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Summary
As biological studies become more expensive to conduct, statistical methods that take advantage of
existing auxiliary information about an expensive exposure variable are desirable in practice. Such
methods should improve the study efficiency and increase the statistical power for a given number
of assays. In this paper, we consider an inference procedure for multivariate failure time with auxiliary
covariate information. We propose an estimated pseudo-partial likelihood estimator under the
marginal hazard model framework and develop the asymptotic properties for the proposed estimator.
We conduct simulation studies to evaluate the performance of the proposed method in practical
situations and demonstrate the proposed method with a data set from the Studies of Left Ventricular
Dysfunction (SOLVD,1991).
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1. Introduction
Statistical methods are usually developed assuming that the exposure variable is fully observed.
In many studies, due to financial limitations or technical difficulties, the true exposure may
only be measured precisely in a subset of the study cohort. This subset is often referred to as
the validation set. With the continuing advancement in the use of biological markers in
epidemiology and genetic studies, which often involve expensive assays, there is a growing
incentive to further improve study efficiency and power by optimally incorporating into the
statistical analysis the available auxiliary covariate. For example, in the Studies of Left
Ventricular Dysfunction (SOLVD,1991) prevention trial, it is of interest to assess the effects
of covariates (e.g. ejection fraction, intervention, and gender) on the risk of heart failure and
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on the first myocardial infarction. The gold standard of the ejection fraction (LVEF)
measurement was to use a standardized radionucleotide technique. Since this standardized
radionucleotide technique is too expensive to be used on every patient, the LVEF was only
measured for a subset of 108 out of a total of the 4228 SOLVD patients. A cheaper and easily
obtained measure of ejection fraction (EF) was, however, ascertained for all the patients using
a nonstandardized technique. EF was considered as an auxiliary covariate of LVEF. The
auxiliary covariate is defined as the surrogate information (the nonstandardized EF measure
in the SOLVD study) that relates to the true exposure variable (LVEF) but provides no
additional information to the regression model when the true covariates are known. Some
proposed methods have been developed for the univariate survival time data in the areas of
mismeasured covariates, missing data, and auxiliary covariate problems. This includes but is
not limited to Pepe and Fleming (1991), Carroll and Wang (1991), Lin and Ying (1993), Zhou
and Pepe (1995), Wang, Lin, and Gutierrez (1998), Hu, Tsiatis and Davidian (1998), Tsiatis
and Davidian (2001), Huang and Wang (2000), Zhou and Wang (2000), Hu and Lin (2002)
and Wang and Zhou (2006).

All the aforementioned studies assumed that each failure time is taken from independent
subjects. In practice, multivariate or correlated failure time data with auxiliary data is just as
likely to be encountered. For example, in the SOLVD study, the heart failure time and the first
myocardial infarction time from the same subject could be correlated. Models dealing with
multivariate failure time data where the true covariates of interest are fully available for all
subjects have been well studied. In particular, if the correlation among the observations is not
of interest, the marginal proportional hazards model is widely used, e.g., Wei, Lin and
Weissfeld (1989); Lee, Wei and Amato (1992); Liang, Self and Chang (1993); Lin (1994); Cai
and Prentice (1995, 1997); Spiekerman and Lin (1998); Clegg, Cai and Sen (2000). There has
been limited progress on the methods for dealing with covariate measurement error for
multivariate failure time. Greene and Cai (2004) proposed using the SIMEX approach for
handling measurement errors in the marginal hazards model for multivariate failure time data,
when a validation set is not available.

In this paper, assuming a validation set is available, we develop an estimated pseudo partial
likelihood method for handling auxiliary covariates in the presence of a validation sample under
the framework of the marginal hazards model with distinguishable baseline hazards (Wei et.
al., 1989). The auxiliary covariate could be a mismeasured surrogate to the true covariate, or
any covariate which is informative about the true covariate. The proposed method is
nonparametric with respect to the conditional distribution of the exposure variable conditional
on the auxiliary covariate.

