

NIH Public Access

Author Manuscript

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2010 February 10

Published in final edited form as:

Angew Chem Int Ed Engl. 2008 ; 47(10): 1928. doi:10.1002/anie.200705267.

Direct, Iridium-Catalyzed Enantioselective and Regioselective Allylic Etherification with Aliphatic Alcohols^{**}

Satoshi Ueno and John F. Hartwig

Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801 (USA), Fax: (+1)217-244-8024

Satoshi Ueno: ; John F. Hartwig: jhartwig@uiuc.edu

Keywords

alkoxides; allylic substitution; asymmetric synthesis; iridium; metallacycle

Intermolecular, enantioselective allylic substitution with alcohols[1,2] remains an undeveloped catalytic process. Few reports have been published that describe the intermolecular allylation of aliphatic alcohols with high yield and enantioselectivity,[3] and the most selective of these systems has required copper additives.[4] The large number of α chiral ethers and oxygen heterocycles in natural products and pharmaceutical candidates makes enantioselective routes to these materials important.

This transformation has been difficult because alcohols are poor nucleophiles for allylic substitution, and the high basicity of alkoxides can induce elimination processes and catalyst deactivation. Thus, phenoxides,[5–12] siloxides,[13] and hydroxylamines[14,15] serve as nucleophiles for allylic substitution, but intermolecular additions of common alcohols have been limited.[10,16] Tin,[17] boron,[18,19] zinc,[20] and copper[4,21–23] alkoxides have been used with the idea of softening an oxygen nucleophile, but these additives complicate reaction procedures and have only led to high yields and high enantioselectivities for reactions of allylic esters with an iridium–phosphoramidite catalyst.[4]

Herein we report that primary, secondary, and tertiary alcohols, as well as silanols, can participate directly in catalytic asymmetric allylic substitution in the presence of an alkali metal base. Reactions conducted with a metallacyclic iridium catalyst[24–33] form chiral, branched allylic ethers and silyl ethers in high yield and high enantioselectivity.[3] These results reveal convenient procedures for the use of alcohol nucleophiles, improve the scope and yield of the allylation of primary, secondary, and tertiary alcohols, and include the use of a catalytic amount of an alkyne additive to suppress olefin isomerization that forms vinyl ether side products. More generally, these results show that alkali metal alkoxides in low concentrations can be competent nucleophiles for allylic substitution.

Our efforts to develop a direct allylation of alcohols began with studies of the reaction of cinnamyl acetate (1) with benzyl alcohol (2) in the presence of $[{Ir(cod)Cl}_2]$ (cod=1,5-cyclooctadiene) and phosporamidite L1 as precursors to the metallacyclic iridium catalyst [Ir

Correspondence to: John F. Hartwig, jhartwig@uiuc.edu.

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

^{**}We are grateful to the NIH (NIGMS GM-55382) for support of this work and Johnson-Matthey for iridium. S.U. acknowledges the J.S.P.S. fellowships for young scientists.

 $(cod)(\kappa^2 L1)(L1)$] in Equation (1). These reactions were conducted with potassium phosphate as base in toluene at 40 °C. Although C—O bond formation occurred, some of the desired allylic ether product **3** converted into the isomeric enol ether **4**,[19,34,35] and low isolated yields of **3** were obtained [Eq. (1)]. After some experimentation, we found that the simple addition of a catalytic amount of an alkyne, such as 1-phenyl propyne, to the reaction medium suppressed this isomerization and led to high yields of the allylic ether product. For example, the reaction of cyclopentanol under these conditions afforded allylic ether **5** in 73% yield and 95% *ee* and 91:9 branched to linear ratio [Eq. (2), and entry 1 in Table 1]. Other internal alkynes, such as 1,2-diphenyl acetylene and 4-octyne, also suppressed the isomerization, but terminal alkynes did not. Although we have not yet studied the origin of this alkyne effect, we presume the alkyne poisons a separate isomerization catalyst present in small amounts.[36]

