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Abstract
Monomeric fluorescent proteins of different colors are widely used to study behavior and targeting
of proteins in living cells. Fluorescent proteins that irreversibly change their spectral properties in
response to light irradiation of a specific wavelength, or photoactivate, have become increasingly
popular to image intracellular dynamics and super-resolution protein localization. Until recently,
however, no optimized monomeric red fluorescent proteins and red photoactivatable proteins have
been available. Furthermore, monomeric fluorescent proteins, which change emission from blue to
red simply with time, so-called fluorescent timers, were developed to study protein age and turnover.
Understanding of chemical mechanisms of the chromophore maturation or photoactivation into a red
form will further advance engineering of fluorescent timers and photoactivatable proteins with
enhanced and novel properties.

Introduction
Since the discovery that green fluorescent protein (GFP) from jellyfish is encoded by a single
gene and its fluorescence requires no enzymes or cofactors except molecular oxygen, the
fluorescent proteins (FPs) became invaluable tools in biomedical sciences. Cloning of the first
FP with red-shifted excitation and emission spectra, DsRed, led to the discovery of many new
orange and red fluorescent proteins (RFPs) in non-bioluminescent organisms [1]. Further
directed evolution of wild-type FPs allowed the creation of a wide palette of enhanced FPs,
which span the visible spectrum from 420 nm to almost 650 nm [2]. Development of the
monomeric RFPs allowed extending possibilities of a Förster resonance energy transfer
(FRET) approach to three and four colors in a single cell [3].

The RFPs, whose chromophores are formed by induction with light, are known as the
photoactivatable FPs (PA-RFPs). Two different groups of PA-RFPs are presently being
distinguished. Members of the first group exhibit an irreversible photoconversion from the
non-fluorescent or green fluorescent state to the red fluorescent state. Members of the second
group undergo reversible photoswitching between the non-fluorescent and fluorescent states.
Introduction of photoactivatable FPs into cell biology greatly extended the spatio-temporal
limits of in vivo biological dynamics [4] and have become useful tools for the super-resolution
microscopy approaches such as a photoactivation localization microscopy (PALM) [5].
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Therefore, recently developed monomeric irreversible PA-RFPs are of a particular interest for
tracking individual intracellular molecules.

In RFPs, the fluorescence shift toward the red is a result of the expansion in the π-system of
the conventional GFP-like chromophore. Currently known RFPs share two types of
chromophores, called a DsRed-like chromophore [6] and a Kaede-like chromophore [7] after
the first proteins where they have been found. The DsRed-like chromophore may form either
through autocatalytic post-translational modifications or via induction by irradiation with
violet light. There are also some proteins containing derivatives of the DsRed-like structure,
which form due to chemical modifications of the N-acylimine group in the DsRed-like
chromophore [8,9,10]. The Kaede-like chromophore is characteristic for the green-to-red
photoconvertible fluorescent proteins. Initially, the proteins of this group mature to a green-
emitting state with the GFP-like chromophore. However, UV-violet light at approximately
350–450 nm efficiently converts them into the red fluorescent state.

Here, we provide a brief overview of RFPs and irreversible PA-RFPs published within the last
few years.

Irreversibly photoactivatable red fluorescent proteins
Monomeric PA-RFP Dendra2 [11] has already found wide application for protein [12•] and
cell tracking [13]. Dendra2 exhibits a high contrast photoconversion from the green to the red
fluorescent state (Table 1). The unique feature of Dendra2 is that a low phototoxic 488 nm
laser line can be used for its photoactivation. Furthermore, Dendra2 is simultaneously
monomeric and efficiently matures at 37°C. Dendra2 performs well in sensitive fusions and
possesses low cytotoxicity. The only disadvantage that should be mentioned is a relatively low
pH stability of the activated red form.

In order to develop a monomeric version of KikGR [14], 21 amino acids mutations were
introduced in 15 rounds of mutagenesis. mKikGR [15] has almost the same spectroscopic
characteristics and kinetics of photoswitching as its parental protein KikGR [16]. High
photostability and brightness of mKikGR activated red form allow for high resolution in
photoactivation localization microscopy, as well as single-molecule tracking.

Several PA-mCherry variants, including PA-mCherry1, [17••] enable two-color diffraction-
limited photoactivation imaging and super-resolution techniques, such as PALM. Irreversibly
photoactivatable monomeric derivatives of mCherry, PA-mCherrys, are potentially less
disruptive to tagged fusion partners. Before photoactivation these proteins have an absorbance
maximum at about 400 nm and practically do not fluoresce. However, they can be easily
photoactivated with a 405 nm laser line, achieving contrast up to 3,000–5,000-fold. In the
photoactivated state, PA-mCherrys exhibit red fluorescence, which is stable in time and doesn’t
relax back to the dark state. All variants have fast maturation time and perform excellent in
protein fusions in live cells.