The rest of the paper is organized as follows. In Section 2, we outline the model and present
the estimated pseudo-partial likelihood estimator. We develop the asymptotic properties of the
proposed estimator and propose a variance estimator in Section 3. In Section 4, we evaluate
the proposed methodology through simulation studies. We apply the proposed estimator to
study the effect of ejection fraction on the risk of heart failure and first myocardial infarction
using the data from the SOLVD study. Final remarks are given in Section 5. Outline of the
proof for theoretical results are given in the Web Appendix.

2. Model and Estimation
2.1 Notation and Data Structure

Suppose that there is a random sample of n independent subjects from an underlying population
and that there are K different types of failures of interest for each subject. Let (i, k) denote the
kth failure type for the ith subject. Let Tik and Cik denote the potential failure time and censoring
time, respectively. With censoring, we observe Xik = min(Tik, Cik). Let Δik = I(Xik ≤ Cik) be the
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failure indicator and Yik(t) = I(Xik ≥ t) denote the at-risk indicator process. Let (Eik, Zik) denote
a set of covariates, where Eik is the primary exposure subjecting to missing and Zik = (Zik1, ···,
Zikp)’ is the remaining covariate vector that is always observed. We denote variable A as an
auxiliary variable for the exposure variable E, assuming that conditional on E, A provides no
additional information to the regression model, i.e. λ(t; E(t), Z(t), A(t)) = λ(t; E(t), Z(t)).

Suppose that there is a simple random validation sample with sample size nv, denoted by V,
such that subjects belonging to V have their (E, A) measured. Similarly, let  denote the
remaining subjects, the non-validation set, and assume that the subjects in  will only have
their A measured. Hence, the observed data structure for (i, k) is:

2.2 Models and Estimated Pseudo-Partial Likelihood Function
Assume that, the marginal hazard function for the kth failure type of subject i takes the form:

(1)

where  is an m-vector consisting of Eik and possibly interaction terms between Eik and some

fully observed covariates,  is the relative risk parameter to be estimated, and λ0k(t)
is an unspecified marginal baseline hazard function pertaining to the type k failure.

If subject i belongs to the validation set, then Zik and Eik are observed and the marginal model
takes the form as in (1). If subject i belongs to the non-validation set , we only observe
Zik(t) and Aik(t). Under this situation, we can show, using the argument of Prentice (1982) and
Zhou and Pepe (1995), that the hazard function for λik(t; Zik(t), Aik(t)) satisfied the induced
model

(2)

where A* includes auxiliary variable A and the part of the information in covariate Z that, given
A, are still related to E. That is, A* satisfying the following conditional dependence

. Notice that under this formulation,
A* still satisfies the auxiliary assumption that given E and Z, A* does not contribute to the
regression model, i.e., λ(t; Z(t), E(t), A*(t)) = λ(t; Z(t), E(t)).

Equation (2) implies that this induced hazard model is also a proportional hazard model with

the relative risk function , where .
Based on (1) and (2), the relative risk function can be written in general as
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where

and the binary variable ηi = 1 or 0 denote whether subject i is in validation set V or not. In
addition to the unspecified baseline hazard function λ0k(t), the expectation above also depends

on the underlying distributions of Eik(t) and Zik(t). If  is a known
function up to a parameter θ, then the inference about β and θ can be drawn from a pseudo
partial likelihood based on the model for multivariate failure times (Wei et. al., 1989; Cai and
Prentice, 1995). However, misspecification of such parameterization may lead to biased
estimates. We develop an estimated pseudo-partial likelihood approach for correlated failure
time data that avoids making undesirable parametric assumptions on the conditional
distribution.

If all the observations were independent, we could write the partial likelihood as

(3)

When the failure times within a subject are not independent, the above function is referred to
as the pseudo-partial likelihood (Wei et. al., 1989; Cai and Prentice, 1995). Since the induced
relative risk function rik(β, t) is unknown, we will estimate it by using the validation set. Without

loss of generality, we assume that  are identically distributed categorical variables with

the distribution Pr(A* = am) = pm, m = 1, ···, L, . Hence, if subject i is in the non-
validation set , we will estimate the induced hazard function for the kth type failure, ϕik(β1,
t), as:

(4)

It follows that the estimated relative risk function is: , where

.