Studies on the effect of solvent, base, and leaving group were also conducted. Reactions in toluene occurred in the highest yields. Reactions in the more polar solvents THF and 1,4-dioxane, as well as halogenated solvents, such as CH_2Cl_2 , afforded the substitution product in low yields. Additionally, the use of Cs_2CO_3 as base resulted in the formation of significant amounts of a by-product resulting from transesterification of cinnamyl acetate with

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2010 February 10.

cyclopentanol and allylation of the resulting cinnamyl alcohol. Reactions conducted with NEt₃ as base formed racemic products in 49% yield, presumably because NEt₃ and the iridium precursor generate an active achiral catalyst. For high conversions, the use of highly powdered K_3PO_4 was important. Finally, the use of allylic carbonates as electrophile led to low yields of the desired ether, owing to cleavage of the carbonates to form the corresponding allylic alcohols and the alkyl carbonates derived from the alcohol nucleophile.

Table 1 summarizes results on the allylation of alcohols catalyzed by iridium complexes generated from several C₂-symmetric and C₁-symmetric phosphoramidites. The direct allylation of alcohols occurred with the highest regioselectivity and enantioselectivity in the presence of the catalyst generated from L2. However, ligand L1 is more accessible, and reactions catalyzed by the complex generated from L1 occurred in higher yield, and with acceptable regioselectivity and enantioselectivity. Reactions conducted with catalysts generated from L3–L5 occurred in only 59–64 yields with 89-91% enantioselectivity, and reactions conducted with L6 occurred with low enantioselectivity. With none of the catalysts was the enol ether detected in significant amounts when the reaction was conducted with added alkyne. Thus, further studies were conducted with the catalyst generated from L1 with added 1-phenyl-1-propyne.

The scope of the alcohols that undergo allylation using cinnamyl acetate 1 as electrophile under optimized conditions is summarized in Table 2. The reaction of 1 with benzyl alcohol 2 gave the branched allylation product 3 without formation of enol ether 4 in 68% yield and 93% ee after 22 h (Table 2, entry 1). The representative primary aliphatic alcohol, n-hexanol formed the allyation product in 71% yield and 91% ee (Table 2, entry 2). The use of 5 equiv of nhexanol slightly increased the yield and enantioselectivity (entry 3). Secondary alcohols besides cyclopentanol used for the studies in Table 1 also reacted. For example, cyclohexanol and N-Boc-protected piperadin-4-ol reacted in acceptable yield and high regioselectivity and enantioselectivity. α Chiral secondary alcohols, such as (S)-1-phenylethanol, also formed the allylation product in diasereomeric ratios d.r. 94:6 (88% de) and 95:5 (90% de) with the two enantiomers of the catalyst, although partial racemization of the alcohol (90 and 88% ee) was observed after the reaction. The high selectivities for both pairs of the alcohol and catalyst enantiomers allow this simple reaction to form bis a-chiral ethers with diasatereocontrol. tert-Butyldimethylsilanol also underwent the allylation chemistry in high yield and enantioselectivity. Enantioselective allylation of potassium triethylsiloxide with the cyclometalated iridium catalyst developed in our laboratory was reported by Carreira et al., [13] but the current process bypasses the need to prepare the potassium siloxides. In all of these reactions with added 1-phenyl-1-propyne, enol ether sideproducts were not observed in significant amounts.

The scope of the reactions of a variety of allylic acetates with different alcohols is summarized in Scheme 1 and Equation (3). For all but one these reactions, the branched-to-linear ratios were higher than 96:4 and, with one exception, enantioselectivities were at least 92% *ee*. Aromatic allylic acetates containing anisyl and furyl groups on the aryl ring gave the corresponding branched allylic ethers in high yields. Not only aromatic but also purely aliphatic allylic carbonates reacted to give the substitution products in acceptable yields with good to excellent *ee* values and branched site selectivity. The reactions of aliphatic allylic acetates with the secondary alcohol *N*-(Boc)piperidinol occurred with high enantioselectivity and site selectivity, but the yield was modest.

