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Summary

While T cells have been implicated in the pathogenesis of inflammatory
arthritis for more than three decades, the focus on the T helper type 17 (Th17)
subset of CD4 T cells and their secreted cytokines, such as interleukin (IL)-17,
is much more recent. Proinflammatory actions of IL-17 were first identified in
the 1990s, but the delineation of a distinct Th17 subset in late 2005 has
sparked great interest in the role of these cells in a broad range of immune-
mediated diseases. This review summarizes current understanding of the role
of Th17 cells and their products in both animal models of inflammatory
arthritis and human immune-driven arthritides.
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Introduction – utility of animal models for studying
the role of T helper type 17 (Th17) cells in arthritis

Animal models of arthritis are important tools for under-
standing the aetiology and underlying mechanisms of
disease, as well as for discovering and testing new thera-
peutic targets. Many of these rodent models closely
resemble rheumatoid arthritis (RA) pathologically, with
infiltration of the joints by inflammatory cells, autoanti-
body production, synovial hyperplasia and erosion of car-
tilage and bone. Arthritis can be induced experimentally by
systemic immunization with joint proteins mixed with
adjuvant, local injection of microbial products or inflam-
matory mediators directly into the joint, or genetic muta-
tion leading to exaggerated immune responses and
spontaneous joint inflammation. There are many similari-
ties as well as important differences in the pathogenesis of
these diverse animal models of arthritis, which possibly
parallel the clinical, genetic and immunological subcatego-
ries of RA and other human arthritic syndromes. Recent
work suggests strongly that IL-17, an inflammatory cytok-
ine produced primarily by CD4+ Th17 cells, can play a
pivotal role in the pathogenesis of many animal models
of arthritis, making it a very attractive target for new
therapeutics.

Collagen-induced arthritis

One of the best-characterized models of RA is collagen-
induced arthritis (CIA). To induce CIA, DBA mice are
immunized intradermally with type II collagen in complete
Freund’s adjuvant. Several weeks later, joints of the front and
hind paws develop severe synovial inflammation and cellular
infiltration, leading to destruction of both cartilage and
bone. CIA is a T cell-dependent disease, and although Th1
cells were thought previously to be the key pathogenic
subset, substantial evidence now demonstrates that Th17
cells are largely to blame. Th17 cells are characterized by
production of interleukin (IL)-17A (referred to simply as
IL-17), IL-17F (closely related and highly homologous
to IL-17A), IL-21 and IL-22. In CIA, serum IL-17 levels
increase shortly after immunization, and IL-17 mRNA is
up-regulated in the synovium after the onset of arthritis [1].
Many of the CD4+ T cells in the joint are IL-17-positive [2].
Several approaches have shown IL-17 to be both necessary
and sufficient for joint inflammation. IL-17-deficient mice
develop significantly less severe (although not completely
absent) CIA, and IL-17 is important for priming collagen-
specific T cells and for collagen-specific immunoglobulin
(IgG)2a production [3]. Administration of soluble IL-17R or
neutralizing antibody to IL-17, either before or after the
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onset of disease, reduces significantly macroscopic joint
swelling and the associated histological changes, including
cellular infiltration, proteoglycan depletion, cartilage surface
erosion and bone erosion [1,4]. Soluble IL-17R treatment
has similar protective effects in the rat model of methylated
bovine serum albumin (mBSA)-induced arthritis (also
known as antigen-induced arthritis, or AIA) [5]. Conversely,
local adenoviral over-expression of IL-17 in the knee of naive
or immunized mice results in aggravated joint inflamma-
tion, including increased cellular infiltration, synovial hyper-
plasia, receptor activator of nuclear factor (NF)-B (RANK)
and receptor activator of NF-B ligand (RANKL) expression,
osteoclastogenesis, proteoglycan depletion, chondrocyte
death and erosion of cartilage and bone [1,6]. Thus IL-17 is
important both for recruitment of inflammatory cells and
for joint destruction. This conclusion is supported further by
a multitude of in vitro studies which show that IL-17 can act
on synoviocytes to induce inflammatory cytokines such as
tumour necrosis factor (TNF)-a, IL-1b and IL-6, chemok-
ines such as IL-8, chemokine (C-X-C motif) ligand 1
(CXCL1) and CXCL2, and mediators of bone and cartilage
loss such as RANKL and matrix metalloproteinases (MMPs)
(reviewed in [7]).

Roles of Th17 pathway cytokines: transforming
growth factor (TGF)-b, IL-6, IL-21 and IL-23

Further evidence for the role of Th17 cells is the contribution
to CIA of cytokines responsible for inducing and maintain-
ing Th17 differentiation. In mice, Th17 cells develop when
naïve CD4+ T cells are stimulated in the presence of TGF-b
plus IL-6 or IL-21. The actions of TGF-b are complex, with
both pro- and anti-inflammatory effects. In mice, injecting
TGF-b inhibits CIA [8] and neutralizing TGF-b worsens
disease [9], yet in CIA or AIA in rats, injection of TGF-b into
the joint results in accelerated arthritis and enhanced neu-
trophil recruitment, synovial inflammation and hyperplasia,
while injection of blocking antibody to TGF-b inhibits
acute and chronic synovial inflammation [10–13]. Thus,
the precise role of TGF-b varies greatly depending on the
species, concentration, timing, target cells and cytokine
microenvironment.

