
www.landesbioscience.com	 Plant Signaling & Behavior	 1035

Plant Signaling & Behavior 4:11, 1035-1048; Novemver 2009; © 2009 Landes Bioscience

REVIEW review

Introduction

The seed is the dispersal unit emerged in the course of plant 
evolution. The biology of seeds can be divided in three important 
phases: development that includes zygotic embryogenesis, dor-
mancy that prevents seeds from germinating under unfavorable 
conditions and germination (seed emergence). The transition 
between dormancy and germination represents a critical stage in 
the life cycle of higher plants and it is an important ecological and 
commercial trait. Seed germination is regulated by endogenous 
hormonal cues and external environmental signals such as water, 
low temperature and light, which influence whether an imbibed 
seed completes germination or remains dormant (reviewed in 
refs. 1 and 2). Seed dormancy, a temporary quiescent state that 
is observed in seeds from many plants species, prevents untimely 

germination and ensures plant survival by adjusting veg-
etative development to seasonal changes in the environment.1,3  
A dynamic balance between synthesis and catabolism of the absci-
sic acid (ABA) and gibberellins (GAs) controls the equilibrium 
between dormancy and germination.4 At the molecular level, the 
ABA/GA balance is in part determined by the antagonistic con-
trol of ABA and GA on each other through their reciprocal regu-
lation of the transcription of their metabolic genes.5-7

The ABA, derived from epoxycarotenoid cleavage, serves as a 
plant-specific signal during development and in response to envi-
ronmental stresses such as cold, drought and high concentrations 
of salt in the soil (reviewed in ref. 8). The ABA also elicits, among 
others numerous physiological functions, the closure of stomatal 
pores to restrict transpiration, adjustment of metabolism to toler-
ate desiccation and cold temperatures, and inhibition seedlings 
growth. Likewise, ABA represses germination and is presumed 
to function to stabilize the dormant state (reviewed in refs. 1, 
9–11). ABA, like other hormones, functions through a complex 
network of signaling pathways where the cell response is initiated 
by ABA perception which triggers downstream signaling cas-
cades to induce the final physiological effects. Numerous down-
stream components involved in ABA signal transduction have 
been identified by genetic approaches (reviewed in refs. 12 and 
13). Signaling pathways are usually made of regulatory networks 
of transcription factors (TFs) which specifically bind short DNA 
sequences (cis-elements) in the regulatory regions (promoters) of 
their target genes to regulate their expression levels in response to 
hormonal/environmental signals.14 Recently, it was demonstrated 
that the N-end rule pathway (i.e., one of several proteolytic 
pathways of ubiquitin system) promotes seed germination in 
Arabidopsis through removal of ABA sensitivity.15 In this review, 
we mainly discuss recent findings that are related with ABA con-
trolled dormancy and signaling at the receptor level.

ABA Biosynthesis Pathway and Temporal and  
Spatial Expression of its Biosynthetic Genes in 

Seeds

The knowledge of ABA biosynthesis pathway notably advanced 
in the past few years (updated in Fig. 1). Thus, most intermedi-
ates and enzymes involved in its synthesis have been identified 
and a large number of genes and mutants related to the ABA 
biosynthetic pathway were also isolated and characterized.8,16-19 
But their regulation has mainly been studied in vegetative 
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expressed during A. thaliana seed maturation but their expres-
sion becomes restricted to the embryo and endosperm during 
desiccation.23 Enzyme(s) involved in the conversion of all-trans-
violaxanthin to 9-cis-violoxanthin or 9'-cis-neoxanthin are yet 
to be identified. However, the enzymatic step that catalyzes the 
all-trans-violoxanthin to the all-trans-neoxanthin is the latest 
to be solved by positional cloning of the AtABA4 gene.24

The 9-cis-epoxycarotenoid dioxygenase (NCED) catalyzes 
the oxidative cleavage of the 9-cis-violoxanthin or 9-cis-neoxan-
thin, synthesized from all-trans-violoxanthin to produce 9-cis-
xanthoxin.25 It is suggested that 9-cis-neoxanthin might be 
the major substrate in vivo of NCED to produce cis-xantosin, 
the first cytoplasmic precursor for the catalytic conversion to 
ABA.17 NCED expression in response to environmental stresses 
is so rapid that NCED activity is considered the rate-limiting 
step in ABA biosynthesis. On the other hand, AtCCD1 enzyme 
catalyzes the oxidative cleavage of the 9,10 (9',10') double bonds 
of carotenoid substrates as β-carotene.26 The NCED activity is 
inhibited by nordihydroguaiaretic acid (NDGA), abamine AbM; 
competitive inhibitor;27 and AbM-SG (more potent competitive 
inhibitor than AbM to reduce ABA accumulation28). NCED 

tissues, often in relation to hydric stress, and expression studies 
in seeds are still incomplete. ABA is a sexquiterpene derived 
from oxidative cleavage of phytoene, a C

40
 common precur-

sor of all plant carotenoids which are synthesized in plastids 
by nuclear-encoded enzymes.20 The phytoene is synthesized by 
phytoene-synthase after condensation of two molecules of gera-
nylgeranyl diphosphate (GGPP), a C

20
 formed from isopente-

nyl diphosphate (IPP) and its isomer dimethylallyl diphosphate 
(DMAPP). The IPP can be synthesized from mevalonic acid 
(MVA), via the cytosolic MVA pathway and subsequently sent 
to the plastid,21 or alternatively formed from 1-deoxy-D-xylulose 
5-phosphate (DXP) which is synthesized in plastid from pyru-
vate and glyceraldehide 3-phosphate, via the methylerythritol 
phosphate pathway.22 The all-trans-lycopene synthesized from 
phytoene is successively converted in β-carotene and zeaxan-
thin, the first oxygenated carotenoid precursor of ABA, which 
produces successively antheraxanthin and trans-violaxanthin 
mediated by ZEP. The all-trans-violaxanthin is either converted 
to 9-cis-violoxanthin or to 9'-cis-neoxanthin, both C

