheduled for their first movement at the time at which the encounter
occurred. Nondiffusing molecules that undergo unimolecular transitions are immediately
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scheduled to undergo their next transition at time ti + Δui, but can be interrupted if hit by a
diffusing molecule with which they react. The simulation iterates over all molecules until ti >
(T + ΔT) for all i, and the simulation then advances T by ΔT and begins again.

3. Diffusion algorithms
In this section we present the theory and implementation of MCell3’s optimized algorithms
for fast Monte Carlo simulation of diffusion in a volume or on a surface.

3.1. Unbounded diffusion
Suppose a molecular species is present at a concentration c(r, t) and is free to undergo random
thermal motion in a fluid. The time evolution of concentration of that species is given by the
diffusion equation

(3.1)

where D is the diffusion coefficient of the molecule in that medium at that temperature. In a
stochastic simulation we treat concentration as a collection of individual particles at precise
locations, rather than represent it as a continuous function. In concept our strategy is as follows:
For a given molecule, we use the diffusion equation to calculate the distribution of final
positions for that molecule after a time Δt. We then pick a new specific position from that
distribution, update the molecule’s position, and advance time by Δt. In practice, we accelerate
this process enormously by precomputing a standardized distribution, storing it in memory as
look-up tables, and then using random numbers to sample the tables for each movement [20].
3

In particular, suppose that a single molecule is at the origin at time t = 0 and diffuses away
with diffusion constant D. Then it can be shown from the diffusion equation that

(3.2)

where d is the dimensionality of the space in which diffusion is taking place (2 for surfaces, 3
for volumes). This concentration is radially symmetric, so r can be replaced by r = ||r||. It is
also convenient to define the diffusion length constant . The probability density of
final positions for the molecule then can be written

(3.3)

3MCell3 uses the ISAAC-64 random number generator because of its speed, lack of bias, and long sequences
(http://www.burtleburtle.net/bob/rand/isaacafa.html). We have recently tested execution speeds of simpler random number generators
in combination with direct calculation of random Gaussian variables (as opposed to using look-up tables). Depending on the approach,
speeds can be substantially slower (polar form of the Marsaglia Gaussian method [9]) and at best may improve by less than 2% (ziggurat
Gaussian method [10]). A lower-cost random number generator may eventually be of importance to a new parallel version of MCell3,
but at present such alternatives provide no significant advantages.
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To pick a radial distance for diffusion, one can pick a random variable X uniformly between 0
and 1 and solve

(3.4)

for R, where  is the surface area of a d-dimensional sphere of radius r; we set .

For three dimensions, the surface area is 4πr2 so (3.4) becomes

(3.5)

which can be solved for all values of λ by making the substitution r̃ = r/λ (r̃ was denoted by s
in [20]). The solution to this dimensionless problem is

(3.6)

As introduced above, we speed computation by solving this distribution for regularly spaced
values of X when a simulation is initialized, and then store the resulting values in a look-up
table held in memory (typically 1024 values). Thereafter, the run-time computation reduces to
generation of a pseudorandom number, a table look-up for R̃, and a multiplication by λ to get
the radial distance. Alternative methods mentioned above currently present no significant
advantages. From here on, we will predominantly express diffusion distances in terms of the
length-constant-normalized distance r̃ instead of the actual distance r.

The angle of travel is calculated separately from the distance; one can pick φ uniformly at
random from [0, 2π) and pick θ in proportion to the circumference of the circle about the sphere
at angle θ (equivalent to picking Y uniformly at random and solving  for θ). However,
this approach is slow because it requires inverse trigonometric functions to be computed for
each diffusion step. Once again we speed computation by precalculating a look-up table of
random direction vectors, and then sampling the table for each movement at runtime. We use
an iterative method to generate the vectors so that they are nearly uniformly spaced throughout
the first octant of the unit sphere (typically > 16000 vectors).

Directions then are determined by picking from the table uniformly at random and then
changing the sign of each coordinate on the basis of a random bit. The latter step serves to
reflect the vector set into all octants of the unit sphere, and thus negates any small residual bias
that remains from using a finite number of vectors [20].

In the two-dimensional case, the radial distance is found from

(3.7)

which is easily inverted to obtain
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(3.8)

which we compute directly rather than with a table. The last equality in (3.8) follows since X
is uniformly distributed over [0, 1]. Similarly, the angle is simply uniformly distributed on [0,
2π) from which we directly compute a direction vector. In our implementation, surfaces are
tiled with a triangular grid, where each tile can hold at most one molecule (Figure 4.2). We
presently assume that diffusion will take place only in the low-density limit where it is unlikely
that the destination will be occupied by another molecule; if the destination is occupied, the
distribution is sampled again to pick a new destination.