IL-6, on the other hand, has robust and well-characterized
inflammatory effects in multiple animal models, and a
humanized blocking antibody to the IL-6 receptor is effective
in RA, both as a monotherapy and in combination with
methotrexate [14–16]. Injection of anti-IL-6R at the time of
immunization inhibits differentiation of Th17 cells and the
development of CIA, even after a second booster immuniza-
tion with collagen [2]. Soluble IL-6R or anti-IL-6 can also
ameliorate disease [17,18] and IL-6-deficient mice have
reduced IL-17 expression and are completely resistant to CIA
[19,20]. Both TGF-b and IL-6 are found in human RA syn-
ovial fluid, suggesting a mechanism by which Th17 cells may
develop in the joint [21]. In addition, IL-17 augments IL-6

production by human RA synovial fibroblasts in vitro, thus
creating the potential for a Th17-mediated, positive feedback
loop central to joint inflammation [22,23].

Inhibiting IL-6 can suppress the development of Th17
cells, but studies in IL-6-deficient mice have shown that the
mechanism of suppression in vivo may be complex. In addi-
tion to supporting Th17 differentiation, IL-6 can suppress
regulatory T cells (Tregs). IL-6-deficient mice have increased
numbers of Tregs, and depleting the Tregs with antibody to
CD25 restores the Th17 population, suggesting that IL-6 is
not absolutely required for Th17 development [20]. More-
over, IL-21 can substitute for IL-6 to promote Th17 differ-
entiation both in vivo and in vitro. Furthermore, IL-21 is
produced by Th17 cells and can act in an autocrine manner
to enhance Th17 development [20,24–26]. A role for IL-21 in
a variety of autoimmune diseases and their animal models
has been proposed (for review see [27]), but relatively little is
known currently about its role in arthritis. In CIA, mice
treated with a soluble IL-21R-Fc fusion protein after the
onset of disease demonstrate a modest but significant
decrease in disease severity and down-regulation of IL-6
and IL-17 expression in spleen cell cultures [28]. Similar
IL-21R-Fc treatment of rats with AIA yields more dramatic
effects, suggesting that different Th17-dependent models of
arthritis may be more IL-21 or IL-6 dominant.

One complicating factor is that IL-21 has a significant,
non-redundant role in supporting B cell function and
therefore may contribute to arthritis by up-regulation of
autoantibody production, in addition to promoting Th17
differentiation. The importance of IL-21 for humoral
immune responses in arthritis is evident in the K/BxN
model, which is autoantibody mediated. K/BxN mice defi-
cient in IL-21R or treated with IL-21R-Fc are resistant to
disease despite increased IL-17 expression. Protection from
arthritis correlates with a decrease in memory B cells, folli-
cular helper T cells and IgG1 [29]. Much more work is
needed to elucidate the role of IL-21 in arthritis, both in
human RA and in animal models.

CIA was considered to be a Th1-mediated disease due to
the effect of deficiency of the p40 subunit of IL-12 (a key
cytokine for induction of Th1 differentiation), in conferring
resistance to disease. However, the IL-12 p40 subunit is
shared by IL-23, which supports the maintenance and patho-
genicity of Th17 cells. A key observation concerning relative
roles of Th1 and Th17 cells in CIA was made by Cua and
colleagues, who demonstrated that IL-23, rather than IL-12,
was critical for development of arthritis. Mice lacking the
specific p19 subunit of IL-23 have significantly fewer IL-17-
producing Th17 cells and no joint or bone pathology, despite
normal numbers of interferon (IFN)-g-producing Th1 cells.
Mice lacking the specific p35 subunit of IL-12, on the other
hand, show exacerbated arthritis pathology and increased
expression of many inflammatory cytokines in the joint,
including TNF-a, IL-1b, IL-6 and IL-17 [30]. Furthermore,
deletion of the IFN-g gene from the CIA-resistant B6 strain
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of mice renders them susceptible to CIA and correlates with
an increase in IL-6 and IL-17 expression [31]. Neutralizing
IFN-g in wild-type mice increases IL-17 expression and
disease susceptibility, while neutralizing IL-17 in IFN-g-
deficient mice decreases the incidence and severity of CIA
[31]. IFN-g-deficient mice also develop augmented AIA,
which correlates with increased IL-17 expression and can be
treated with neutralizing antibody to IL-17 [32].