Ueno and Hartwig

In addition to simplifying reactions of primary and secondary alcohols, these conditions led to the first allylation of a tertiary alcohol to form substitution products with high enantioselectivity. The iridium-catalyzed reaction of 4-methoxycinnamyl acetate with 2-phenyl-2-propanol gave the substitution product in 56% yield with excellent enantioselectivity at 40°C. Previous reactions of tertiary alkoxides with copper additives formed the substitution

product in only 63% *ee*.[4] We also briefly investigated decarboxylative etherification.[37–43] This reaction [Eq. (4)] formed the allylic ether in 84% *ee*. Although this process required high catalyst loadings and occurred in moderate yield, it constitutes the first asymmetric decarboxylative allylation of

In summary, we have demonstrated that asymmetric allylic etherification can be conducted using allyl acetates and the combination of alcohols and base as nucleophile. Important in obtaining high yields of the substitution product, alkynes were shown to prevent isomerization of the allylic ether to the corresponding vinyl ether. The system reported here constitutes the most general current method for asymmetric allylic etherification using alcohols, including the first asymmetric allylation of a tertiary alcohol in high yield and enantioselectivity.

Experimental Section

O-nucleophiles.

General procedure for allylic etherification: In a drybox, a toluene solution (0.5 mL) of K_3PO_4 (1.500 mmol, 318.4 mg) was added into a screw-capped vial. The activated catalyst (0.025 mmol, dissolved in toluene (1.0 mL) and alcohol (1.5 mmol)), and generated in situ by a method described previously, was added to these materials.[32]). A magnetic stir bar was added, and the vial was sealed with a cap containing a PTFE septum and removed from the drybox. The solution was stirred vigorously at room temperature (23°C) after addition of 1-phenyl-1-propyne (0.100 mmol, 12.5 µL) and allyl acetate (0.5 mmol) by syringe. When the reaction was complete (determined by GC analysis), the crude mixture was passed through a pad of silica gel, and eluted with 100 mL of ether. The resulting solutions were evaporated. The ratio of regioisomers was determined by ¹H NMR spectroscopy (usually based on

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2010 February 10.

(3)

integration of the olefinic protons). The mixture was then purified by flash column chromatography on silica gel to give the desired product.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