To verify that diffusion results are exact, we compare the distribution of a single position update
with Δt = 100μs to one hundred successive updates each of Δt = 1μs. The two methods agree
with each other and with the analytic solution, both for three-dimensional (Figure 3.1A) and
two-dimensional (Figure 3.1B) diffusion. Thus, in the case of unbounded diffusion with no
interactions between molecules, our methods produce the correct result with timesteps of
arbitrary length.

In addition, our methods are very fast because few operations are performed to generate each
movement. For example, 108 three-dimensional movements can be computed in several
minutes on a current workstation. As a discrete example, we compared equilibration of
positions for 64000 molecules diffusing in a box to an analogous simulation performed with
a particle mesh (64000 nodes) continuum approximation method [15]. The MCell3 simulation
required 2–5 minutes depending on how the molecule positions were counted, while the particle
mesh simulation required about 2 hours.

3.2. Reflective boundary conditions
Consider a molecule diffusing in two or three dimensions near an infinite plane or line of
impermeable material as in Figure 3.2A. If there is a second molecule an equal distance on the
opposite side of the plane, then by symmetry it does not matter whether or not the sheet is
permeable. We therefore conceptually replace the plane with a virtual molecule. By inspection,
this is equivalent to specular reflection of a ray traveling from the initial position of the molecule
to where its final position would be in an unbounded simulation. That is, an incoming ray with
angle θ to the surface normal is reflected to be an outgoing ray with the same angle.

Specifically, if the molecule is at location r0 initially, the movement vector from the initial to
final position would be m in the unbounded case, and the ray from r0 to rΔt = r0 + m intersects
the wall a fraction f of the way along the ray, then the final position for the bounded case is

(3.9)

where n̂ is the normal vector for the surface. This solution is exact regardless of the timestep
Δt and holds in both two and three dimensions.

In the case of finite planes, a ballistic trajectory is only an approximation of the true probability
density. In particular, corners cast shadows when trajectories are ray-traced, in contrast to true
diffusion where the random walk is as likely to carry a molecule around a corner as it is to
continue straight. To examine the magnitude of this error, we simulated a release of molecules
outside of one face of a box and measured the number that had reached the center of any of
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the four adjacent faces. The total simulation time was held fixed but the average random walk
step length was varied by varying the simulation timestep.

As shown in Figure 3.3 the result converges at short times only if the average step length is
short compared to the box side length (less than ~15%). At longer times, the choice of step
length is less important; for instance, the figure shows that a mean step length half as long as
the box length is adequate after 1.75 ms.

3.3. Diffusion on triangulated surfaces
As outlined in section 2.1, MCell3 implements curved biological surfaces as triangulated
surface meshes. Molecules diffusing on a surface can encounter boundaries between triangles
that are joined at an edge but which are not coplanar. To see how diffusion should be handled
in this case, consider a molecule that starts exactly on the edge, and choose a coordinate system
aligned with the edge. Travel parallel to the edge is spatially uniform, so diffusion must be
unaffected along that axis. By symmetry, the molecule is equally likely to travel away from
the edge in either direction, so in the limit as time goes to zero, diffusion along the perpendicular
axis is the same as diffusion away from an arbitrary line drawn on a flat surface. As soon as
the molecule moves away from the line it is in fact on a flat surface. Thus, there is no position
where molecule motion is affected by the presence of an edge, so the solution for noncoplanar
triangles is the same as the solution for coplanar triangles. Diffusion on a surface therefore
begins by picking a motion vector that assumes movement within the plane of the original
triangle. Thereafter, we ray-march along the vector, and as the ray crosses triangle boundaries,
we convert the vector between local planar coordinate systems as if the two triangles were
coplanar (Figure 3.2B).

The coplanarity method is exact for a single crossing between two triangles, regardless of the
angle formed between the triangles. However, if a surface has a high degree of curvature over
many triangles, care must be taken to avoid many crossing per random walk step. In other
words, inaccuracy results if the average random walk step length is appreciable relative to the
curvature. Similar concerns apply for diffusion in solution, where the mean random walk step
length should be short relative to the distances around sharp angles (Figure 3.3) or the size of
constrictive structures [18, 19, 21].