Although the precise mechanism by which IL-23 supports
Th17 cell activity is not known, IL-23 is a multi-faceted
inflammatory mediator, with both T cell-dependent and
independent effects. In mice, IL-23 is not required for Th17
differentiation in vitro, but in vivo a lack of IL-23 severely
hinders both Th17 differentiation and pathogenicity. IL-23
can induce RANKL expression on both T cells and myeloid
precursor cells, leading to osteoclastogenesis in vitro and
bone resorption in vivo [33,34]. Furthermore, while IL-23
up-regulates IL-17 production by Th17 cells, IL-17, in synergy
with TNF-a, induces IL-23 production by fibroblast-like syn-
oviocytes (FLS), leading to a potential positive feedback loop
of inflammation and bone destruction in the joint [35].
In vivo treatment with neutralizing antibody to IL-23 p19
decreases inflammation and bone destruction in both the rat
model of CIA and in a mouse model of Lyme arthritis, which
develops following infection with Borrelia burgdorferi, thus
showing that IL-23 plays an important role in joint inflam-
mation in a variety of settings [36,37].

IL-1Ra-/- mice – the IL-1/IL-17 connection

Further evidence for the pathogenic role of IL-23 and Th17
cells comes from several models of spontaneous arthritis
which develop as a result of genetic manipulations affecting
immune regulation. Mice deficient in the naturally occur-
ring IL-1 receptor antagonist display exaggerated IL-1R sig-
nalling, resulting ultimately in a T cell-dependent, RA-like
disease, characterized by synovial inflammation, autoanti-
body production and erosion of cartilage and bone. Impor-
tantly, T cells from IL-1Ra-deficient mice produce increased
amounts of IL-17, and IL-17/IL-1Ra double-deficient mice
are completely resistant to disease [38]. In addition, treating
arthritic mice with neutralizing antibody to IL-17 stops the
progression of disease and reduces cellular infiltration, pro-
teoglycan depletion and bone erosion (although to a lesser
extent than does neutralizing antibody to IL-1) [39].

IL-17 clearly plays a role in the arthritis caused by exces-
sive IL-1 activity, yet IL-1 does not up-regulate IL-17 pro-
duction directly by in vitro-stimulated T cells, implying that
over-expression of IL-17 in vivo is mediated by an indirect
mechanism. In addition, IL-1 appears to play a more impor-
tant role in Th17 development in vivo than in vitro. Kim and
colleagues discovered that IL-23 is up-regulated in response
to IL-1 and over-expressed in IL-1Ra-deficient spleens and
joints. Furthermore, neutralizing antibody to IL-23 blocks
the up-regulation of IL-17 in spleen cell cultures stimulated

with IL-1, suggesting that IL-1-induced IL-17 production in
IL-1Ra-deficient mice is mediated by IL-23 [40]. Immuno-
histochemistry of joints from IL-1Ra-deficient mice shows a
high level of IL-23 p19, which co-localizes with CD4 and
IL-17 [33]. Moreover, intra-articular injection of adenoviral
IL-23 in IL-1Ra-deficient mice accelerates arthritis, with
increased RANK and RANKL expression and more severe
bone destruction [33]. These and many other in vitro studies
strongly implicate both IL-23 and IL-17 as mediators of
osteoclastogenesis and bone destruction.

SKG mice implicate autoreactive Th17 cells that
express CCR6

SKG mice have a mutation of ZAP-70, a key signalling inter-
mediate downstream of the T cell receptor, which results in
defective negative selection of self-reactive T cells. The mice
develop spontaneous, T cell-mediated arthritis and demon-
strate many of the extra-articular comorbidities found
in RA, including interstitial pneumonitis, subcutaneous
nodules and vasculitis [41]. As in IL-1Ra-deficient mice,
arthritis in SKG mice is Th17-dependent. SKG mice deficient
in IL-17 or IL-6 are completely resistant to disease, while
deficiency of IFN-g exacerbates disease [42]. However, spon-
taneous development of autoreactive Th17 cells is not suffi-
cient to induce disease. Onset of arthritis requires further
Th17 expansion and activation via homeostatic proliferation
or stimulation of innate immunity by microbial products,
such as zymosan [42].

Th17 cells in both humans and mice (including SKG
mice) express the chemokine receptor CCR6, and both
produce and respond to the CCR6 ligand CCL20 [43,44].
Inflamed synoviocytes, in particular FLS, express CCL20,
which is up-regulated by IL-1b, IL-17 and TNF-a. In
addition, in vivo treatment with anti-CCR6 antibody sup-
presses SKG arthritis, suggesting that arthritogenic, CCR6-
expressing Th17 cells migrate to inflamed joints in response
to CCL20, which is both directly produced and up-regulated
by Th17 cells [43].

Streptococcal cell wall-induced arthritis illuminates
downstream actions of IL-17

Streptococcal cell wall (SCW)-induced arthritis is a chronic,
erosive polyarthritis that can be induced in euthymic, suscep-
tible Lewis rats by a single intraperitoneal (i.p.) injection of
SCW. The van den Berg group recently pioneered a version of
SCW-induced arthritis in mice. A single intra-articular injec-
tion of SCW induces localized, acute joint inflammation,
which evolves into a chronic, destructive arthritis after
repeated injections. The mouse model of SCW-induced
arthritis is particularly interesting, because distinct cytokines
appear to mediate the different phases and aspects of disease.