References

- 1. Trost BM, Van Vranken DL. Chem Rev 1996;96:395. [PubMed: 11848758]
- 2. Trost BM, Crawley ML. Chem Rev 2003;103:2921. [PubMed: 12914486]
- 3. Haight AR, Stoner EJ, Peterson MJ, Grover VK. J Org Chem 2003;68:8092. [PubMed: 14535788]
- 4. Shu C, Hartwig JF. Angew Chem 2004;116:4898. Angew Chem Int Ed 2004;43:4794.
- 5. Trost BM, Toste FD. J Am Chem Soc 1999;121:4545.
- 6. Evans PA, Leahy DK. J Am Chem Soc 2000;122:5012.
- 7. Lopez F, Ohmura T, Hartwig JF. J Am Chem Soc 2003;125:3426. [PubMed: 12643693]
- 8. Fischer C, Defieber C, Suzuki T, Carreira EM. J Am Chem Soc 2004;126:1628. [PubMed: 14871082]
- 9. Mbaye MD, Renaud JL, Demerseman B, Bruneau C. Chem Commun 2004:1870.
- 10. Trost BM, Machacek MR, Tsui HC. J Am Chem Soc 2005;127:7014. [PubMed: 15884945]
- 11. Uozumi Y, Kimura M. Tetrahedron: Asymmetry 2006;17:161.
- 12. Kimura M, Uozumi Y. J Org Chem 2007;72:707. [PubMed: 17253785]
- Lyothier I, Defieber C, Carreira EM. Angew Chem 2006;118:6350. Angew Chem Int Ed 2006;45:6204.
- 14. Miyabe H, Matsumura A, Moriyama K, Takemoto Y. Org Lett 2004;6:4631. [PubMed: 15548093]
- 15. Miyabe H, Yoshida K, Yamauchi M, Takemoto Y. J Org Chem 2005;70:2148. [PubMed: 15760199]
- 16. Jiang L, Burke SD. Org Lett 2002;4:3411. [PubMed: 12323031]
- 17. Kienen E, Sahai M, Roth Z, Nudelman A, Herzig J. J Org Chem 1985;50:3558.
- 18. Trost BM, McEachern EJ, Toste FD. J Am Chem Soc 1998;120:12702.
- 19. Trost BM, Zhang T. Org Lett 2006;8:6007. [PubMed: 17165916]
- 20. Kim H, Men H, Lee C. J Am Chem Soc 2004;126:1336. [PubMed: 14759180]
- 21. Evans PA, Leahy DK. J Am Chem Soc 2002;124:7882. [PubMed: 12095315]
- 22. Evans PA, Leahy DK, Slieker LM. Tetrahedron: Asymmetry 2003;14:3613. [PubMed: 16946800]
- Evans PA, Leahy DK, Andrews WJ, Uraguchi D. Angew Chem 2004;116:4892. Angew Chem Int Ed 2004;43:4788.
- 24. Ohmura T, Hartwig JF. J Am Chem Soc 2002;124:15164. [PubMed: 12487578]
- 25. Kiener CA, Shu C, Incarvito C, Hartwig JF. J Am Chem Soc 2003;125:14272. [PubMed: 14624564]
- 26. Shu C, Leitner A, Hartwig JF. Angew Chem 2004;116:4901. Angew Chem Int Ed 2004;43:4797.
- 27. Leitner A, Shu C, Hartwig JF. Proc Natl Acad Sci USA 2004;101:5830. [PubMed: 15067140]
- 28. Leitner A, Shekhar S, Pouy MJ, Hartwig JF. J Am Chem Soc 2005;127:15506. [PubMed: 16262414]
- 29. Leitner A, Shu C, Hartwig JF. Org Lett 2005;7:1093. [PubMed: 15760147]
- 30. Yamashita Y, Gopalarathnam A, Hartwig JF. J Am Chem Soc 2007;129:7508. [PubMed: 17523648]
- 31. Graening T, Hartwig JF. J Am Chem Soc 2005;127:17192. [PubMed: 16332060]
- 32. Weix DJ, Hartwig JF. J Am Chem Soc 2007;129:7720. [PubMed: 17542586]
- 33. For representative publications from other investigators on the asymmetric allylic substitution with nitrogen and carbon nucleophiles using the cyclometalated iridium catalyst developed in our laboratory, see: a) Weihofen R, Tverskoy E, Helmchen G. Angew Chem 2006;118:5673.Angew Chem Int Ed 2006;45:5546. b) Polet D, Alexakis A, Tissot-Croset K, Corminboeuf C, Ditrich K. Chem Eur J 2006;12:3596. c) Tissot-Croset K, Polet D, Alexakis A. Angew Chem 2004;116:2480.Angew Chem Int Ed 2004;43:2426. d) Singh OV, Han H. J Am Chem Soc 2007;129:774. [PubMed: 17243809]
- 34. Nelson SG, Bungard CJ, Wang K. J Am Chem Soc 2003;125:13000. [PubMed: 14570453]

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2010 February 10.

- 35. Nelson SG, Wang K. J Am Chem Soc 2006;128:4232. [PubMed: 16568990]
- 36. a) Terao J, Todo H, Begum Shameem A, Kuniyasu H, Kambe N. Angew Chem 2007;119:2132. Angew Chem Int Ed 2007;46:2086. b) Takahashi G, Shirakawa E, Tsuchimoto T, Kawakami Y. Chem Commun 2005:1459.
- 37. For selected primary references on decarboylative allyation of carbon and nitrogen nucleophiles see references [38–⁴³], and for a recent review on this topic, see You S, Dai L. Angew Chem 2006;118:5372–5374. Angew Chem Int Ed 2006;45:5246–5248. Angew Chem Int Ed 2006;45:5246–5248.
- 38. Behenna DC, Stoltz BM. J Am Chem Soc 2004;126:15044. [PubMed: 15547998]
- 39. Tunge JA, Burger EC. Eur J Org Chem 2005:1715.
- 40. Trost BM, Xu J. J Am Chem Soc 2005;127:2846. [PubMed: 15740108]
- 41. Trost BM, Xu J. J Am Chem Soc 2005;127:17180. [PubMed: 16332054]
- 42. Mohr JT, Nishimata T, Behenna DC, Stoltz BM. J Am Chem Soc 2006;128:11348. [PubMed: 16939246]
- 43. Singh OV, Han H. J Am Chem Soc 2007;129:774. [PubMed: 17243809]