For example, if molecules are released on one side of a 238-polygon surface that approximates
a sphere of radius 100 nm, and take one step of average length 125 nm, nonphysical “focusing”
of the molecules is observed at the opposite pole (Figure 3.4), and there is a bias towards
diffusing too far. However, these effects rapidly disappear with shorter steps: no detectable
errors remain after a 10-fold reduction in time step, which yields an average diffusion length
of 40 nm. Thus, as a general rule of thumb, average step lengths should be less than half the
radius of curvature. Given radii of curvature and membrane diffusion constants in typical cells,
timesteps of 1 μs are usually safe (longer for low curvature or slowly diffusing species). Thus,
a specific treatment of nonplanar geometry is not necessary to achieve accurate results with
acceptably long timesteps.

3.4. Fixed-concentration boundaries
It is sometimes convenient to define boundaries at which the concentration of a molecule is a
fixed value. Such a constant-concentration boundary is equivalent to an infinite buffer on a
surface with diffusion-limited binding. The trivial case of zero concentration, equivalent to a
perfectly absorptive surface, is implemented by removing the molecule in question if its
movement ray intersects the absorptive surface.
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Nonzero concentrations are implemented by computing the number of expected rays
intersecting the surface at the desired concentration; all molecules striking the surface are
removed from the simulation, and new molecules are created according to the expected number
and distribution of rays exiting the surface at the desired concentration.

For three-dimensional diffusion near an infinite plane, molecules near the plane cross according
to the one-dimensional diffusion equation along the normal to the plane. The number of
crossings is found using (4.5), which is derived when discussing reactions between molecules
and surfaces. To find the distribution of molecules, define

(3.10)

where ρ× is the probability density function of those molecules that have crossed the surface,
x ̃is the normalized distance to the surface, and r̃ is the distance to the final position of the
molecule in the surface normal direction.

By symmetry, ρ× should also be the distribution of molecules leaving the surface. Thus, the
distribution of final distances for molecules leaving the surface obeys

(3.11)

As with (3.6), this is solved by bisection and the values of x ̃are stored in a table for rapid look-
up at runtime.

Equation (3.11) determines the distance along the normal to the plane, but it does not determine
how long it took the molecule to get there, or the diffusion in the directions parallel to the plane.
Since diffusion along each axis is independent, picking a time also allows us to compute the
diffusion in the nonnormal direction. We implement travel linearly, so it is equivalent to
consider the (effective) fraction of the distance the molecule traveled after it left the surface.
Let r̃ now be the total travel distance of a molecule that ended up a distance x ̃away from the
surface. Note that r̃ includes travel both before and after emerging from the plane and also that
p(r̃|x)̃ is proportional to the probability of diffusing a distance r̃; normalizing the probabilities
gives

(3.12)

Thus, to pick from this distribution we sample

(3.13)
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which can be inverted to solve for r̃ and can be computed rapidly by using a rational function
approximation to erfc−1:

(3.14)

Note that 1−Y and Y are both uniformly distributed between zero and one so we use the latter.
The duration of diffusion is thus , where Δt is one timestep for that molecule; this value
is used in (3.8) to compute two-dimensional diffusion parallel to the surface. Since the molecule
spent the remainder of Δt “on the other side of the surface,” it is advanced in time a full timestep
Δt. Validation of this method is shown in Figure 4.4A.

4. Reaction algorithms
As outlined in section 2.3, MCell3 allows reactions with one or two molecular reactants and
an arbitrary number of products. Reactions involving three or more reactants can be
implemented by having pairs of reactants produce short-lived intermediate states that then react
with a remaining species. Likewise, enzymatic reactions with some maximum reaction rate
can be implemented by explicitly creating the different states of the enzyme with appropriate
transition rates between the states. Thus, nearly arbitrary reactions can be implemented using
MCell3.

Computing the probability of a specific reaction is split into two steps. If a given reactant or
pair of reactants can produce n different sets of products with rates k1, k2, …, kn, we first use

the total reaction rate  to make a stochastic determination of whether any reaction
occurs; the details for each type of reaction are discussed below. If some reaction occurs, we
then pick at random which specific reaction pathway was taken, where the ith reaction has a
probability of ki/k, and create product molecules accordingly. The challenge is to relate the
total reaction rate k to encounters between individual molecules.

Conceptually, the relationship between bulk reaction rate and individual molecules is simple:
the probability that an encounter results in a reaction should be such that a simulated well-
mixed reaction has the number of reactions predicted by the bulk reaction rate. Achieving this
equality requires different methods depending on the reactants involved.