In this new chronic mouse model of SCW-induced arthri-
tis, IL-17R expression is required for full progression of
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chronic, destructive arthritis, but not for acute joint swelling
[45,46]. Mice lacking IL-17R, specifically in the radiation-
resistant cells of the joint, show a significant decrease in
synovial infiltration, bone and cartilage erosion, and joint
expression of many inflammatory cytokines, chemokines
and selectins. In addition, local IL-17 gene transfer is suffi-
cient to turn acute, macrophage-driven joint inflammation
into severe chronic arthritis with aggravated cartilage
damage [47]. Interestingly, both IL-17R and IL-1b are
required for chronic arthritis and cartilage erosion but not
for acute joint swelling. TNF-a, on the other hand, is
required for acute joint swelling but not for chronic erosive
disease [48,49]. Over-expression of IL-17 can, however, over-
come the requirement for IL-1b during cartilage erosion in
both SCW-induced arthritis and CIA, suggesting that IL-17
can induce joint damage independent of IL-1 [47]. Similarly,
over-expression of IL-17 enhances inflammation and carti-
lage destruction during SCW-induced arthritis, even in the
absence of TNF-a, and in the combined absence of TNF-a
and IL-1b [50].

These results may have important implications for the
possible clinical value of IL-17 neutralizing therapies. Due to
the fact that IL-17 often synergizes with TNF-a and IL-1b,
one might worry that targeting IL-17, in addition to TNF-a
or IL-1b, would be redundant and offer no additional
benefit. The data discussed here, however, suggest that IL-17
can mediate disease, especially cartilage erosion, indepen-
dently of TNF-a and IL-1b, thus making it a potentially
valuable therapeutic target. The differential timing of the
dependence on TNF-a versus IL-1b and IL-17 also suggests
that different cytokine-blocking treatments may be most
efficacious at different stages of disease. While the therapeu-
tic value of neutralizing TNF-a in arthritis is well estab-
lished, recent studies in CIA showed that, paradoxically, TNF
blockade increased numbers of pathogenic Th1 and Th17
cells in the lymph node, but reduced their accumulation in
the joint, thus raising many questions about the effect of
TNF blockade on IL-17 expression in humans [51]. These
hypotheses clearly need to be explored clinically. Given the
rapidly increasing number of biological therapies available,
deciding which cytokine to target at what stage of disease in
each patient represents a major hurdle to providing the most
successful and personalized patient care.

Proteoglycan-induced arthritis shows that Th1 cells
can still be arthritogenic

Many animal models of arthritis are Th17-mediated, but
there are exceptions to every rule. Finnegan and colleagues
have shown that the mouse model of proteoglycan-induced
arthritis (PGIA) is not dependent on IL-17, but rather is
mediated primarily by IFN-g [52]. Mice deficient in IFN-g
develop more severe CIA but significantly milder PGIA. Loss
of IL-17, on the other hand, has no effect on the onset or
severity of PGIA, including cellular infiltration, synovial

hyperplasia and anti-proteoglycan antibodies [52]. Interest-
ingly, the IL-17-deficient mice with PGIA had reduced joint
expression of IL-6 and RANKL, but normal levels of TNF-a
and bone erosion – due possibly to increased joint expres-
sion of IL-1b. These results suggest that IL-17 is important
for RANKL and IL-6 expression, but that IL-1b can mediate
bone loss through alternative mechanisms.

CIA and PGIA also differ in their dependence on IL-12
and IL-27, both of which support Th1 differentiation but
inhibit Th17. Mice deficient in IL-12 p35 or IL-27R develop
PGIA with reduced incidence and severity, which correlates
with a significant loss of IFN-g expression [52,53]. In CIA,
on the other hand, loss of IL-12 p35 enhances disease, and
treatment with IL-27 reduces disease [30,54]. Despite these
differences, however, arthritic joints from mice with both
PGIA and CIA express IFN-g, IL-17, TNF-a, IL-1b and IL-6
[52]. The important lesson from these contrasting models is
that one cell type, such as Th1 cells, can be either protective
(as in CIA) or pathogenic (as in PGIA), and what may appear
to be opposing cytokine networks in vitro can trigger highly
similar clinical manifestations in vivo. It will be interesting to
learn whether RA patients fall into different subclasses,
depending on the relative abundance, and thus the potential
pathogenicity, of Th1 versus Th17 cells.

Is rheumatoid arthritis a Th17-driven disease?