Replacing rik(β, t) by r ̂ik(β, t) in (3), we obtain an estimated pseudo-partial likelihood function:

(5)

We define our proposed estimator β ̂E as the maximizer of (5). β ̂E can be obtained by solving
the estimated pseudo-partial likelihood score equation, Û(β) = (∂/∂β){log EPPL(β)} = 0, where
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(6)

and Nik(t) = I(Xik ≤ t, Δik = 1) is the counting process corresponding to failure time Tik. For a
function g(β, u), g(j)(β, u) denotes the jth derivative of g(β, u) with respect to β. A Newton-
Raphson iterative procedure can be invoked to obtain β ̂E.

3. Asymptotic Properties
To investigate the asymptotic properties of the estimated pseudo-partial likelihood estimator
β ̂E, we define the following notations. For a vector a, define a⊗0 = 1, a⊗1 = a, a⊗2 = aa’, ∥a∥
= supi |ai|. For a matrix A, define ∥A∥ = supi,j |aij|. We also define

Assume that the study duration is from 0 to τ. Suppose that  is the true hazards
parameter. Our asymptotic results rely on the following assumptions:

(i) (Finite interval):  (k = 1, ···, K);

(ii) , for m = 1, 2, ···, L;

(iii) For any k = 1, ···, K, there exits a neighborhood B2 of β20 such that

(iv) There exists an open set B1, containing β10, such that ϕik(β1, t) is bounded away from
0 on B1 × [0, τ]. Σ(β0), as defined in Theorem 2, is positive definite.

(v) For any k = 1, ···, K,
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(vi)
, d = 0, 1, where

and .

Following closely the argument of Foutz (1977), we can show that β ̂E is consistent for β0. To
show the asymptotic normality of β ̂E, we use the Taylor expansion of the score equation which,
using martingale representation and theory, can be shown to be asymptotically equivalent to a
sum of two independent terms. Each of the terms can be shown to be a sum of independent
vectors. The multivariate central limit theorem is then applied. We summarize the results in
the following theorems and give the outline of the proofs in the Web Appendix.

Theorem 1
(Consistency) β̂E is a consistent estimator of β0 under assumptions (i)-(vi).

Theorem 2
(Asymptotic Normality) Under the assumptions (i)-(vi), we have that n1/2(β̂E - β0) is
asymptotically normally distributed with mean zero and variance matrix

, where
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and

Here  is the first m elements of  and  contains the remaining p

elements, so , and

 denotes the validation fraction and  is the marginal
martingale.

Remark 1
Observe that, when the validation fraction q = 1, the variance matrix ΣEPPL is the same as that
of the usual pseudo-partial likelihood estimator (Wei et. al., 1989; Cai and Prentice, 1995), as
it should be.

The variance estimator for β ̂E can be consistently estimated by replacing the population
quantities in the asymptotic covariance matrix ΣEPPL(β0) with their corresponding sample
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quantities. The cumulative hazard  can be estimated by Aalen-Breslow
type of estimator:

where  is the empirical estimator of  which is defined as:

4. Numerical Studies
4.1 Simulation Studies

In this section, we examine the finite sample properties of the proposed estimator β ̂E via
simulation studies. We compare β ̂E with two naive estimators, β ̂V, which is the pseudo-partial
likelihood estimator (Wei et. al., 1989) based only on the validation set, and β ̂N, which is the
pseudo-partial likelihood estimator using the auxiliary variable in place of the true exposure
variable. We evaluate these estimators under various situations with different levels of
censoring proportions, validation fractions, dependence between failure times within a subject,
and the informativeness of the auxiliary covariate.

We generated the multivariate failure times from the popular multivariate Clayton and Cuzick
(1985) distribution with exponential marginals. The joint survival distribution function takes
the form

where  and β(k) is the corresponding coefficient for Dk. The parameter θ, where
θ > 0, controls the degree of dependence between Tj and Tl (j, l = 1, ···, K), with θ → ∞
corresponding to independence and θ → 0 corresponding to increasing positive correlation.
We take λ0k to be an arbitrary constant baseline hazard. We simulate failure times that follow
Clayton-Cuzick distribution by transforming independent uniform (0, 1) variables (u1, ···, uK)
as follows:  and

, for k = 2, ···,

K, where  for l = 1, ···, k - 1. We considered an exposure variable E which could
have different effect for different failure types, and an adjustment covariate Z which has the
same effect for different failure types. The generated failure times satisfy the following
marginal hazards model:

(7)
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where βk1 denotes the exposure (E) effect on the kth failure type and β2 is the common effect
of Z.