4.1. Unimolecular transitions
Unimolecular (first order) transitions include processes such as radioactive decay, hydrolysis
of ATP bound to an enzyme, and opening and closing of an ion channel. If a molecule leaves
its current state with a rate k, the distribution of expected lifetimes is

(4.1)

We use (4.1) to determine the lifetime of each molecule and then schedule a reaction to occur
at the appropriate time, as described previously in section 2.5. We validated our implementation
by checking simulations against the analytic result (Figure 4.1).

MCell3 allows unimolecular transitions that occur only when the molecule is on a particular
surface (e.g., (2.7) and (2.8) in section 2.3). In this case, if the molecule remains on the surface
until the time of the scheduled reaction, the reaction occurs; otherwise, the time until a transition
is recalculated when the molecule leaves the surface.
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4.2. Reactions between surface molecules
Surface molecules exist on triangular tiles that cover the mesh elements of the surface. Only a
single molecule is allowed to exist in each tile, so each molecule has three immediate neighbors,
as shown in Figure 4.2A. On each timestep, surface molecules that can react with their
neighbors check the three neighboring positions and react according to their local
concentration. In particular, if a reactant molecule I is present at density σI, the expected number
of reactions in one timestep is k σI Δt if the reactants are not consumed in the reaction, and 1
− e−k σIΔt if they are.

The probability of finding I in each of the neighboring tiles is σIA, where A is the area of the
tile, so the expected number of reactions in one timestep of length Δt is pΔt σIA, where pΔt is
the probability of reacting with one neighbor if it exists. Equating the two formulae for the
expected number of reactions gives

(4.2)

if the reactants are not consumed. For simplicity, this formula is used even if the reactants are
consumed. It is correct to first order; the second order approximation is

(4.3)

which depends on the surface concentration of I, not the local concentration, and thus cannot
be computed correctly by a purely local algorithm. The approximation is good when either
pΔt is small or the tiles are mostly empty and thus σIA is small.

4.3. Reactions between a volume molecule and a surface molecule or surface
As volume molecules diffuse they can intersect surface mesh elements. Although these
collisions do not scale exactly the same way as an exact solution to the reaction-diffusion
equation between the probability distribution of a diffusing surface molecule and a surface
density of reactants, the scaling does show a higher probability for close molecules and a lower
probability for more distant molecules. Thus, we check for reactions between a diffusing
volume molecule and a surface or a molecule upon that surface when the volume molecule’s
movement ray strikes that surface (Figure 4.2B).

When a collision occurs, a random number is compared to the Monte Carlo probability p that
each collision leads to a reaction event. The derivation of p has previously been described in
detail, including the use of correction factors for variations in tile size from mesh element to
mesh element [20]. Here we present a brief discussion for comparison with subsequent sections.

A single surface molecule immersed in a solution of a volume reactant at concentration ρI has
an expected reaction rate of kρI. For the moment, assume that the surface molecule is only
reactive on one side. The surface molecule is present in a tile of area A; we can consider only
those volume molecules present in a column above that tile since at equilibrium conditions
(and by symmetry), the probability of a molecule leaving that column at any point is equal to
the probability of it entering. The number of molecules in a slice of width dR of that column
is ρIAdR; the probability that a molecule starting a distance R away will diffuse far enough to
hit the tile is
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(4.4)

so the total number of collisions in one timestep Δt is

(4.5)

The collision rate times the probability p of reaction per collision gives the reaction rate.
Equating this product to the bulk reaction rate kρI allows one to solve for p,

(4.6)

where v = λ/Δt is the characteristic velocity of the diffusing molecule in the simulation. If the
surface molecule can react when hit from either side, the number of collisions doubles, so to
match the reaction rate the probability is halved, giving

(4.7)

A volume molecule can become a surface molecule by “reacting” with the surface. The
biological counterpart would be a molecule in solution partitioning into a membrane. Reactions
between volume molecules and surfaces are treated as outlined above, but with every tile on
the surface treated as a potential interaction partner. Since bimolecular rate constants are
typically measured in M−1s−1, even for reactions between molecules on the surface and those
in the volume, we use these units for all volume-surface interactions.

4.4. Reactions between volume molecules
Exact solutions to reaction-diffusion equations involving volume molecules are difficult. One
simple numerical approach is to move all molecules and then create reaction pairs among those
within a cut-off distance [1,13]. A related alternative would give diffusing molecules a chance
to react with all neighbors within some distance, as with reactions between surface molecules.
Still another alternative is for diffusing molecules to treat other volume molecules as if they
are on a virtual surface, and to test for reactions as collisions occur during ray-marching. We
favor the latter approach because it preserves correlations between diffusive motion and the
location of reactants. For example, in a steep gradient of a reactant, one would expect more
surviving diffusing molecules in the direction of lower concentration; this is qualitatively
established within a single timestep with the latter approach.