Rheumatoid arthritis (RA) is a chronic autoimmune disease,
with symmetrical involvement of small joints of the hands
and feet, characterized by synovitis as well as bone and car-
tilage destruction. Several studies have evaluated the tissue
distribution of IL-17 in RA. While there is some discrepancy
regarding the serum levels of IL-17 and the frequency of
Th17 cells in the systemic circulation in RA, most reports
agree that IL-17 is increased in the synovial fluid and syn-
ovial tissue in RA (Tables 1 and 2). IL-17 is expressed in the
T cell rich areas of the synovium and is secreted primarily by
CD4+CD45RO+ memory T cells in the synovium and periph-
eral blood [55–63]. Th17 cells from RA peripheral blood
express the receptor for IL-23, as well as chemokine receptors
CCR6 and CCR4. Approximately a third of the Th17 cells in
RA also express IL-22 or IFN-g [63]. The frequency of Th17
cells correlates with markers of disease activity in RA, such as
CRP and tender joint count. Interestingly, in a prospective
study in patients with RA, increased expression of IL-17 and
TNF-a mRNA in synovium were associated independently
with more severe joint damage, but expression of IFN-g was
associated with protection from joint damage [64].

TNF-a, IL-1b, IL-6, and now IL-17, have been identified
as pathogenic cytokines in RA. TNF neutralizing therapy is
being used with significant success and an IL-6 receptor
blocking antibody is also effective. Furthermore, trials are
currently under way to evaluate the safety and efficacy of
anti-IL-1b and anti-IL-17 monoclonal antibodies in patients
with RA. Thus the regulation of TNF-a, IL-1b, IL-6 and
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IL-17 is quite pertinent in the context of RA and provides
insight into the perpetual activation of the inflammatory
cascade in the synovium. The receptor for IL-17 is expressed
ubiquitously and binding of IL-17 to its receptor on mono-
cytes, macrophages, chondrocytes, osteoblasts and fibro-
blasts induces the secretion of TNF-a, IL-1b, IL-6 and IL-23.
All these cytokines, either in combination with each other or
with TGF-b, can contribute to the differentiation of Th17
cells from human memory or naive T cells [24,65–71].
Furthermore, IL-1b has also been shown to induce the
generation of Th17 cells from Tregs [72]. This is particularly
important, as TNF-a, IL-1b and IL-6 are abundant in the
joint and provide the ideal cytokine mileu for the generation
and maintenance of Th17 cells. Additionally, there is synergy
between IL-17, TNF-a and IL-1b in mediating downstream
effector functions, and neutralization of TNF-a in combina-
tion with IL-1b and IL-17 is most effective in suppressing
IL-6 production and collagen degradation in ex vivo cultures
of RA synoviocytes [73].

The interaction of T cells and fibroblast-like synoviocytes
(FLS) contributes to sustained inflammation in the joints. In
addition to resting T cells and antigen activated T cells, T cells
which have been activated exclusively by cytokines, such as
IL-6, IL-2 and TNF-a, referred to as cytokine activated T cells,
may represent an important component of the synovial T cell
population [74]. Resting as well as cytokine activated T cells
induce production of IL-6, IL-8 and prostaglandin E2 (PGE2)
by FLS, which is augmented by IL-17 [22,75]. FLS can, in turn,
induce a proliferative response of resting T cells to superan-
tigens [76]. Moreover, the interaction between cytokine acti-
vated T cells and FLS is dependent on membrane anchored
TNF-a on the T cell surface [22]. In addition to FLS, osteo-
blasts can also induce superantigen-dependent proliferation
of T cells, and T cells can induce IL-6 production in osteo-
blasts, which is augmented by IL-17 [77]. These findings
indicate a pathogenic role of IL-17 in RA and provide insight
into the possible mechanisms underlying the perpetual acti-
vation of IL-17 producing cells in the joints, leading to sus-
tained inflammation and consequent tissue damage.

IL-17, the IL-17 receptor and signalling pathways

There are six isoforms of IL-17: IL-17A, -B, -C, -D, -E and -F.
IL-17A and F have been implicated in autoimmunity and
share a 50% homology. These two isoforms exist either as a
homodimer or an A/F heterodimer. To date five distinct pro-
teins have been identified that function as components of
receptors for IL-17: IL-17RA, IL-17Rh1, IL-17RC, IL-17RD
and IL-17RE. IL-17RA associates physically with IL-17RC
[78,79], and both are over-expressed by peripheral blood
mononuclear cells (PBMCs) of patients with RA and by RA
synoviocytes. Both IL-17A and F, each of which has been
implicated in RA, signal through IL-17RA and IL-17RC to
induce similar, but not identical, patterns of expression of
proinflammatory genes. Studies by Zrioual et al. [59] have
shown that IL-17A regulates more genes than IL-17F, but
both could induce expression of important proinflamma-
tory genes, including CCL20, IL-23, IL-6, IL-8, E-selectin,
CXCR4 and granulocyte colony-stimulating factor (G-CSF).
Studies utilizing siRNA to suppress the expression of
IL-17RA and IL-17RC in RA synoviocytes have shown that
induction of IL-6 and IL-8 in response to IL-17 is dependent
on full expression of IL-17RA and IL-17RC [80]. Further-
more, the synergistic effects of IL-17A, IL-17F and TNF-a to
induce IL-6, CCL-20 and TNF receptor II were dependent on
both IL-17RA and IL-17RC. These studies did not find any
synergistic effects of IL-17 and TNF-a on IL-17RA, IL-17RC
or TNF receptor I expression. Such findings point to the
importance of blocking both subunits of IL-17 receptor,
IL-17RA as well as IL-17RC, in order to achieve maximal
therapeutic benefit.