We simulate K = 2 failure types with baseline hazard λ0k = 1. We consider (β11, β21) = (0, 0)
or (β11, β21)= (ln(2), ln(1.3))=(0.693, 0.262) and β2 = -0.2. We set θ = 0.25, 1.5, or 5.7, which
respectively represents a strong, modest, or weak positive dependence between failure times
within a subject. When β11 = β21 = 0 and β2 = -0.2 with 20% censoring, these values of θ
correspond to the correlation coefficients (for the failure times within a subject) of 62%, 30%
and 10%, respectively. Censoring times were generated from uniform distribution over (0, c),
where c was chosen to yield the censoring percentage of 20% or 50%.

Mimicking the SOLVD study data structure, where f(E|A, Z) = f(E|A), we create our exposure
and auxiliary variables for each subject from the following scheme. We generate the partly
observed covariate (E1, E2) from a multivariate normal distribution with marginal mean of 0,
standard deviation of 1, and the correlation between E1 and E2 being r = 0 and 0.8, which
represent cases of independence and strong dependence between E1 and E2. The fully observed
covariate (Z1, Z2) are generated from independent normal distribution N(0, 1). To generate
auxiliary variable A, we first generate Wk = Ek + ek, (k = 1, 2), where ek ~ N(0, σ2), and σ is the
parameter that controls the strength of the association between Ek and Wk. The auxiliary
covariate A is then assigned the value of 1, 2, 3 or 4 based on whether Wk is in the interval (-
∞, Q1], (Q1, Q2], (Q2, Q3], or (Q3, +∞), where Q1, Q2, Q3 are the quartiles of W. The parameter
σ also controls the strength of the association between E and A: as σ2 increases, A becomes less
informative about E. We set σ = 0.2 or 0.8.

For each specified set of parameters, the number of independent subjects is n = 200 and each
simulation is repeated 1000 times. The sample standard deviation of the 1000 estimates are
given in the corresponding SD columns. The SE columns give the average of the estimated
standard errors and “95% CI” is the nominal 95% confidence interval coverage of the true
parameter using the estimated standard error.

Table 1 displays the simulation results when the exposure E has no effect on failures, i.e. β11
= β21 = 0, under a variety of configurations of the parameters when validation fraction is 50%
and censoring rate is 20%. Under this situation, failure times satisfy the following model:

Table 2 provides results under the situation when E has different effect on different failure
types. From Tables 1 and 2, we make the following observations. (i) In Table 1, i.e. when
β1=0, all the estimates are approximately unbiased. In Table 2, i.e. when β11 ≠ 0, β21 ≠ 0, β ̂N
is biased towards 0. Both the validation estimator β ̂V and the proposed estimator β ̂E are
approximately unbiased. (ii) The proposed estimator β ̂E is more efficient than the validation
set only estimator β ̂V. (iii) When σ is large, i.e. when A is not as informative about E, β̂E is less
accurate in estimating the true β, e. g. the bias exibited in β ̂E is larger for σ = 0.8. This bias,
however, decreases as we increase the sample size to n = 500 (results not shown). (iv) The
proposed variance estimator provides a good estimation of ΣEPPL(β). (v) The 95% confidence
intervals based on the proposed estimated standard errors provide good coverage for most of
the situations studied when σ = 0.2. The coverage rates are lower when σ = 0.8. However, when
we increased n to 500 (results not shown), the 95% CI coverage rates increased and were close
to 95%.