40
 carote-

noids being cleaved in the plastid to the C
15

 aldehyde xanthosine 
and a C

25
 compound.13 The ABA1/ZEP gene is ubiquitously 

Figure 1. ABA biosynthesis pathway, inhibitors and intracellular compartmentalization in higher plants. AbM, abamine; DMAPP, dimethylallyl di-P; 
DNC, diniconazole; DPA, dihydrophaseic acid; DXP, 1-deoxy-D-xylulose-5-P; G3P, glyceraldehyde-3-P; GGPP, geranylgeranyl di-P; HMBPP, hydroxym-
ethylbutenyl 4-di-P; IPP, isopentenyl di-P; MVA, mevalonic acid; NDGA, nordihydroguaiaretic acid; PA, phaseic acid; Pyr, piruvate. Involved enzymes: 
AAO-MoCo, abscisic aldehyde oxidase or MoCo sulfurase; βCH, β-carotene hydroxylase; βCHY and βCRTR, β-ring hydroxylases; εCHY, ε-ring hy-
droxylase; ABA 8’-hydroxylase (Hordeum vulgare, HvABA8'OH); CRTISO, carotenoid isomerase; βCRTR, β-ring hydrolase; DXPS, DXP synthase; GGPS, 
geranylgeranyl diphosphate synthase; HDR, HMBPP reductase; βLCY, lycopene β-cyclase; εLCY, lycopene ε-cyclase; NCED, 9-cis-epoxycarotenoid 
dioxigenase (AtNCED1-9; maize, VP14; tomato, NOT); NXS, neoxanthin synthase; PDS, phytoene desaturase; PSY, phytoene synthase; SDR, member of 
short-chain dehydrogenases/reductases family; VDE, violoxanthin de-epoxidase; XISO, xanthophyll cis-isomerase (predicted); ZDS, ξ-carotene desatu-
rase; ZEP, zeaxanthin epoxidase.
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showed strong AtSDR1 expression in seed funiculus and at the 
junction of pedicels and young siliques.41 Taking into account the 
results from Cheng’s group,41 a possibility exists that in addition 
to ABA, xanthosin might also be supplied to reproductive organs 
by vegetative tissues to be further converted into ABA. Since 
AAO requires the sulfurylated form of a molybdenum cofactor 
(MoCo) for its activity, mutants defective in MoCo., sulfurase 
(MOSU) (v.e. AtABA3) also result in ABA deficiency.18,42 Finally, 
the expression of genes encoding ZEP, SDR, AAO, NCED and 
MOSU are regulated in organ- and/or stress-specific manners, 
and theirs transcripts or ABA levels are reduced or eliminated in 
most mutant allels reflecting the positive feedback of ABA bio-
synthesis (reviewed in ref. 18).

The committed steps in ABA catabolism are categorized 
into two types of reactions: hydroxylation and conjugation.8 
Normally, the ABA is converted into a compound hormon-
ally inactive and unestable (i.e. 8'-hydroxy ABA) through the 
intervention of the ABA 8'-hydroxylase, which is a cytochrome 
P450 monooxygenase (P450),43 whose family has four mem-
bers in Arabidopsis (AtCYP707A1-4 ;44). Alternatively, ABA 
can also be hydroxylated at position C-7'. Recently, an ABA 
9'-hydroxylation pathway has been identified.45 The 8'-hydroxy 
ABA isomerizes spontaneously to phaseic acid (PA) and is fur-
ther catabolized to dihydrophaseic acid (DPA) by an unknown 
soluble reductase enzyme.43 Both PA and DPA as ABA can be 
conjugated to compounds of low molecular weight (i.e. UDP-
D-glucose to ABA by means a glycosyltransferase activity).8,46 
The decrease in ABA during both barley and Arabidopsis seed 
imbibition is associated with increase in PA.47,48

It is likely that the ABA hydroxylation is involved in seed 
dormancy. In recent reports, Arabidopsis aldehyde-oxidase3 
(AAO3) was shown to be localized abundantly in vascular tis-
sues of roots, hypocotyls and leaves, indicating that the vascular 
tissue is an important site of ABA biosynthesis in vegetative 
tissues.49 On the other hand, AAO

3
 is scarcely expressed at early 

phases of seed development and AAO3-mRNA is present in dry 
viable seeds.50 However, Seo’s works32,33 were the first to dem-
onstrate the AtAAO3 expression in seeds. Moreover, the authors 
concluded that AtAAO3 is the AAO that plays a major role in 
ABA biosynthesis in Arabidopsis seeds as well as in leaves.33 
In addition, genes for the short-chain alcohol dehydrogenase/
reductase (AtABA2) and AAO3 are also expressed in the vas-
cular tissues of the embryo during the mid-maturation stage. 
On the other hand, genetic evidence demonstrated that over-
expressing ABA2 in Arabidopsis transgenic plants leads to seed 
germination delay, and elevated levels of both ABA and dor-
mancy.51 ABA biosynthesis and degradation in Arabidopsis seeds 
is localized in the embryo as well as in the endosperm.34,52 Thus, 
CYP707A1 and CYP707A2 genes have been shown, respectively, 
to play roles in the reduction of ABA content in the embryo at 
mid-maturation and in both the embryo and endosperm during 
late maturation.52 The high abundance of CYP707A2-mRNA 
in the dry seeds, and its transient expression pattern during 
early imbibition (6 h), suggests that ABA degradation in seeds 
is mainly achieved by the CYP707A2 isoform.44,53 CYP707A2 is 
a single copy gene that displays only subtle phenotypes during 

genes are not regulated by ABA, which indicates that ABA does 
not have a positive feedback effect on NCED gene expression.29 
Although NCED genes have been characterized in several spe-
cies, limited data are available about their expression in seeds.8,16 
Overexpression of LeNCED gene in tomato leads to higher ABA 
level in seeds, increasing seed dormancy and induced expression 
of bean PvNCED1 in imbibed tobacco seeds delays seed germina-
tion.30 Differential expression of AtNCED members in different 
tissues and subcellular localization was found,31 suggesting that 
a dynamic mobility of ABA precursors and/or ABA to the tar-
get sites despite the developing seeds themselves being capable of 
synthesizing ABA. Similar conclusions were made in the case of 
AAO family.32,33 Molecular genetic analyses indicate that differ-
ent members of AtNCED family play distinct roles in the regula-
tion of ABA synthesis during seed development and germination, 
AtNCED3 (mainly expressed in the base of seed), AtNCED5 and 
AtNCED6 (both expressed throughout the seed) and AtNCED9, 
contribute to expression in developing seeds with high levels of 
AtNCED6 present at an early stage.31 Transcripts of several mem-
bers of AtNCED family are present in dry seeds.31 AtNCED6 gene 
is expressed specifically in immature endosperm, and AtNCED9 
gene is abundantly expressed in the embryo and endosperm dur-
ing seed development, playing a major role in ABA synthesis dur-
ing last steps of zygotic embryogenesis and germination.34 The 
nced6 and nced9 mutants show reduced ABA contents in dry 
seeds and radicle emergence of these mutants seeds is not affected 
by paclobutrazol. Together, the results of Lefebvre et al.34 suggest 
that cis-xanthosin synthesis is a prerequisite for the induction of 
seed dormancy. The nced3 mutant was identified in a screen for 
enhanced germination on hypertonic media,35 concluding these 
authors that AtNCED3 is involved in germination under hyper-
osmotic conditions. On the other hand, reduced seed dormancy 
was only observed in the nced6 nced9 double mutant. Each mem-
ber of NCED family seems to play a particular role in seeds. 
Overexpression of bean PvNCED1 in tobacco30 and AtNCED3 
in Arabidopsis36 displays an increased ABA levels in seeds and 
extended seed dormancy. Similar results were also obtained by 
the overexpression of ABI genes in Arabidopsis (reviewed in ref. 
16). Interestingly, unlike other plants with overexpressed NCEDs, 
prolonged delay of seed germination is the only ABA-related phe-
notypic effect in the GINCED1 transgenic lines.37