Consider a moving volume molecule in the center of a disk of area  as it sweeps out a
cylindrical interaction volume (Figure 4.2C). If a partner reactant I is present at concentration
ρI, then the bulk reaction rate of the diffusing molecule should be kρI. The expected number
of collisions is RρIA, where R is the distance diffused; the average number is thus
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(4.8)

Once again, we equate the bulk reaction rate kρI with the product of the number of collisions
and the probability of reaction per collision, and then solve for p

(4.9)

where again v = λ/Δt and is the characteristic velocity of the moving molecule. This equation
is correct if only one of the two molecules is diffusing. If two molecules I and J are both
diffusing with timesteps ΔtI and ΔtJ and diffusion lengths λI and λJ, we can set both the
probability of reaction and interaction area A to be the same regardless of who is moving, and
note that if the simulation timestep is Δt, then the expected number of moves in one timestep
is Δt/ΔtI for molecule I and Δt/ΔtJ for J. To conserve the reaction rate we then have

(4.10)

which yields

(4.11)

This equation for p holds whenever the target molecule is farther than rint from all blocking
surfaces (Figure 4.2C and 4.2D, left). If this is not true, then the value of p must be corrected
because a portion of the interaction cylinder is clipped (occluded) and the number of collisions
will be fewer than expected (Figure 4.2D, right). If a surface that is impermeable to the moving
molecule separates the path of the moving molecule from the location of the reactant, the
reaction is considered to be blocked and does not occur (Figure 4.2D, middle). If the reactant
is accessible but the disk’s area is clipped from an area A to an area A★ < A, then the number
of collisions is proportional to A★ instead of A, since all collisions in the inaccessible area are
absent. The probability of reaction is therefore adjusted upward by a factor of A/A★ in order
to maintain the proper binding rate. Details of the computation of A★ are given in the appendix,
and the importance of using this correction is illustrated in Figure 4.3.

If the motion vector of the moving molecule passes within rint of a subvolume partition (section
2.4), then the interaction cylinder will extend into the adjoining subvolume, potentially
encompassing additional molecules with which valid collisions can occur. Searching for these
additional molecules adds additional computation but is important for optimal accuracy and is
the default behavior.

On the other hand, the extra computation can be avoided with little loss of accuracy if there
are no substantive concentration gradients across subvolume partitions. Under these
conditions, about the same number of molecules will be within rint on either side of any
partition. To compensate for missed collisions with those molecules that are outside of the
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subvolume, the probability of reaction is increased for the collisions with those molecules that
are inside the subvolume. In such cases, the reaction disk area A is clipped by the partition, just
as outlined above for clipping by impermeable surfaces. Increasing the probability of reaction
by the factor of A/A★ offsets the missed collisions as long as molecules are positioned
symmetrically across the partitions. Figure 4.3 shows an example of this time-saving feature
used under equilibrium binding conditions.

4.5. Unbinding reactions
In reversible reactions, previously bound molecules dissociate from the bound state at a first
order rate k s−1. Thus, unbinding of a molecule is a unimolecular transition, and the time of
unbinding can simply be computed and scheduled as outlined previously in sections 2.5 and
4.1. One key issue, however, is the new spatial location of the just-unbound molecule. In
principle, the distribution of positions upon unbinding should match the distribution of
positions that preceded binding, yielding exact microscopic spatial reversibility of reversible
reactions. The need for microscopic reversibility can be illustrated by considering a case in
which unbinding becomes infinitely fast. In this limit, the distributions of possible positions
of the molecule prior to binding and after binding should be indistinguishable, because the
bound time is so short that in effect it never took place at all.

If the simulation timestep is very short compared to the times for binding and unbinding, then
the initial unbinding location is not very critical because the molecule will take many random
walk steps before the likelihood of rebinding or other events becomes appreciable. However,
this leads to computational inefficiency, and so we have developed methods to place just-
unbound molecules in the correct spatial distribution within the first timestep after unbinding.
The necessary distributions differ depending on whether unbinding occurs from a volume
molecule or from a surface molecule, as described below.

Consider a reversible binding reaction between species I and J and a bound state IJ. If J is a
volume molecule and I and IJ are both surfaces molecules, then the correct spatial distribution
for J upon unbinding is the same as the distribution used with a fixed-concentration boundary.
This follows because the distribution of molecules appearing from a fixed-concentration
boundary must match the distribution of molecules that can reach the boundary within one
timestep (section 3.4). Thus, when a reaction produces volume molecules from a surface, we
pick movement vectors using the distribution (3.11) as with fixed-concentration boundaries.
During a single timestep, the J that binds to free I on the surface is matched by the J released
from IJ on the surface, yielding a randomly uniform average concentration of J in the volume
at all distances from the surface. This is illustrated in Figure 4.4A.

