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Chiral biphenols are privileged catalyst structures[1] utilized in a wide range of reactions that
continues to expand.[2] The accessibility of the chiral framework and structural variants is a
key aspect of the utility this class exhibits in asymmetric catalysis.[3] More recently, chiral
biphenol catalysts have proven to be effective catalysts for asymmetric conjugate addition
reactions, the asymmetric allylboration of ketones[4] and acyl imines,[5] as well as the
asymmetric three component Petasis condensation reaction of secondary amines, glyoxylates,
and alkenyl boronates.[6] An important mechanistic facet in each of the reactions is exchange
of one of the boronate alkoxy groups with the biphenol to create a more reactive boronate
species.[4,7] We sought to expand the repertoire of boronate nucleophiles that will react with
acyl imines using chiral biphenol catalysts. Our approach towards the rapid identification of
the optimal catalyst for each nucleophilic addition reaction was to screen a collection of chiral
biphenols.[8] Screening chiral catalyst collections has proven to be an effective method for
catalyst identification[9] and reaction discovery.[10] In this approach the efficient
identification of the optimal catalyst is maximized and unexpected results or patterns in
reactivity can be rapidly elucidated. Herein we describe the identification and application of
chiral biphenol catalysts for the addition of aryl, vinyl and alkynyl boronates to acyl imines
via a catalyst screening approach.

(1)

Our investigations began with the identification of reaction conditions that promote the addition
of aryl, vinyl and alkynyl boronates to acyl imines (eq 1). For each boronate, the nucleophilic
addition proceeded only by the inclusion of a biphenol catalyst, < 5% yield was obtained in
the absence of any biphenol catalyst. In developing a general protocol for a catalyst screening
process, the di-n-butyl boronate was determined to be optimal due to its hydrolytic stability.
Good yields could be obtained for each of the nucleophiles using BINOL as the catalyst. The
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next step was to perform a screen using a collection of chiral biphenol catalysts in each of the
boronate addition reactions. Twelve chiral biphenols were screened as catalysts (Figure 1) in
the presence of benzoyl imine 7 and the aryl, alkenyl, and alkynyl boronates 6, 9, and 11
respectively (Scheme 1). Comparing the enantiomeric ratio of each nucleophile as a function
of the catalyst employed illustrated notable trends (Figure 2). The use of catalyst 4b with aryl
nucleophile 6 yielded the desired diaryl amide with excellent selectivity. Whereas use of
catalyst 4b in the presence of alkenyl boronate 9 or alkynyl nucleophile 11 afforded the
corresponding product in lower selectivities. In each case, a different BINOL catalyst structure
proved to be the most effective for each boronate nucleophile. However, a catalyst was
identified that afforded the addition product in >95:5 er for each of the boronate nucleophiles
investigated.

The scope of the reaction was investigated for each of the boronate nucleophiles. In general,
the optimal catalyst identified in the screening experiments, 4b, proved effective for all of the
aryl boronates evaluated in the reaction. Aryl boronates (entries 1 – 5, Table 1), aryl (entries
6 – 7) and aliphatic (entry 8) imines, as well as acyl imine substituents (entries 9 – 11) were
found to be effective in the biphenol-catalyzed addition reaction each affording the
corresponding amide in good yields (>70% isolated yield) and enantioselectivities (>95:5 er).

Vinyl boronates (entries 1–5, Table 2) also afforded the corresponding allylic amide products
in high yield and selectivity. Catalyst 4d also promoted the vinyl addition to a series of
substituted aryl, heteroaryl, and alkyl imines (entries 6–8) as well as substituted acyl imines
(entries 9–11) in good yields and selectivities (>70% yield, >95:5 er).

Similarly, substituted alkynyl boronates (entries 1–6, Table 3) also proved successful as the
desired propargyl amides were isolated in high yield and selectivity. Aryl, heteroayl, aliphatic
(entries 7–9) as well as acyl substituted imines (entries 10, 11) produced the desired products
in good yields and slectivities using catalyst 5d.

We continued our studies by characterizing the boronate species under the catalytic reaction
conditions. Electron spray ionization mass spectrometry (ESI-MS) experiments were
conducted at room temperature of reaction mixtures containing BINOL-derived diols and
boronates in the presence and absence of benzoyl imine 7. ESI-MS is an effective process for
the characterization of intermediates that are otherwise difficult to characterize via purification.
[11,5] The mixture of BINOL 4b and boronate 9 was analyzed using a MicroMass ZQ 2000
mass spectrometer in positive electrospray ionization mode. Under these conditions the mass
of a boronate resulting from exchange of one of the alkoxy groups with BINOL 4b was
observed, without any detectable formation of the corresponding cyclic boronate, consistent
with previous results obtained for the allylboration reaction. Furthermore, use of the chiral
cyclic boronate derived from BINOL 4b and the boronate 9 resulted in low yield (< 20%) and
low enantioselectivity (55:45 er) when reacted with imine 7 under the same reaction conditions.
Although computational studies have implicated the formation of cyclic boronates under
catalytic conditions,[12] the experimental results obtained to date demonstrate an acyclic
boronate complex under catalytic conditions. The stereochemical model developed for the
reaction of the boronate complex with acyl imines is consistent with the observed
stereoinduction (Figure 3). The observed enantiofacial selectivity is the result of catalyst
coordination to the Z-conformer of the acyl imine. The more reactive Z-conformer has been
proposed by Corey[13] and others[14] in reactions involving imines due to steric interactions
that arise from the metal reagent and the substituents of the imine. The hydrogen-bonding
character of the biphenol activates the acyl imine towards nucleophilic attack and orients the
boronate complex towards re enantiofacial selectivity in the addition reaction.[5]
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Lastly, the methodology was utilized in the synthesis of the known antihistamine levocetirizine
(Xyzal®). The construction of amine (R)-19 is a key step in the synthesis.[15,16,17] Our
approach to this desired intermediate used (R)-4b as the catalyst and aryl boronate 13f to afford
diaryl amide 14f in 98% isolated yield and 98:2 er. Deprotection of the amide was accomplished
using a method recently described by Prati[18] resulting in the production of free amine 19 in
80% yield with complete retention of stereochemistry constituting a formal synthesis of
Xyzal® 20.[19]

In summary, we have applied a chiral biphenol catalyst screening protocol for the rapid
identification of enantioselective catalytic reactions. The approach successfully identified a
unique catalyst that promoted the reaction enantioselectively for each of the boronates
investigated. Furthermore, the optimal catalyst identified proved general for each class of
boronate nucleophiles. Mechanistic studies demonstrate exchange between the boronate and
catalyst giving rise to the active nucleophilic boronate reagent. The method was utilized in the
enantioselective synthesis of the antihistamine Xyzal®. Continued investigations include use
of the screening approach toward expansion of the scope and utility of the reaction, as well as
detailed mechanistic studies.
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Figure 1.
Chiral Biphenols
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Figure 2.
Catalyst Screen for Enantioselectivity
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Figure 3.
Proposed Transition State for Asymmetric Boronate Addition to Acyl Imines
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Scheme 1.
Nucleophilic Boronate Reactions Promoted by Chiral Biphenols.
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Scheme 2.
Synthesis of key intermediate in the formal synthesis of Xyzal®
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