However, ABA levels may not only be controlled by NCED 
because overexpression of zeaxanthin epoxidase (ZEP) in tobacco 
resulted in increased ABA levels in mature seed and greater seed 
dormancy.38 Also, since ABA4 does not convert trans-violoxanthin 
to its cis isomer, an unknown isomerase is still one of the missing 
links to the biosynthetic pathway.39 The 9-cis-xanthosin forma-
tion is now considered to be the most important regulatory step 
in ABA biosynthesis.30 The cleavage product 9-cis-xanthosin is 
further processed in the cytosol to the biologically active cis-con-
figuration ABA, via ABA aldehyde, and involving the short-chain 
dehydrogenase/reductase (SDR)40 and ABA aldehyde oxidase 
(AAO; a molybdenum cofactor-requiring enzyme) activities,16,39 
respectively. AtSDR1 gene is expressed at low levels in seeds and 
developing embryos and may contribute to maternally derived 
ABA synthesis.41 However, reporter gene analysis in Arabidopsis 
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maturation.47 Likewise, these authors demonstrated that both 
cyp707a mutants exhibited enhanced seed dormancy. Taken 
together, it is suggested that expression of CYP707As genes, and 
mainly HvCYP707A1,54 is controlled by environmental cues or 
GA,7,44,55,56 and has also been found to be the major mechanism 
regulating ABA catabolism in the seeds of bean57 and barley.53 
Finally, the glucose-induced delay of seed germination is a conse-
quence of an increase in the expression of ABA biosynthesis genes 
(v.e. AtABA2 and AtNCED3)58 or suppression of ABA catabolism 
genes (v.e. OsABA8ox2 and OsABA8ox3)59 by glucose signaling.

Is Rhizosphere ABA Affecting Plant Growth and 
Seed Dormancy?

Plant hormones present in soils are believed to play a significant 
role in root growth and development. However, other functions 
are not discarded (i.e., rhizosphere microorganisms development, 
seed-bank physiology, etc.). Microorganisms are considered the 
primary sources of biologically active substances in soil, although 
plants may also contribute to the soil pool through root exuda-
tion, especially under non-transpiring conditions. At present, 
there is increasing interest in studies of microorganisms producing 
phytohormones and hormone-like substances, which determine 
the formation and development of relationships within natural 
communities (reviewed in refs. 60 and 61). The ability of plant-
associated microorganisms to synthesize some phytohormones is 
widely known.62-64 Soil microorganisms can either break down65 

other developmental stages outside the seed which makes it ideal 
for genetic manipulation. The CYP707A2-mRNA is localized 
in the radicle tip and the micropylar endosperm during early 
imbibition, suggesting that the ABA degradation is mediated by 
the CYP707A2 enzyme expressed in these tissues. It is specu-
lated that endosperm weakening is delayed in the Arabidopsis 
cyp707a2 mutant due to impaired ABA degradation and that 
is, at least in part, the reason for the higher ABA sensitivity 
of the cyp707a2 endosperm rupture. By contrast, CYP707A1 
is hardly expressed during zygotic embryogenesis.44 In short, 
ABA 8'-hydroxylase family plays a prominent role in regulating 
endogenous ABA levels during seed development and germina-
tion in A. thaliana.52,53 In non dormant Hodeum vulgare seeds, 
it was demonstrated that HvABA8'OH-1 was expressed strongly 
and uniformly through the coleorhiza in the region of the pri-
mary root tip. These authors conclude that the coleorhiza may 
be the pivotal tissue in determining whether or not germina-
tion occurs.47 Moreover, HvNCED2 is responsible for a signifi-
cant increase in ABA levels during grain development, whereas 
HvCYP707A1 is responsible for a rapid subsequent decrease in 
ABA levels.

The cyp707a2 mutant accumulates more than sixfold ABA 
content in dry and imbibed seeds and these exhibits hyperdor-
mancy.44 On the other hand, the cyp707a1 mutant accumulated 
ABA to higher levels in dry seed than cyp707a2 and CYP707A1 
was expressed predominantly in the vascular tissue in the embryo 
during mid-maturation and was downregulated during late-

Figure 2. Presence of ABA in rhizosphere, their entry in roots and distribution toward leaves and seeds (ref. 80).
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between root and soil could disturb the root-to-shoot signaling 
processes. In drying soils the ABA concentration increases prob-
ably because water is removed. It is not clear how much of this 
external ABA will be taken up under these conditions because 
water and solute movement in the soil will slow dramatically as it 
dries. Localized soil drying around the roots will also restrict the 
uptake of phytohormones in the soil solution. ABA can be accu-
mulated in fruit and seeds in drying soil because these are rela-
tively alkaline compartments.80 Recently, it has been shown that 
growth-promoting rhizobacteria have an impact on ABA flows 
in plants. Thus, increased amounts of ABA was detected in the 
shoots of lettuce that were treated with the cytokinin-producing 
bacterium Bacillus subtilis.63 These authors concluded that locally 
high cytokinin concentrations induced ABA biosynthesis in the 
roots and this ABA would be loaded quickly to the xylem vessels. 
Auxin-producing rhizobacteria should also be able to affect ABA 
flows. Since IAA is known to induce the ethylene biosynthesis, 
an impact of auxin-producing rhizobacteria on ABA produc-
tion and flows may be expected as previously was demonstrated 
with rhizobacterium Variovovax paradoxus, an ABA synthetizing 
microorganism.66,81 On the other hand, exogenous ABA supply 
to plants can promote rather than inhibit plant growth, perhaps 
by limiting shoot ethylene production (reviewed in ref. 82). 
Moreover, microorganisms that are able to degrade ABA in the 
rhizosphere should be able to influence ABA flows. Whether it is 
possible for such soil microorganisms to influence ABA signaling 
in plants remains to be shown.