If I, J, and IJ are all volume molecules, then the unbinding of I or J in essence must reverse the
ray-tracing trajectory that led to binding within a timestep. In effect, this binding trajectory has
two components. First, the moving molecule (say, J) follows its motion ray and determines
that it passes within rint of the other molecule (I); that is, J’s motion vector intersects a virtual
disk around the position of I. For binding, the orientation of the disk is perpendicular to the
motion vector. If there are no blocking surfaces between the point of intersection and the
position of I, binding can occur and IJ is created at the existing location of I. Thus, when IJ is
created, J undergoes an apparent second movement within the virtual disk to the point of IJ
formation. To reverse this process, both motions must be reversed. First, J must be ray-traced
to a point chosen randomly within a virtual disk of radius rint. The orientation of this disk is
chosen at random. Subsequent to that, J must be ray-traced in a direction perpendicular to the
disk, ending at a distance chosen from a distribution that matches the distribution of distances
previous to binding.

KERR et al. Page 17

SIAM J Sci Comput. Author manuscript; available in PMC 2010 February 10.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript



To calculate this distribution, we note that to react after a distance x, we must travel a distance
of at least x; binding probabilities are not scaled by diffusion distance and encounters are
equally likely at all distances if there is a uniform concentration of I. Thus

(4.12)

and we pick from this distribution using bisection to solve for x ̃in the cumulative distribution
equation

(4.13)

obtained by integration of (4.12). These values are stored in a table for look-up. Presently, we
always move one timestep, to match the one timestep assumed for the reverse reaction; a full
three-dimensional distribution is created by the random orientation of the disk. One major
asymmetry with binding is that near surfaces, the unbound molecules reflect instead of
sampling a surface-limited disk; the effect is similar, however. Figure 4.4B illustrates the
effectiveness of this approach.

It is important to note that ensuring the correct distribution of locations upon unbinding does
not guarantee exactly accurate rebinding behavior, because for binding we use an average
probability that does not depend on the distance between the reactants. The largest inaccuracies
will occur if the binding probability is high and the binding partners are close to each other.
To improve accuracy, one can simply reduce the timestep and therefore the binding probability,
but for many conditions convergence of results will be obtained with longer timesteps if
microscopic reversibility is used. This is shown in Figure 4.4C, where small deviations from
a precise equilibrium point are shown for different timesteps with or without microscopic
reversibility enabled (in the absence of microscopic reversibility, unbinding molecules simply
take one random walk step away from the bound location).

5. Conclusion
In this paper we have described new tools for the development of models used in MCell3
simulations, as well as new algorithms and capabilities included in MCell3. As the power of
computer hardware continues to increase, and the scope of computational biology continues
to expand, stochastic simulation methods coupled to spatially realistic models will continue to
be of increasing interest and importance. Various continuum and discrete approaches to volume
and surface diffusion and reaction are under development by different investigators [16,1,13,
12,15,17], and a major challenge for the future is to determine the quantitative and qualitative
impact of the different approaches when trying to understand complex biological systems.

At present, MCell3’s ray-tracing approach to interactions in solution and on arbitrarily complex
surfaces remains unique. By virtue of optimizations in both software and algorithm design,
spatially realistic simulations of subcellular to cellular systems are presently feasible on
desktop systems. In addition, we are presently pursuing development of a new parallel version
aimed at efficient scaling to very large numbers of processors. To this end, we are exploring
run-time techniques for supporting asynchronous data-driven execution via a programming
methodology and library called Tarragon [6]. Preliminary results with a synthetic MCell-like
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benchmark have demonstrated that Tarragon can mask a significant amount of communication
with productive computation. Once these capabilities are implemented together with our new
MCell3 algorithms, dramatic new possibilities for quantitative cell and tissue modeling will
become feasible.
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Appendix

Disk interaction area algorithm
In order to correctly relate bulk reaction rates with the probability of an encounter near a surface
resulting in a reaction, we need to take into account that the volume of encounter is reduced
by clipping with the surface. A single molecule diffusing in three dimensions is given a
movement vector m; along this vector it sweeps out a disk of radius rint, the interaction radius.
A second molecule at position p is hit (i) if the projection of p on m, pm, points in the +m
direction and is shorter than m; (ii) if the orthogonal component, p − pv, has length less than
rint; and (iii) if there are no surfaces intersected by either the vector pm from the moving
molecule’s original position, or by the vector p − pm from the updated point. In other words,
a molecule undergoing a reaction first travels along its original movement vector to the closest
approach to the reaction partner, then makes a right angle and travels directly to the target.
Thus, at any position along its movement vector, the moving molecule has an interaction area
of  unless surfaces intervene. Since our formula for reaction probability is proportional
to the true accessible area, A★, it is desirable to have a rapid and accurate method for computing
this reduced area.