Ueno and Hartwig

Scheme 1.

Reactions of various combinations of allyl acetates and alcohols. Boc=*tert*-butoxycarbonyl. [a] All ratios of **b:l**, isolated yields and *ee* or *de* values are averages from two independent runs and *ee* values are determined by HPLC. [b] Ratio of **b:l** determined by ¹H NMR analysis of the crude reaction mixture. [c] Alcohols (2.5 mmol) and K₃PO₄ (2.5 mmol). [d] Isolated yield of the combined regioisomers of **b:l**. [e] d.r.=98:2; (*S*,*S*,*S*)-L1 was used.

Table 1

Effect of ligands on the allylic etherification.[a]

L	Ligand	5:6 ^[b]	Yeld [%]	ee [%][c]
L1	$\mathbf{R}^1 = \mathbf{P}\mathbf{h}$	91:9	73	95
L2	$\mathbf{R}^1 = 2$ -anisyl	95:5	62	99
L3	$\mathbf{R}^1 = 1\text{-}\mathbf{N}\mathbf{p}$	87:13	64	91
L4	$\mathbf{R}^2 = \mathbf{P}\mathbf{h}$	90:10	64	91
L5	$R^2 = 2$ -anisyl	82:8	59	89
L6	$\mathbf{R}^2 = 1$ -Np	88:12	60	71

[a] All ratios of **5:6**, isolated yields and *ee* or *de* values are averages from two independent runs.

^[b]Ratio of **5:6** determined by ¹H NMR analysis of the crude reaction mixture.

[c] Determined by HPLC.

L4–L6 cC₁₂ = cyclododecane

Table 2

Scope of the allylic etherification with various alcohols.[a]

-		[ir/(<i>R,R,R</i>)- L1] 5 mol% 1-phenyl-1-propyne 20 mol%	<u>o</u> R
Ph ⁻ OAc	+ ROH	toluene 1.5 mL	Ph
0.5 mmol	1.5 mmol	K ₃ PO ₄ 1.5 mmol RT	b

Entry	R	<i>t</i> [h]	b:l ^[b]	Yield [%], <i>ee^[c]</i> or <i>de</i>
1	Bn	22	99:1	68, 93% ee
2	<i>n</i> -hexyl	40	99:1	71, 91% ee
3[d]	<i>n</i> -hexyl	20	84:16	77, 94% ee
4[d]	cyclo-hexyl	40	99:1	68, 93% ee
5	N-Boc-4-piperidinyl ^[e]	50	99:1	66, 90% <i>ee</i>
6	(S)-1-phenylethanol	80	99:1	67, 88% de ^[f]
7[8]	(S)-1-phenylethanol	40	99:1	63, 90% de
8	TBDMS ^[h]	40	98:2	85, 98% ee

[a] All times, ratios of **b:l**, isolated yields and *ee* or *de* values are averages from two independent runs.

^[b]Ratio of **b:1** determined by ¹H NMR analysis of the crude reaction mixture.

[c] Determined by HPLC.

[d] Alcohols (2.5 mmol) and K3PO4 (2.5 mmol) were used.

[e]_{Boc=tert}-butoxycarbonyl.

*[f]*d.r. 94:6.

[g] (S,S,S)-L1 was used; d.r.=95:5.

[h] TBDMS=tert-butyldimethylsilyl.