Finally, the impact of soil conditions and rhizosphere micro-
organisms on ABA signaling in seeds are far to be known. That 
is, although the presence of ABA in the rhizosphere appears to 
be beyond doubt, there is no evidences that the soil seed banks 
may be affected by this and other phytohormones. There are no 
data about the possible effects of environmental parameters on 
both rizhosphere ABA levels and the behavior soil seed banks. 
Possible influences of rizhosphere ABA on seed dormancy main-
tenance and seed germination can be of great interest, and there-
fore should be studied. Likewise, although ABA accumulates in 
all seed tissues, either as a result of biosynthesis in the seed itself 
or translocation from the mother plant through the phloem, it is 
far to know if rizhosphere constitutes a source of ABA. A better 
knowledge of rizhosphere ABA and its transport toward the seed 
(sink) would be valuable for the understanding of ABA action in 
seeds. However, the identification of an ABA transporter is still 
an enigma.

ABA is Not the Only Signal in Establishment and 
Dormancy Release

The seed is the organ by which angiosperms disperse and propagate 
and assures the survival and perpetuation of the mother plant.83 
To survive in a particular environment, plants have developed 
mechanisms that regulate seed germination to coincide with the 
most appropriate season of the year. One mechanism for proper 
timing of seed germination is seed dormancy, a genetically and 
environmentally determined process.1-4,9-11,84 That is, seed dor-
mancy prevents the adverse environmental conditions, maximizes 

or produce phytohormones, including ABA.60,66,67 Direct ABA 
synthesis (via MVA) is largely found in phytopathogenic fungi.67 
Microbial communities in soil, particularly the rhizosphere (v.e. 
soil in which the proliferation of microorganisms is induced by 
the presence of plants roots) (Fig. 2), possess great potential to 
produce a vast range of metabolites that may affect plant growth 
directly after being taken up by the plant, or indirectly by modi-
fying the soil environment.68,69 Rhizosphere bacteria confers ben-
eficial effects for the plants such as increased growth or toleration 
of abiotic stress.70

Soil ABA is necessary to maintain an ABA equilibrium 
between root and rhizosphere. Moreover, ABA is known to be 
involved in plant-pathogenic fungi interactions, as the level of 
ABA in the plant determines its susceptibility to phytopathogenic 
microorganisms.71,72 Several explanations for this phenomenon 
have been proposed: plant stimulation of fungal ABA biosynthe-
sis, stimulation of plant ABA biosynthesis by pathogenic fungi, 
and suppression of metabolic activity of the plant host. Many 
phytopathogenic fungi synthesize and excrete ABA into the 
medium.71,73 There are researchers who believe that the ability of 
phytopathogens to synthesize ABA may be viewed as a factor of 
pathogenicity in plant infections.73 Notable ABA synthesis and 
accumulation in roots can be observed in hemiparasites such as 
Rhinanthus minor. They release ABA in substantial amounts to 
rhizosphere solution.74

Scarce data exist on ABA levels in soil. However, it is well 
known that the root is equipped with all the enzymes and precur-
sors that synthesize ABA. A mathematical model predicts that 
most of the ABA synthesised in the root would move to the soil 
solution unless the soil water contained at least 1.0 nM ABA at a 
slightly acid pH.75 Likewise, simulation also predicted that at pH 
5.5 in rhizosphere ABA synthesized in roots under stress would be 
released into xylem rather than into the soil. The Slovik’s group 
postulated that: (1) ABA is likely to be present in the rhizosphere 
in the low nanomolar range to prevent dramatic loss of ABA from 
roots; and (2) in most of the cases, the ABA in the soil solution 
had a concentration that allowed plants to maintain an equilib-
rium between external and internal ABA. Taken together, the 
above predicted data indicates that soil ABA concentrations in 
the low nanomolar range maintain this equilibrium and prevent 
dramatic ABA loss to the rhizosphere. Hartung et al.76 found in 
a study with different soils that the ABA in rhizosphere solution 
ranged from 0.6–2.8 nM. This range, predicted with computer 
simulations, is required in soils in order to prevent ABA release 
from the root hair zones of plant roots. The highest concentra-
tions of ABA around 4 nM were detected in acid soils where ABA 
degradation by rhizosphere microorganisms is weak.76

By contrast, plants growing under alkaline conditions would 
become ABA deficient, unless a sufficiently high ABA concen-
tration was present in the rhizosphere solution to re-establish 
equilibrium conditions.75,77 Nevertheless, anatomical apoplastic 
barriers such as Casparian bands in the exodermis could retard 
ABA loss and uptake.77-79 ABA retention by roots causes alka-
linity tolerance in species which contain these bands, but only 
in fertilized soils.77 Legumes suffer severe ABA loss into the 
alkaline surroundings. The absence of the ABA equilibrium 
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primary dormancy of mature seed, whereas overexpression of 
ABA synthesis genes increases the ABA content and seed dor-
mancy.10,48,96,109,110 On the other hand, endogenous ABA lev-
els and expression pattern of genes involved in its biosynthesis 
change drastically during seed development in response to devel-
opmental and environmental cues.9,16 In addition, the ABA seems 
to avoid the abortion of the seed and promotes the growth of 
embryo during zygotic embryogenesis.41,111 An increase in seed 
abortion in the pea lh-2 mutant indicates that GAs is essential for 
normal seed development. The lh-2 mutation was shown to be a 
single base substitution in the ent-kaurene oxidase gene.110 This 
experiment with lh-2 mutant is one of many that demonstrate the 
negative correlation ABA/GAs during seed development. During 
seed development, ABA is synthesized in tissues of different ori-
gins conditioning its physiological action. Thus, the ABA accu-
mulated during mid-maturation is of maternal origin, is related 
to FUS3 and LEC and involved in the inhibition of precocious 
germination and processes of seed maturation.10,90,111

The ABA de novo synthesized during late-maturation is 
derived from the zygotic tissues and is essential for desiccation 
tolerance and induction and maintenance of durable seed dor-
mancy10 (Fig. 3). This synthesized ABA is partially accumulated 
in dry seed and decreases with seed imbibition. However, the 
relationship between the ABA content in mature dry seed and 
the dormancy degree is not yet clear. That is, while the ABA is 
important to start the dormancy, high ABA levels are not need 
to maintain it.9 Endogenous ABA in imbibed seed is maintained 
at a given level that is correlated with the germination potential 
of the seed. Thus, de novo synthesis of ABA during the imbibi-
tion of dormant mature seeds contributes to dormancy mainte-
nance.9,85,91,112 In fact, the degree of seed dormancy is correlated 
with endogenous ABA levels in imbibed seeds rather than in 
dry seeds in various species, such as Arabidopsis,91 lettuce,55 bar-
ley,47 and tobacco (Nicotiana plumbaginifolia).112 By contrast, 
those seeds have been subjected to an effective treatment for 
the dormancy rupture (v.e. after-ripening or stratification), still 
synthesize ABA; but ABA degradation generally predominates 
over its biosynthesis8,9,91 (Fig. 3). Several studies have shown 
that the catabolic removal of ABA is essential for the transition 
dormancy-germination. The increase in ABA catabolism (i.e., 
oxidation or conjugation;45) is associated with completion of 
seed dormancy of barley, Pseudotsuga menziesii, Cupressus noot-
katensis and yellow-cedar.47,93,113,114 Thus, mutant seeds deficient 
in ABA 8'-hydroxilase show increased levels of dormancy.48 The 
breaking of dormancy by the most-chilling (cold stratification) 
is because the cold increased the ABA catabolism.9 Interestingly, 
seed dormancy can be eliminated by smoke,88 and this elimina-
tion is accompanied in Nicotiana attenuata seeds by a decrease 
of 8 times in the ABA content.115