IL-17 binding to its receptor initiates several discrete sig-
nalling pathways, all of which are important in the patho-
genesis of joint inflammation. For example, IL-17-induced
expression of IL-23 p19 in RA FLS is dependent on the
phosphatidylinositol 3 (PI3)-kinase/AKT (protein kinase B),
natural killer (NK)-kB, and p38 mitogen activated protein
kinase (MAPK) pathways [81]. In contrast, IL-17-induced
secretion of IL-6 and IL-8 from FLS is dependent on NK-kB

Table 2. Distribution of interleukin (IL)-17 and T helper type 17 (Th17) cells in the peripheral blood, synovial fluid and synovium of patients with

inflammatory arthritis.

Serum

IL-17

IL-17 mRNA

in PBMCs

Th17 cells

in PBMCs

Synovial

fluid IL-17

IL-17 mRNA

in synovium

Th17 cells in

synovial fluid

Th17 cells

in synovium

RA ++
[57,58]

+
[144]

+/-
[60,61,145]

++
[57,58]

+/-
[144]

++
[56,60]

+/-
[145]

++
[60]

+
[57]

AS ++
[128,129]

++
[61,63]

PsA ++
[61]

ReA ++
[136]

PBMC: peripheral blood mononuclear cells; RA: rheumatoid arthritis; AS: ankylosing spondylitis; ReA: reactive arthritis; PsA: psoriatic arthritis.
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and PI3-kinase/AKT, but independent of p38 MAPK signal-
ling [23]. Thus IL-17 utilizes multiple signalling pathways to
induce various proinflammatory cytokines important in the
pathogenesis of RA.

Th17-related cytokines in RA

TGF-b plays a significant role in the differentiation of Th17
cells in both mice and humans. TGF-b is present in synovial
fluid and is expressed by RA FLS. Immunohistochemical
studies have shown that TGF-b is located predominantly in
the cartilage–pannus junction in the RA joints [82–87].
Current evidence suggests that TGF-b plays a pathogenic
role in bone and cartilage destruction in RA by synergizing
with TNF-a and RANKL to induce osteoclast differentiation
[88–90]. TGF-b can also induce osteoclastogenesis by inhi-
bition of osteoprotegrin production by FLS [91]. In addi-
tion, exogenous TGF-b induces matrix metalloproteinases in
RA FLS [82,92]. The role of TGF-b in initiating or sustaining
a pathogenic Th17 response in RA remains to be evaluated.

Elevated levels of IL-23 are found in the sera and synovial
fluid of patients with RA, and expression of the IL-23 p19 is
increased in FLS and synovial macrophages [60,81,93].
Expression of IL-23 by RA synovial macrophages increases
further upon stimulation with peptidoglycan, and ex vivo
treatment of synovial fluid mononuclear cells with IL-23
augments the frequency of Th17 cells [60]. In vitro studies of
RA FLS show that IL-17 can synergize with TNF-a to induce
expression of the IL-23 p19 subunit. On the other hand, the
induction of IL-23 p19 expression by IL-1b is independent of
IL-17. Both IL-12 and IL-23 receptors signal via signal trans-
ducer and activator of transcription-4 (STAT-4), and STAT-4
is important in the generation and maintenance of Th17
cells [94]. STAT-4 has been identified as one of the suscep-
tibility genes for RA [95,96] and it is plausible that STAT-4
risk alleles could augment the sensitivity of Th17 cells to
stimulation by IL-23, and thus maintain an activated Th17
response.

IL-21 has been shown recently to be important in Th17
biology. IL-21, in combination with TGF-b and IL-1b,
induces the differentiation of naive human CD4 T cells into
Th17 cells expressing IL-17, retinoic acid-related orphan
receptor (RORgT), IL-23 receptor and CCR6 [66,97]. IL-21
is increased in the peripheral blood and synovial fluid in RA.
Lymphocytes from RA peripheral blood and synovial fluid,
as well as FLS and synovial macrophages, have increased
expression of the IL-21 receptor [98,99]. Stimulation of
peripheral blood and synovial fluid T cells by IL-21 increases
production of TNF-a and IFN-g [99], while blocking IL-21
with an IL-21 receptor fusion protein decreases secretion of
TNF-a, IL-6 and IL-1b from RA synoviocytes in vitro [100].
In addition to its effects on T cell cytokines, IL-21 induces B
cell activation and expansion and differentiation of plasma
cells [101]. Both T cells and B cells play important and indis-
pensable roles in RA, and IL-21/IL-21 receptor may a critical

interaction linking the T cell response with the B cell activa-
tion and autoantibody production.