Suppose that the moving molecule has traveled until its potential reaction partner is
perpendicular to the motion vector. Let m ̂ be the direction of motion and û be in the direction
from the moving molecule to its partner. Then if we let v̂ = m ̂ × û, the vectors m ̂, û, v̂ form a
coordinate system where the potential interaction area forms a circle of radius rint in the û, v̂
plane. To compute the accessible interaction area, we first intersect all relevant surfaces with
the û, v̂ plane to form line segments. We will not describe here all special cases (surfaces in
the plane, intersection at a point instead of a line, etc.) as they almost never occur with random
molecule motions and thus can be handled with any sensible policy without introducing
measurable error. The set of relevant surfaces is restricted by using partitions to divide the
model space into subvolumes; the relevant surfaces must lie within the subvolume surrounding
the moving molecule or within a distance rint of a partition boundary. In cases where the model
does not contain steep concentration gradients, it is often substantially faster to consider the
partitions as impermeable surfaces and only consider surfaces within a single subvolume.

Once the list of surfaces, optionally including partition boundaries, has been reduced to a set
of line segments, those segments are clipped by the circle of radius rint. We allow intersecting
surfaces, so this operation in general yields an arbitrary set of line segments within the circle;
any potential reaction partner on the far side of a line from the origin is inaccessible and a
reaction cannot occur. We use the following algorithm (with slight modifications for additional
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speed at the expense of clarity) to compute the accessible area; the basic idea is to simply walk
around the circle computing the area piece by piece.

1. Mark all points q that are endpoints of lines, are intersections between lines, or are
points on lines or the unit circle with the same angular coordinate as an endpoint or
intersection, and sort them in polar coordinates in order of increasing θ. Points that
have the same θ are sorted by r, closer points first.

2. Let the i0 be the index of the point closest to the origin. Note that qi0 is accessible
from the origin since if there were a line closer to the origin that blocks access to
qi0, we would have picked a point on that line in step 1 which would be closer to the
origin than qi0 is. Set the total accessible area found thus far to be A★ = 0.

3. Starting with i = i0, find j which is the index point reached by following the innermost
line from point i in the +θ direction, or i + 1 if no such line exists (wrapping back to
0 as needed).

4. Compute the area of the segment between qj and qi and add this to the area A★. If j
was reached by following a line, the area is ; otherwise, it has area zero
(i.e., θi = θj) or is a segment along the circle of area .

5. Let i = j. If we have reached i0 again, we have found the entire area A★ and are done.
If not, return to step 3 and find a new j.

A graphical representation of this algorithm is presented in Figure A.1.
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Fig. 3.1.
Equivalence of single and multiple steps for unbounded diffusion. (A) 10000 molecules
diffusing for one 100 μs jump with diffusion constant 200 μm2/s in an unbounded three-
dimensional space (open circles) or in 100 jumps of 1 μs (black dots). Shown is the number of
molecules in 10 nm radial bins, in comparison to the expected number (black line). (B) 10000
molecules on a flat unbounded surface diffusing with diffusion constant 2μm2/s measured in
1 nm radial bins. Molecules were released one at a time to avoid potential crowding.
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Fig. 3.2.
Diffusion at boundaries. (A) Ballistic model of a molecule reflecting off of an infinite plane
and its equivalence to a virtual molecule on the far side of the plane. (B) Transit or reflection
of a molecule diffusing in a plane by means of a shared basis (n, e, f) between two adjacent
triangles, making them effectively coplanar.
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Fig. 3.3.
Diffusion around a box. 5 · 105 molecules with D = 200 μm2/s were released from a point 100
nm from the center of one face of a 1 μm cube. Small sampling boxes were placed at the center
of each adjacent face so the number of molecules could be counted. The legend shows the ratio
of mean step length to the side length of the box.
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Fig. 3.4.
Diffusion on the surface of a triangulated sphere. 50000 surface molecules with a diffusion
constant of 5 μm2/s were released at the north pole of a polyhedron (equivalent spherical radius
of 100 nm) and allowed to diffuse for a total of 1 ms using a variety of time steps. The legend
shows the resulting values for mean step length (nm).
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Fig. 4.1.
Validation of reactions. Simulation of unimolecular decay of 104 molecules at a rate of 103

s−1 in MCell3 (dots) closely approximates the analytic solution (thick line). Similarly,
simulated bimolecular reactions with 104 molecules in a 1 μm3 box with rate 6.022 · 107