ABA-like genes appear to have some function in the control 
of seed dormancy. This feature is supported by studies carried 
out with orthologue genes (i.e., Vp1 ortologue of ABI3).1,9,96 
Although the intensity of Vp1 expression and the degree of seed 
dormancy seems to be related, more data are needed to confirm 
it.116 Interestingly, the dormancy state is characterized by the 
transcription of genes with large presence of ABRE sequences to 

the competitive advantages and ensures the establishement of the 
mother plant.85,86 Dormancy is the most important altered trait 
during domestication of wild species87 and its function is similar 
between different species. An appropriate balance between dor-
mancy and germination is a desirable trait for the crop industry 
since too much dormancy can lead to non-uniform germination 
while too little makes seeds germinate early (pre-harvest sprout-
ing).54,88 Pre-harvest sprouting, which is very important in cold 
and humid environments, reduces grain quality and viability and 
is one of the most significant losses to industry.85,88

On the other hand, it is still unclear whether all higher plants 
have a common molecular mechanism for a trait very well pre-
served traitsuch as seed dormancy. Seed dormancy appears at 
the end of the seed maturation, in which the cell cycle ceases, 
molecular dependence from the mother plant disappears, water 
content decreases, storage products are synthesized, abscisic 
acid (ABA) is accumulated (i.e., high ABA to GA ratio89), and 
primary seed dormancy is established,4,8-11,90,91. There is a grow-
ing body of scientific evidence that the ABA content in the 
seed must be lowered in order for dormancy to be broken, and 
that the germination potential of a given seed is determined, 
at least in part, by hormones ABA and GA.1,10,92 Thus, the loss 
of dormancy of many seeds is directly related to the increase 
in sensitivity to GA91,93-96 and the ABA/GA ratio is important 
in the maintenance and loss of seed dormancy.89 The mutants 
with altered ABA/GA ratio seem to prove it. The high levels of 
ABA in imbibited A. thaliana ecotype Cvi, which is strongly 
dormant,97 decrease when the dormancy is broken.91 The dor-
mancy state of A. thaliana Cvi accession depends of balance 
between biosynthesis and catabolism of GA and ABA; that is to 
say, it depends on the endogenous levels of both bio-active hor-
mones.89,91 The Cadman’s group suggests that the key genes to 
lead to seed germination or dormancy belong to families NCED 
and CYP707A. Taking together, a dynamic balance between 
synthesis and catabolism of these two antagonistic hormones 
controls the equilibrium between dormancy and germination 
processes by regulating signaling pathways that modify seed 
sensitivity to the ambient germination environment (reviewed 
in refs. 98–100). Recently, an interesting study was published 
on the alterations in metabolism of ABA and GA induced by 
after-ripening in dormant barley seeds.101 However, a crosstalk 
between ABA and GA with other signals (v.e. ethylene,98,102-104 
reactive oxygen species (ROS),10,59,104 sugars such as glucose,10,59 
nitrate105 or calcium-binding protein like calreticulin106), must 
be taken into account to understand the triggering of seed dor-
mancy process.

ABA Production in Seeds and -Omics Involved in 
Dormancy Signaling

Seed dormancy is a sufficiently complex process to be controlled 
by a single endogenous or exogenous factor. There are increas-
ing molecular and genetic evidences that indicate strongly that 
ABA is central to the establisment and maintenance of both pri-
mary1,9-11,96 and secondary107,108 dormancy. Thus, ABA deficien-
cies during seed development are associated with the absence of 
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to act as positive regulators of ABA-mediated regulation of seed 
development, germination and early seedling growth.10,136

One of the woody species most studied is beechnuts (Fagus 
silvatica). Their seeds have a dormancy maintained by ABA 
and eliminated by a long stratification (8 weeks) in water at 
4°C.137 Exogenous GA

3
 proved to be also efficient in breaking 

the dormancy and could be substituted for cold treatment. These 
treatments regulate the expression of some dormancy-related 
genes (v.e. FsPk1 and FsPK2,138 FsERF1,137,139 and FsPP2C1 and 
FsPP2C2.140,141 The expression of FsPP2C1, a functional PP2C 
from beechnuts, is: (1) specifically induced in seeds upon ABA 
treatment but not by drought stress, while low temperatures or 
GAs treatment decrease the level of transcripts; (2) negatively cor-
related with seed germination; (3) abolished by treatments that 
break seed dormancy; (4) upregulated by ABA and its expres-
sion is correlated with the level of seed dormancy; and (5) seed 
exclusive.142 Taking togheter all results, FsPP2C1 is a strong can-
didate to be a negative regulator of ABA signaling in seeds.142,143 
Likewise, the constitutive expression of FsPP2C1 confers ABA 
insensitivity in seeds and, consequently, a reduced degree of seed 
dormancy.140 Therefore, the negative regulation of ABA signaling 
by FsPP2C1 is a factor that contributes to promote the transition 
from dormancy to germination during early weeks of stratifica-
tion. Moreover, FsPP2C2 gene was also isolated and characterized 
in Fagus silvatica seeds.144 Contrary to FsPP2C1,142 it is probably 
that ABA regulate FsPP2C2 expression in a Ca+2-dependent way, 
which feature is described for the first time in seeds.144 On the 
other hand, in Arabidopsis plants overexpressing FsPP2C2 was 
demonstrated:141 (1) an enhanced sensitivity to ABA and a deeper 
degree of seed dormancy compared to WT seeds; (2) transgenic 
lines of 35S:FsPP2C2 contain reduced levels of GA associated 
with altered expression of GA20ox and GA3ox genes; and (3) 
FsPP2C2 is localized in the nucleus only in the presence of ABA 
and strongly supports its involvement in ABA signaling through 
possibily a reduction of GA biosynthesis, probably affecting 
GA3-oxidase activity. The above results indicate the existence of 
potential cross-talk between ABA signaling and GA biosynthesis 
with a role of FsPP2C2 as a positive regulator of ABA signal-
ing by inhibiting GA biosynthesis. By contrast, HAB1, a pro-
tein phosphatase type-2C, seems to play as a negative regulator 
of ABA signaling.145 More recently, a proteomic approach was 
used to analyze mechanisms of dormancy breaking in beechnuts 
seeds and the participation of ABA and GAs in this process.106 
Most of the ABA-responsive proteins are involved in protein des-
tination, energy metabolism and development. Finally, CnABI3, 
an ABI3/VP1 gene homologue, was cloned from yellow cedar, 
a conifer that produces seeds that are deeply dormant at matu-
rity.146 CnABI3 was synthesized exclusively in megagametophyte 
and embryo of dormant mature and warm stratified seeds, but 
decline during subsequent moist chilling, a treatment effective in 
breaking dormancy.