The IL-21 receptor belongs to the common g-chain cytok-
ine receptor family, which also includes the IL-15 receptor.
IL-15 is yet to be explored fully in the context of IL-17 biology,
but this cytokine may be involved in the regulation of IL-17 in
RA. IL-15 is expressed strongly by peripheral blood and syn-
ovial fluid T cells in RA, and exogenous IL-15 augments IL-17
secretion by PBMCs [58]. IL-15 has also been shown to be
produced by FLS and mediate up-regulation of both IL-17
and TNF-a in T cells. IL-17 and TNF-a can, in turn, induce
FLS to produce IL-15 and IL-6, creating yet another positive
feedback loop leading to exaggerated Th17 responses [102].
Consistent with these observations, anti-IL-15 antibody
reduced TNF-a, IL-1b and IL-6 production by RA synovio-
cytes ex vivo [100]. In a phase I/II study in RA, anti-IL-15 was
well tolerated and led to significant clinical improvement.
In this study 63% of patients achieved American College of
Rheumatology criteria (ACR) 20, 38% ACR 50 responses and
25% ACR 70 responses [103]. These results are comparable to
the effect of widely used TNF neutralizing therapies given in
the absence of methotrexate.

In addition to IL-17, Th17 cells also produce IL-22. IL-22
is involved in mucosal immunity, and the role of this cyto-
kine in RA remains to be understood. There is increased
expression of both IL-22 and the IL-22 receptor in the syn-
ovium in RA, [104], and IL-23 can induce IL-22 in human T
cells [105]. The source of IL-22, its pathogenicity and its
functional significance in RA remain to be evaluated.

Th17/IL-17 effector functions in RA

One of the important functions of IL-17 is the recruitment
of monocytes, macrophages, neutrophils and lymphocytes
into the inflamed joint. This is achieved indirectly by the
interaction of chemokines with their respective receptors.
Chemokines are classified into four groups: C, CC, CXC, and
CX3C chemokines. The CXC chemokines are subgrouped
further into ELR+ and ELR-, based on the presence or
absence of an N terminus Glu-Leu-Arg. ELR+ chemokines
attract neutrophils and induce angiogenesis, both of which
are hallmark features of the inflamed RA synovium, and
ELR- chemokines have angiostatic properties [106–108].
Angiogenesis plays an important role in RA pathogenesis, as
the newly formed blood vessels sustain inflammation and
augment the migration of inflammatory cells into the joint.
IL-17 can augment both angiogenesis and chemotaxis via
up-regulation of ELR+ CXC chemokines such as CXCL1,
CXCL2, CXCL3, CXCL5, CXCL6 and CXCL8 [80]. IFN-g, on
the other hand, inhibits the expression of ELR+ CXC
chemokines and down-regulates angiogenesis. IL-17 can aid
angiogenesis further by inducing expression of vascular
endothelial growth factor (VEGF) [109].

IL-17 induces CCL20 expression, which attracts immature
dendritic cells, naive B cells and memory T cells, including
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Th17 cells [73,110,111]. IL-17 can also induce stromal
derived factor (SDF-1) which mediates the chemotaxis of T
cells, B cells and monocytes to the RA synovium [112].
Furthermore, IL-17 stimulates the migration of monocytes
[113], which are involved in the differentiation of Th17 cells
in vitro. Leucocyte recruitment is enhanced further by
up-regulation of G-CSF and granulocyte–macrophage-
colony stimulating factor (GM-CSF), two mediators of
granulopoiesis which are both induced by IL-17 [114,115].

Clearly, IL-17 can enhance inflammation, cellular infiltra-
tion, and angiogenesis in arthritis, but it can also mediate the
bone and cartilage damage which is characteristic of RA.
Periarticular bone erosion requires RANKL-expressing
osteoclasts, which are abundant in inflamed joints [116–
118]. RANKL is expressed on osteoclasts and binding of
RANKL to RANK plays a critical role in the maturation,
activation, migration and survival of osteoclasts [119–123].
Th17 cells play an important role in regulating this pathway.
Th17 cells themselves can express RANKL and IL-17 is also
a potent inducer of RANKL expression on osteoclasts
[7,57,124,125]. The activity of the osteoclasts can be poten-
tiated further by other cytokines, which are either induced by
IL-17 or synergize with IL-17, such as IL-1b, IL-6 and TNF-a
[57,126]. IL-17 can also induce MMPs and nitric oxide in
chondrocytes and thus initiate and maintain cartilage
destruction [127,128].

Spondyloarthropathies and IL-17

Spondyloarthritis (SpA), a chronic inflammatory disease of
unknown aetiology which affects 0·5% of the population,
includes psoriatic arthritis (PsA), ankylosing spondylitis
(AS), reactive arthritis (ReA), inflammatory bowel disease-
associated arthritis and undifferentiated spondyloarthropa-
thy (uSpA). SpA is manifested as inflammation of the spine,
peripheral joints, entheses, eyes, intestines and/or skin.