M−1s−1 match the analytic solution (thin line) for both reactions between molecules in the
volume (downward triangles) and those between molecules in the volume and molecules on
the surface (upward triangles).
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Fig. 4.2.
Molecular encounters. (A) Surface molecules occupy tiles in a barycentric subdivision of a
triangle. The molecule being tested (open circle) encounters other molecules (black circles) if
they are in the three grid elements adjacent to it (shaded triangles). (B) Volume molecules
(open circle) diffuse; when they strike a surface, they encounter any surface molecule present
in that grid element (shaded triangle). (C) Diffusing volume molecule (open circle) encounters
other volume molecules (black circles) in a cylinder of radius rint about its path of motion;
molecules in the wrong direction, farther away than rint, or past the end of the motion are not
encountered (gray circles). (D) Encounters made by a moving volume molecule (open circle)
are blocked by surfaces (black line). Reactions occur at higher probability when their
interaction area is reduced by a surface (right diagram) than when not (left diagram); reactions
do not occur when the encounter is blocked by an intervening surface (center diagram).
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Fig. 4.3.
Volume reactions near surfaces. A pair of planes separated by a short distance d is filled with
molecule I at a concentration of 1 mM. Molecules of J are introduced; J and I bind and unbind
such that molecules of J should spend half of their time bound and half unbound. Plotted is the
result of 40 simulations with an average of 100 binding/unbinding events each, comparing
fixed  (large circles) to an exact calculation of A★ (medium circles) or a time-saving
extension where not only surfaces but also subvolume boundaries block reactions and reduce
A★ (small circles). The result primarily depends on the ratio d/rint (x-axis); in this case, rint
was set to 5 nm (d ranged from 2 nm to 30 nm), J had a diffusion constant of 100 μm2/s, and
I and the IJ complex did not diffuse. Error bars denote standard error of the mean.
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Fig. 4.4.
Microscopic reversibility. (A) Surface reversibility within a single timestep. Pre-existing
molecules in solution (downward triangles) are absorbed as they strike the surface from
different distances. In turn, new molecules (upward triangles) are released from the surface to
maintain a uniform concentration (circles) regardless of distance from the surface. A 0.1 × 1
× 1 μm3 box was used with D = 200 μm2/s and equilibrium concentration of 10 mM. (B)
Volume reversibility within a single timestep. Symbols are the same as in (A). A 400 × 20 ×
20 nm3 (quasi-one-dimensional) box was used with a single stationary volume molecule at the
center. As pre-existing diffusing molecules (downward triangles) strike the stationary molecule
they are consumed. In turn, new diffusing molecules (upward triangles) unbind from the
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stationary molecule to maintain a uniform concentration (circles) regardless of distance from
the stationary molecule. The graph shows the distribution along the x-axis. D = 200 μm2/s for
moving molecules, rint = 5 nm. Equilibrium concentration is 100 mM. (C) Accuracy of surface
buffering. The absorptive surface in (A) was replaced by a reflective surface containing 5 ·
104 immobile buffer molecules (ratio of bound to unbound buffer was 1:10) with on rate 5 ·
107 M−1s−1 and off rate 5 · 104 s−1. Shown are deviations from the ideal equilibrium (100
μM, dashed line) with various timesteps and either the microscopic reversibility distribution
for surface unbinding (open circles) or the distribution obtained with a single random walk
step (closed circles).
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Fig. A.1.
Computation of accessible area. For the disk shown with the intersecting surfaces shown in
red, the algorithm defines intersection and endpoints (thin black arrows) and cuts other lines
at those angles (thick brown arrows). The algorithm then traverses these points, starting with
the innermost, as indicated (blue dashed lines), computing areas in the sequence numbered.
These areas are either triangles (pale yellow) or circular arcs (beige). Some segments have area
zero (unnumbered, radially outward blue dashed line).

KERR et al. Page 31

SIAM J Sci Comput. Author manuscript; available in PMC 2010 February 10.

H
H

M
I Author M

anuscript
H

H
M

I Author M
anuscript

H
H

M
I Author M

anuscript