Table 3 compares the estimated relative efficiency of β ̂E vs. β ̂V under different censoring
proportions (20%, 50%), validation fractions (30%, 50%, 70%) and strength of correlations
between failure times within a subject (θ = 0.25, 1.5, 5.7). The estimated relative efficiency
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(RE) are calculated as (SD(β ̂V)/SD(β ̂E))2. From Table 3, we had the following observation:
when the validation fraction decreases, the efficiency gain of β ̂E relative to β ̂V increases. For
example, when θ = 0.25 and 20% censoring, the REs for (β ̂11, β ̂21, β ̂2) increase from (1.452,
1.399, 1.423) to (3.466, 3.551, 3.894) when validation fraction decreases from 70% to 30%.
We observe the same trend when censoring rate is 50% or θ=1.5 or 5.7. This suggests that
when the validation fraction is small, using our proposed method is even more beneficial
compared to using the estimator based on the validation set only.

4.2 Analysis of the SOLVD Study Data Set
We illustrated the proposed method with a data set from the SOLVD study to evaluate the
effect of ejection fraction on the time of heart failure and the time to first nonfatal myocardial
infarction (nonfatal MI). The SOLVD study was a randomized, double-masked, placebo-
controlled trial between 1986 and 1991. The trial had a three year recruitment and a two year
follow-up. The basic inclusion criteria for the prevention trial were: age between 21 and 80
years, inclusive, no overt symptoms of congestive heart failure, and left ventricular ejection
fraction less than 35 percent. Ejection fraction is a number between 0 and 100 that measures
the efficiency of the heart in ejecting blood. A total of 4228 patients with asymptomatic left
ventricular dysfunction were randomly assigned to receive either enalapril or placebo at one
of the 83 hospitals linked to 23 centers in the United States, Canada, and Belgium.

The correlated outcomes of interest are time to heart failure and time to the first nonfatal MI
after the randomization. The primary clinical issues of interest are the effects of covariates on
the risk of heart failure and on the nonfatal MI after adjusting for the confounding variables.
In the SOLVD study, only 108 among the total of 4228 patients have their ejection fraction
accurately measured using a standardized radionucleotide technique (LVEF). A related
nonstandardized measure (EF) was, however, ascertained for all the patients. Therefore, the
nonstandardized measure (EF) is a surrogate measure for the standardized measure for ejection
fraction (LVEF) in this case. Both LVEF and EF were measured in percentage.

The average LVEF in the validation set is 28.3% ranging from 12.3% to 45.4%. The average
EF for the entire cohort is 19.37% ranging from 1% to 32%. We create a new auxiliary variable
VEF taking values a1, ···, a4 depending on whether EF belongs to the interval [min(EF), Q1],
(Q1, Q2], (Q2, Q3] and (Q3, max(EF)] respectively, where a1, ···, a4 are the values of the
midpoint of the aforementioned intervals, and Q1, Q2, and Q3 are the quartiles of EF. We use
VEF as the auxiliary covariate for LVEF. Other covariates we considered here are patient’s
gender (SEX), which is coded 1 for male and 0 for female; treatment (TRT), which is coded
as 1 for enalapril and 0 for placebo, and patient’s age (AGE), which was measured in years.
The average age of the patients is 59 years old with a standard deviation of 10 years. Hence,
in terms of the notation in the previous sections, we have E = LVEF, A = VEF, Z = (TRT, SEX,
AGE)’. To check whether, for given VEF, LVEF is dependent on TRT, SEX, and AGE, we
added TRT, SEX, and AGE to the linear model of LVEF on VEF. The results showed that the
TRT, SEX, and AGE effects are not statistically significant for given VEF. We also examined
this relationship for subjects who are at risk at some selected time points and the same
conclusion was arrived. Hence we took A* = VEF in this case.

We fit the following marginal hazards model to the SOLVD data:

(8)

where
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and

where k denotes failure type with k = 1 for heart failure and k = 2 for nonfatal MI and i denotes
the patient with i = 1, ···, 4228.

Table 4 presents the data analysis results. The columns under “Proposed method” list results
using the proposed method. The columns under “Validation method” are the results from fitting
model (1), using the pseudo-partial likelihood approach, based only on the validation set. The
proposed method utilizes the auxiliary information while the validation analysis relies only on
the available true ejection fraction.