How Many ABA Receptors?

Background. Several biochemical and genetic approaches have 
permitted the characterization of numerous components envolved 

which transcription factors TFs-like (i.e., bZIP) bind to regulate 
the seed dormancy.1 Transcriptomic studies have demonstrated 
the existence in dormant seeds of groups of genes that have very 
plentiful expression (reviewed in ref. 117). This expression is 
scantily related to environmental conditions, demonstrating that 
the dormancy process has its own signaling.89,118 During seed 
development, environmental factors can significantly influence 
on the content and sensitivity to ABA of mature seed and alter 
their dormancy.86,96,119-122 Several mRNAs present in the dormant 
stage are also found in dry and imbibited seeds, and these tran-
scrips are consistent with those regulated by ABA or environmen-
tal stress.89 They have been identified in A. thaliana 30 genes 
which expression during dormancy phase was higher than under 
after-ripening status; these genes can be strong candidates to 
regulate the seed dormancy.118 Within this group of 30 genes are 
included phosphatases (i.e. ABI1 and ABI2), TFs (ABI3, ABI4 
and ABI5) and genes with unknown functions (i.e. (reviewed 
in ref. 117) DOG1).12,123 Recently, was evidenced a relationship 
between changes in chromatine structure and transcriptional 
control of seed dormancy.124

Despite studies of both Cadman and Liu’s groups, is cur-
rently unknown what is the mechanism by which increases the 
transcription of genes involved in seed dormancy.10 Likewise, it 
was not demonstrated that alterations detected in the dormant 
state are concomitantly related to transcriptional and transla-
tional activities.2 However, the post-transcriptional seems to be 
envolved; at least for some genes.125,126 The delay in breaking of 
seed dormancy induced by exogenous ABA is associated to regu-
lation of translation at the level of initiation and elongation fac-
tors;106 this fact suggests that the dormant status regulates the 
ability of seed translation. Chibani et al. (2006) show that de 
novo synthesized proteins during imbibition are very different in 
dormant and non-dormant seeds.127 Moreover, they also demon-
strated that although ABA inhibits germination in non-dormant 
seeds, does not inhibit translation. Likewise, it was observed that 
the transcriptomes from after-ripened treated with ABA seeds 
were more similar to after-ripened non-treated ones than to those 
dormant seeds.127-129 Only the seeds capable of breaking the dor-
mancy can adquire the ability to reprogram the pattern of protein 
synthesis during imbibition, allowing completion of the germina-
tion process.127 All results discussed until now, together to those 
of Müller et al. (2006),130 suggest that exogenous ABA inhibits 
germination by a route different from the one of dormancy.

Seed Dormancy in Woody Species: Searching Genes 
ABA Regulated

Genetic evidences have shown the involvement of three 
Arabidopsis Ser/Thr protein phosphatases 2C (AtPP2C), named 
ABI1, ABI2 and PP2CA, as negative regulators of ABA signal-
ing.131,132 Whereas ABI1 and ABI2 are key regulators in seeds,133 
PP2CA does not appear.134 However, from the work of Wu et 
al.135 in which is demonstrated that ABI1 overexpression does not 
affect the ABA-signaling pathway, a controversy with regard the 
role of ABI1 has been created. On the other hand, ABI3, ABI4 
and ABI5 encode different types of transcription factors known 
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specifically to ABA; (2) transgenic down-
regulation of ABAR expression results in a 
decline in the number of ABA-binding sites 
and leads to ABA-insensitive phenotypes; 
(3) ABAR-overexpressing plants have ABA-
hypersensitive phenotypes with a elevated 
number of ABA-binding sites; (4) a LOF 
mutation in ABAR results in an imma-
ture embryo; and (5) a chlh mutant that 
downregulates both ABAR expression and 
ABA-binding activity is an ABA-insensitive 
mutant like the post-transcriptional gene-
silencing RNAi or antisense mutants.149 
CHLH-mRNA is also present in seeds,149 
and abar-1 seeds are deficient in lipid and 
mature protein bodies, indicating a possible 
alteration of late embryonic development.123 
In short, CHLH has been proposed to be an 
ABA receptor involved in mediating cellular 
responses to ABA during seed development 
(Fig. 3), germination and post-germination 
growth and stomatal movement.149 However, 
the CHLH-ABA binding assays used were 
similar to those of the paper retracted on 

July 14 2008,147 and therefore further experiments are required 
to validate the role of CHLH.155

FCA (flowering time control protein A). Although ABA-
binding protein FCA is predominantly localized to the nucleus, 
it shares sequence homology at the C-terminus with ABAP1, 
an in vitro ABA-binding protein that is associated with the 
plasma-membrane of barley aleurone cells.156 According to the 
Razem group, ABAP1 is an ABA-inducible protein, and pos-
seses: (1) high affinity for 3H-(+)-ABA; (2) saturation kinetic 
and specificity for S-(+)-ABA; and (3) the ability to bind to 
both natural precursors of ABA i.e., (+)-ABA aldehyde and (+)-
ABA alcohol.156 However, because the difficulty of purifying 
ABAP1, and the same happens with CHLH-ABA binding, the 
published results of ABAP1-ABA binding are subjected to criti-
cisms.156 Like ABAR/CHCL, FCA binds ABA with an inter-
action that is stereospecific (i.e., FCA binds (+)-ABA but not 
two of the non-active ABA analogues (-)-ABA and trans-(+)-
ABA) and follows receptor kinetics.148 The FY protein, a RNA 
3'-end processing factor, is required to FCA funtion157 and ABA 
disrupts the FCA-FY interaction in vitro and FCA function in 
vivo.148 Through the use of mutants abi-1 and abi-2, it was dem-
onstrated that FCA and ABI1 proteins are involved in distinct 
ABA responses.148 Seeds of mutant fca-1 were used to examine 
the posible role of FCA in germination. Because none of the 
fca-1 seeds germinated in the presence of ABA, the authors con-
cluded that FCA is not required for Arabidopsis seed germina-
tion. FCA is not also required for stomatal opening. Taking 
one thing with another, FCA has been proposed to be an ABA 
receptor, which controls ABA-mediated RNA metabolism and 
flowering.148