Both serum IL-17 levels and circulating Th17 frequency
are elevated in patients with AS, although there is no corre-
lation with disease activity or biomarkers of bone turnover,
such as bone-specific alkaline phosphatase and tartarate-
resistant acid phosphatase [129]. In patients with AS, IL-17
and IL-23 are elevated in serum and are augmented after
in vitro culture of PBMCs with baterial superantigen. More-
over, PBMCs from patients with AS produce more IL-17
after in vitro stimulation with IL-23 compared to healthy
controls [130]. Th17 cells from patients with AS also express
cytokines such as IL-22, IFN-g, IL-2 and TNF-a and
chemokine receptors CCR6 and CCR4 [61,63]. In contrast,
the IL-12/23 p40 subunit is not elevated in serum of patients
with SpA (including AS and PsA) when compared to patients
with OA, although the synovial fluid level of p40 is higher
[131]. Although administration of anti-p40 in psoriasis has
led to significant improvement of skin inflammation, the
significance of the p40 subunit in inflammatory arthritis
remains to be understood and clinical trials are currently

under way evaluating anti-p40 in PsA [132]. Th17 cells are
increased in the peripheral blood of patients with PsA com-
pared to patients with RA. In addition, the Th17 cells from
PsA co-express other inflammatory cytokines such as IL-2,
IFN-g and TNF-a, suggesting that Th17 cells may play a role
in the pathogenesis of PsA [61].

In a recent study, patients with AS and Crohn’s disease
had increased expression of the IL-23 p19 subunit in intes-
tinal biopsy samples in comparison to normal controls. Sur-
prisingly, the increased expression of IL-23 was associated
with increased expression of IL-17 only in Crohn’s disease
but not AS [133]. This is particularly interesting, as several
polymorphisms of the IL-23 receptor gene have been asso-
ciated with AS, inflammatory bowel disease and psoriasis
[134,135]. It is possible, but not yet proven, that these
polymorphisms confer resistance or sensitivity to IL-23-
mediated stimulation of Th17 cells. These findings support
further the possible role of a dysfunctional IL-23/IL-17 axis
in AS and PsA.

The role of IL-17 and Th17 cells in reactive arthritis and
inflammatory bowel disease associated arthritis remains to
be evaluated, although synovial fluid levels of IL-17 are
increased in patients with reactive arthritis or undifferenti-
ated arthritis in comparison to RA and OA [136].

IL-17 in juvenile arthritis

Children with juvenile idiopathic arthritis (JIA) have elevated
synovial fluid levels of IL-17, and exogenous IL-17 induces
FLS to produce proinflammatory cytokines and MMPs in ex
vivo cultures [137]. Children with JIA and healthy controls
have a similar frequency of Th17 cells in the peripheral circu-
lation, but there are increased numbers of CD4+ Th17 cells in
the synovial fluid and synovium in JIA. The Th17 cells in the
inflamed joints express CCR6 as well as CCR4 and some also
express IL-22 or IFN-g [138]. Although much remains to be
known regarding the generation and regulation of Th17 cells
associated with JIA, the phenotype of the Th17 cells in JIA and
RA have several similarities, suggesting that Th17 cells may
play a similar inflammatory role in both diseases.

Regulation of IL-17 in inflammatory arthritis

Current evidence provides substantial support for the role
of IL-17 and Th17-related cytokines in the pathogenesis of
inflammatory arthritis. While IL-23, IL-21, IL-15, IL-1b,
TNF-a and IL-6 contribute to the development and main-
tenance of Th17 cells, IL-4, IFN-g and IL-12 suppress differ-
entiation of Th17 cells and secretion of IL-17. Dendritic cells
are genetically modified to secrete IL-4 suppress IL-17
responses and reduce arthritis in CIA [139,140]. In this same
model injection of an adenoviral vector expressing IL-4
reduces IL-17 and mitigates the severity of arthritis [141].

The value of regulating IL-17 or Th17 pathway cytokines
is being tested in clinical studies of patients with inflamma-
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tory arthritis. Phase I/II clinical trials of anti-IL-17 in RA
were completed recently and preliminary data suggest a
therapeutic effect in at least one of these trials [142,143]. In
addition, two phase II trials of anti-IL-17 neutralizing anti-
body, one in PsA and the other in AS, are currently under
way (NCT00809614 and NCT00809159). A phase II clinical
trial in PsA using anti-p40 was completed recently and
results are pending (NCT00267956), and a trial with an oral
IL-12/IL-23 inhibitor is ongoing in patients with RA
(NCT00642629). IL-6 and IL-1 are also among the molecu-
lar targets of biological agents that are pertinent to Th17
cells.

In view of the existence of multiple IL-17 isoforms, the
complexity of the IL-17 receptor(s), the various ways of
inducing Th17 cells and the production of proinflammatory
cytokines other than IL-17 by these cells, the best way to
target the Th17 axis in human disease is far from obvious,
and may differ among the various forms of human inflam-
matory arthritis. It will probably require many years of
careful clinical studies to determine this. Such studies are
also likely to offer further insights into the pathogenesis of
human arthritis and the role of the Th17 pathway.
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