An inspection of the point estimates of the covariate effects reveals that the estimates from the
proposed method are very close to those from the validation set only analysis, except for SEX.
However, the proposed estimator is much more precise than the validation set only analysis,
e.g, for the effect of LVEF on heart failure, the standard error is 0.008 for the proposed estimator
and 0.038 for the validation only estimator. Consequently, the proposed method provided a
tighter 95% confidence intervals, e.g., the 95% CI for LVEF for heart failure is (-0.071, -0.039)
for the proposed method and (-0.149, -0.001) for the validation set only analysis. The p-values
in Table 4 indicate that at 0.05 significance level, LVEF, TRT, SEX and AGE are all statistically
significant for heart failure using the proposed method, while only LVEF is marginally
significant for heart failure for the validation analysis. Note that this real data set has an
extremely low validation fraction with a moderate validation sample size. From our additional
simulations (results not shown), our proposed variance estimator could over-estimate the true
variance when the validation fraction is low (see Concluding Remarks). Hence these
confidence intervals should be interpreted on the conservative side.

The results from the proposed method also indicate that the effects of ejection fraction,
treatment, sex, and age are different for the heart failure and for the non-fatal MI. Specifically,
ejection fraction, treatment, sex and age do not seem to affect the risk of non-fatal MI, but is
related to the risk of heart failure. The risk of heart failure increases by 2.5% (95% CI: (1.3%,
3.7%)) per year increase in age. With 1% decrease in ejection fraction, the risk of heart failure
is about 5.3% (95% CI: (3.8%, 6.8%)) higher. Females are at 25.3% (95% CI: (0, 44.6%))
higher risk for heart failure than males. Enalapril reduces the risk of heart failure by 35.5%
(95% CI: (17.6%, 49.5%)).

In conclusion, we found that the pseudo-partial likelihood method using only the validation
data yielded no significant covariate effect and the estimated standard errors were much bigger
than those from the proposed method. This is because the validation set is only a very small
subset (n = 108) of the entire cohort (n = 4228). Utilizing the auxiliary information in the
proposed method, we had in effect regained the statistical power of the study that would have
been lost had one conducted the analysis using only the validation data set.
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5. Concluding Remarks
In this paper, we studied an estimated pseudo-partial likelihood method for multivariate failure
time data with an auxiliary covariate. A key feature of this method is that it is nonparametric
with respect to the association between the missing covariate and the observed auxiliary
covariate. The estimated pseudo-partial likelihood estimator asymptotically follows a normal
distribution. Simulation studies demonstrate that the proposed estimator approaches the large
sample properties with moderate sample size. These results also show that the proposed
estimator outperforms the estimator which uses only data from the validation sample. The
proposed variance estimator based on the approximated asymptotic variance performs well.
When the auxiliary covariate A is more informative about the partly observed covariate E, the
proposed estimator is more efficient.

The real data example also demonstrates that a much more precise estimator can be obtained
by incorporating the auxiliary covariate information. The proposed method shows improved
statistical power over what would be achieved using only the validation set.

We have a couple of cautionary notes on the limitations of the proposed method. First, the
auxiliary variable A* is assumed to be discrete with the number of categories fixed. The
asymptotic properties were developed under this assumption. One way to deal with a
continuous auxiliary variable is to discretize it into categories and then apply the proposed
method. In practice, the number of categories of the auxiliary variable cannot be too large (no
more than 6), especially when the sample size is small. In our simulation, we have run into
convergence problems when the validation size is less than 60 and the number of categories is
greater than 8. We recommend reducing the number of categories of the auxiliary variable if
it is greater than 8. Second, if the validation size is small and the validation fraction is also very
low, the resulting variance estimator tends to over-estimate the true variance. Increasing the
validation sample size helps to alleviate this problem (see Web Table 1).

To fully take advantage of a continuous auxiliary covariate, a nonlinear smoothing version of
(4) can be developed. Cai and Prentice (1995) showed that more efficient β-estimators could
be obtained by introducing weights into the pseudo-partial likelihood score equations. Future
work that introduces suitable weights to our proposed method to improve the efficiency of
estimators is certainly warranted.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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