GCR (G-protein-coupled receptor). In contrast to the ABA 
intracellular perception, several experiments had suggested that 

in ABA biosynthesis and signaling.8,10,110,123,147 However, until 
the last decade there was a failure in the approach to the identifi-
cation and characterization of ABA receptors. That is, although 
proteins that bind ABA have been identified, no strong evidence 
has been presented to link them to physiological effects of ABA 
in vivo. At present, four supposed ABA receptors exist in A. 
thaliana: the nuclear flowering-time protein FCA,148 the plas-
tid-associated Mg-chelatase H subunit (CHLH),149 a protein 
originally identified as a membrane-bound G-protein-coupled 
receptor (GCR2)124 and, recently, two novel G-protein cou-
pled receptors (GPCRs), GPCR-type G proteins (GTG) 1 and 
GTG2.150 This variety of cellular sites for potential ABA percep-
tion may be a way of explaining the complexity of its signaling 
and suggests that multiple receptors exist for ABA. Moreover, 
biochemical and electrophysiological studies provide evidences 
for both intracellular (i.e., CHCL and FCA) and extracellular 
(i.e., GCR2, GTG1 and GTG2) perception of the ABA.150-152 
The most important implications is that ABA acts simultane-
ously and independently at multiple sites in the cell and evokes 
different responses at each site.153

CHLH (magnesium protoporphyrin-IX CHeLatase H 
subunit). On the year 2002, a protein (putative ABA receptor; 
ABAR) with affinity by ABA and involved in stomatal signal-
ing, was isolated from Vicia faba.154 El gen CHLH was identi-
fied in Arabidopsis as a homologue of ABAR.149 ABAR/CHLH 
encode for the subunit H of Mg-protoporphyrin IX chelatase, 
an enzyme located in chloroplasts and key component in both 
chlorophyll biosynthesis and plastid-to-nucleus signaling. 
ABAR is a single-copy gene in the A. thaliana genome, is highly 
conserved in higher plants and shares high sequence similarities 
to its homologues in bacteria. It is said that CHLH perceives 
the ABA signal since in seed germination: (1) ABAR binds 

Figure 3. Possible regulation of seed dormancy status by ABA and its interaction with GAs 
(cross-talk) and environmental factors (mainly, cold and after-ripening). ABA, ET and GAs 
means relative hormone levels due to action of theirs anabolic and catabolic enzymes. Promo-
tive and repressive effects are shown by arrows and bars, respectively. Interrogation symbol 
indicates the absence of data to confirm the effect (refs. 2, 10, 187 and 188).
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News, Views and Controversies

The approach of the study of hormone receptors is highly com-
plex. Thus, although it is relatively feasible to isolate and char-
acterize molecules that bind to a hormonal ligand, it is not easy 
to prove that some of them fulfil the conditions that must have 
a receptor. Between the end of the second millenium and the 
beginning of the third, the receptors of several plant hormones 
have been characterized. Likewise, mutants with an impedi-
ment in the hormone-receptor binding were also isolated.166 By 
contrast, the speed to get the ABA receptor was rapid but very 
slippery, and some approaches have ended in failure and others 
that seemed correct, still need to be strongly confirmed. The 
use of sequence analysis and bioinformatics approaches appears 
to be the main weaknesses of developped protocols to confirm 
a true ABA receptor. To confirm these criticisms, we will refer 
to very recent manuscripts that do not agree with certain pub-
lications listed in section 6.1. In the last two years: (2) Risk et 
al. (2008)167 found no evidence to indicate that FCA, a RNA-
binding protein reported by Razem et al. (2006) as an ABA 
receptor,148 is an ABA receptor; (3) Jones and Sussman (2009) 
propose that “A ligand binds to its cognate receptor reversibly, 
saturably, selectively, and with a stoichiometry of one or more 
molecules of ligand per molecule protein and the binding is 
usually heat sensitive and affected by proteases”;168 (3) Risk et 
al. (2009)167 showed that the putative extracellular ABA recep-
tor GCR2, a protein originally identified by Liu et al. (2007) 
as a membrane-bound G-protein coupled receptors,124 does 
not bind ABA;155 other researchers have also questioned some 
results of Liu’s work;162,169,170 (4) McCourt and Creelman (2008) 
published an interesting review with a title no less interesting 
and subliminally intentional: “The ABA receptors—we report 
you decide”;171 and finally, (5) Pandey et al. (2009),150 with 
the isolation and characterization of GTG1 and GTG2, novel 
GPCR proteins, may be closer to the coveted ABA receptor(s). 
However, some experimental criticisms (i.e., protein purifica-
tion and ABA-binding experiments) still cast a shadow over the 
protocole carried out by the Pandey group.

ABA Mutants as Key to Breakthrough

Notable progresses are currently being carried out on dormancy 
at the transcriptomic,14,89,118,129 proteomic127 and metabolomic172 
levels. ABA-mutants with alterations in the degree of seed dor-
mancy and germination provide special tools to approach to the 
understanding of the mechanisms of dormancy. The first par-
ticipants loci in the dormancy of A. thaliana seeds were identi-
fied in the last years of the twentieth century through mutations 
affecting the ABA biosynthesis and signaling (reviewed in ref. 
94). At present, although there are genes that are specifically 
expressed in dormant seeds, it has not yet been convincingly 
shown that the products of these genes directly affect inhibit-
ing the germination process or how ABA is involved in it. Some 
characterized ABA mutants for building-up the ABA signaling 
pathway related to the seed dormancy appears in an updated 
Table 1.

extracellular perception is critical to achieve ABA functions. 
That is, ABA receptors localized at cellular periphery must be 
necessary to recognize external ABA. At the cell surface (i.e., 
plasma-membrane), the ABA signal was recently proposed to 
be perceived by GCR2, which acts as an extracellular-ABA 
receptor and controls all the major responses mediated by ABA  
(Fig. 3), including seed germination.124 Thus, the T-DNA 
insertional mutations of GCR2 causes expression of ABA induc-
ible genes and ABA insensitivity in seeds germination. GCR2 
specifically binds with high affinity to natural occurring ABA, 
but not to the physiologically inactive isomer (trans-ABA). 
Moreover, GCRC2 interacts physically with GPA1, the only 
Arabidopsis Gα subunit of trimeric G-protein, and the bind-
ing of ABA to GCR2 disrupts the GCR2-GPA1 interaction.124 
On the other hand, it was also shown that LOF gcr2 exhibits 
all known ABA defects, and overexpression of GCR2 shows an 
ABA-hypersensitive phenotype.158 These authors suggest that 
GCR2 and GCR2-likes genes (i.e., GCL1 and GCL2) share 
partial functional redundance,158 being this fact recently dem-
ostrated.159 Likewise, it was also proved that GCR2, GCL1 and 
GCL2, the three only members of GCR2 family in Arabidopsis, 
are not required for ABA response in seed germination,159 thus 
discarding that GCR2 functions as an ABA receptor in this 
process.124 Therefore, because it was not discovered any morpho-
logical or conditional phenotypes in all gcr2 mutants, the exact 
role of GCR2 in plants remains unknown and possibility that 
GCR2 is an ABA receptor is at present debatable.158 However, it 
was previously demonstrated that the overexpression of GCR1 
abolished seed dormancy160 and that GCR1 interacts specifi-
cally with GPA1 suggesting that GCR1 is a component of an 
ABA perception and signaling complex.161 Interestingly, it was 
also suggested that GCR2 may actually be a member of the bac-
terial lanthionine synthetase (LanC),158 and define a new type 
of “non-classical” ABA-signaling G-protein-coupled receptor 
(GPCR) required for ABA perception.162

GT1 and GT2 (GPCR-type G-proteins). G-proteins are 
involved in several fundamental growth and developmental pro-
cesses in higher plants (reviewed in ref. 163). Phenotypic analy-
sis of null mutants were used to demonstrate that G-proteins 
also modulate the seed germination.164 GPCR-like proteins exist 
in plants.165 In the year 2009, two proteins named GTG1 and 
GTG2 (GPCR-type G-proteins 1 and 2), were characterized.150 
Both GTG1 and GTG2 proteins: (1) are topologycally simi-
lar to GPCRs but with classic GTP-binding/GTPase activity; 
(2) interact with GPA1; (3) have highly specific ABA binding; 
(4) posses two different conformations, GTP-bound and GDP-
bound; (5) have dependence of the efficiency of ABA-binding 
on their conformation; (6) are consistent with their proposed 
role in ABA signaling, Arabidopsis gtg1/gtg2 double mutants 
show typical hyposensitivity to ABA, including reduced seed 
dormancy; and (7) no effect of ABA on expression of GTG 
transcripts, indicating that the role of GTG proteins in ABA 
signaling is posttranslational.150 However, these authors report 
that ABA-binding experiments were carried out with purified 
protein; but only 1% of the purified GTP proteins were capable 
of binding ABA.
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aids in developing our understanding of the exact roles of each 
phytohormone in seed dormancy. Currently, it is unknown the 
role of DELLA and basic helix-loop-helix (HLH) proteins, nega-
tive regulators of GAs signaling, in seed dormancy. Likewise, no 
information is available about the alleged action of ET on both 
GAs regulators. On the other hand, as updated in this review, 
the existing puzzle on ABA receptors is, at present, indecipher-
able. A high percentage of failure lies in the methodology used to 
check the binding and specificity in the ABA-receptor complex. 
It would be interesting to use measures of free-energy to check 
the binding ABA-ligand, and make sure that the ligand (v.e. a 
protein) has not undergone changes throughout the experimental 
procedure. Finally, deep experimentation on the ABA levels in 
the rhizosphere is needed, and its potential impact on seed dor-
mancy in soil banks must be analyzed. We must not forget that 
the soil is the natural habitat of the seeds once dispersed from 
mother plant.

Conclusions

The ABA is a well-known hormone that participates in the induc-
tion and maintenance of seed dormancy. A negative correlation 
ABA/GAs during seed development was demonstrated. However, 
the role of ET in this ABA/GAs cross-talk, if it has one, is not 
clarified. ET, together with GAs, antagonize ABA actions dur-
ing dormancy induction/termination and germination. In recent 
years, progress has been made, but a significant number of gaps 
in  ABA signaling still need to be filled. Perhaps the existence 
of genetic redundancy in plants is one of the culprits. Isolation 
and characterization of genes in the synthesis and deactivation 
pathways of ABA were and are key tools to decipher the spatial 
compartimentalization of ABA and its participation in different 
kinds of seed dormancy. Besides, the application of molecular 
genetic tools and the large-scale transcriptome and proteome 
technologies newly available to seed biology will be powerful 

Table 1. Selected ABA synthesis/catabolism and response genes involved in moduling seed dormancy

Species Gene/locus Protein Mutant/ 
transgenic line

Effects on dormancy and 
ABA sensitivity

References

Synthesis/Catabolism

Arabidopsis ABA1 Zeaxanthin epoxidase (ZEP) aba1 Reduced 173–175

ABA2 Short-chain dehydrogenasereductase 
(AB-SDR)

aba2 Reduced 40, 41, 176

ABA3 Molybdenum cofactor sulfurase (MCS) aba3 Reduced 42, 173 

AtNCED6 
AtNCED9

9-cis Epoxycarotenoid dioxygenase 
(NCED)

Atnced6/Atnced9 
double mutant

Reduced 31, 34

AAO3 Aldehyde oxidase 3 Aao3-1 Slightly reduced 33

CYP707A2 ABA 8'-hydroxylase cyp707a2-1 
cyp707a2-2

Enhanced 48

CYP707A1 ABA 8'-hydroxylase cyp707a1 Enhanced 52

Zea mays VP14 9-cis Epoxycarotenoid dioxygenase 
(NCED)

vp14 Vivipary, Reduced 177

Nicotiana 
plumbaginifolia

NpABA1 Zeaxanthin epoxidase (ZEP) Npaba1 Reduced 111

NpABA2 Npaba2 Reduced 16

Lycopersicum 
esculentum

NOT 9-cis Epoxycarotenoid dioxygenase 
(NCED)

not Reduced 178

Response

Arabidopsis ABI1 PP2CSer/Thr protein phosphatase abi1-1 Reduced; ABA insensitive 179

ABI2 PP2CSer/Thr protein phosphatase abi2-1 Reduced; ABA insensitive 180

ABI3 TF specific seeds, B3 domain abi3 Reduced; ABA insensitive 98, 181

ABI4 TF specific seeds, DREB subfamily A-3 of 
ERF/APETALA TF

abi4 Normal; ABA insensitive 173, 182

ABI5 TF specific seeds, bZIP abi5 Normal; ABA insensitive 183, 184

ERA1 Farnesyl transferase era1 Enhanced 179

ERA3 Farnesyl transferase era3 Enhanced 174

AHG1 Putative protein phosphatase 2C (PP2C) ahg1-1 Enhanced 126

SAD1 Sm-like snRNP protein sad1 Enhanced 177

MARD1 Zinc-finger protein (TF?) mard1 Reduced; ABA insensitive 185

Zea mays VP1 TF specific seeds, B3 domain vp1 Vivipary or reduced dormancy; 
ABA insensitive

186

TF, transcription factor.
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