The green-to-red photoconvertible tandem dimeric tdEosFP protein [18] paired with the
photoswitchable protein Dronpa was also applied to two-color PALM imaging [19], but
tdEosFP still does not localize accurately in fusions, and its monomeric version mEosFP does
not mature at 37°C [18]. Recently, McKinney et al. [20•] developed a true monomeric version
of EosFP, called mEos2, which efficiently matures at 37°C. The spectral properties, brightness,
pKa, photoconversion and contrast of the improved mEos2 are similar or better to those of
tdEosFP, but there is a much better maturation at 37°C. Despite the dimerization tendency in
vitro, mEos2 performs well even in difficult protein fusions in cells.
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The only example of protein that displays both a reversible photoswitching and an irreversible
photoactivation is the EosFP-derived protein, IrisFP [21], which has a single Phe181Ser amino
acid substitution (here and below we use an amino acid numbering according to the alignment
with wild-type GFP). IrisFP exhibits the irreversible green-to-red photoconversion under violet
light, like its parental protein, and, in addition, both green and red fluorescent states can be
turned off and on over again independently.

Novel monomeric red fluorescent proteins
Despite the growing role of photoactivatable FPs in advanced cell imaging approaches,
common RFPs are still the proteins of choice for many standard biological applications.
Although monomeric RFPs of the first generation are well-suited for protein labeling and
exhibit efficient chromophore formation [2], they still have many drawbacks compared to
common enhanced GFP (EGFP) and its derivatives.

Recently, several new RFPs with an enhanced brightness, rapid chromophore maturation and
high photostability have been developed. Two wild-type RFPs, eqFP583 [22] and eqFP611
[23], were used to design a whole series of enhanced RFPs. Chudakov and coworkers subjected
eqFP578 to a combination of site-specific and random mutagenesis to generate red and far-red
monomeric FPs named TagRFP [22] and mKate [24], respectively. Crystallographic analysis
of mKate [25] allowed for the substantial improvement of its pH-stability, brightness and
photostability, resulting in mKate2 and tandem dimeric tdKatushka2 [26•].

The emission spectra of mKate2 and tdKatushka2 extend into a near-infrared “optical
window” (650–900 nm), which is advantageous for light penetration in living tissues [27]. This
feature makes them the RFPs of choice for visualizing fusion tags in tissues and whole animals.
Further development of proteins with emission beyond 650 nm will possibly require extension
of a conjugated π-electron system of the red chromophore or increasing Stokes shifts [28].
Alternatively, monomeric infrared FPs can be engineered on a basis of phytochromes, which
incorporate an exogenous low-molecular weight chromophore [29].

Tsien and coworkers developed highly photostable FPs, named mOrange2 and TagRFP-T
[30], which maintain most of the beneficial qualities of the original proteins and perform
excellently for long-term imaging in fusion constructs. However, mOrange2 has a decreased
brightness and chromophore maturation efficiency compared to parental mOrange. Tsutsui et
al. generated a fast-maturating version of orange-emitting mKO, named mKOk, by introducing
seven mutations [31•]. mKOk is 2-fold brighter than its precursor and fairly pH-resistant.

A monomeric RFP, mRuby, with emission maximum at 607 nm was recently shown to be a
promising marker for peroxisomes in live mammalian cells [32]. In addition, Strack et al.
[33,34] engineered several rapidly maturating tetrameric fluorescent proteins, called DsRed-
Express2, DsRed-Max, E2-Orange and E2-Red/Green, with different spectral properties and
low cytotoxicity. These proteins should facilitate production of transgenic organisms and stable
cell lines.

Random mutagenesis of a chromoprotein derived from Montipora stony coral led to RFP
named Keima, which exhibits a Stokes shift of 180 nm [35,36]. Structural and spectroscopic
studies of mKeima revealed an excited-state proton transfer (ESPT) pathway from the
chromophore hydroxyl to Asp165 acceptor, causing the large Stokes shift and pH-induced cis-
trans chromophore isomerization [37]. Subach et al. [38•] showed that RFPs can be converted
into the blue FPs using amino acids substitutions at limited number of positions. This strategy
was applied to five RFPs, including mKeima, TagRFP, mCherry, HcRed1 and M355NA, which
all were engineered into blue probes.
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Chromophore photochemistry in fluorescent proteins
A structural basis for the photoactivation of PA-mCherrys, and the similar but rather dim PA-
mRFP1 protein [39], remains unknown, while the mechanism of the green-to-red conversion
for the Kaede-like proteins has been investigated thoroughly. However, it was suggested that
the pre-activated PA-mCherry1 protein contains an mTagBFP-like chromophore, which
absorbs violet light but does not fluoresce (FV Subach, VV Verkhusha, unpublished data). The
PA-mCherry1 photoactivation possibly involves a decarboxylation of its Glu222 residue and
subsequent oxidation of the mTagBFP-like chromophore that results in formation of the
fluorescent DsRed-like chromophore but in a trans configuration (Figure 1). The quantitative
decarboxylation of Glu222 via a Kolbe-like mechanism was detected after the PA-GFP
photoactivation [40], and likely occurs in the course of the PS-CFP photoconversion [41]
(Figure 1).

The Kaede-like proteins share the same chromophore-forming tripeptide His65-Tyr66-Gly67,
which autocatalytically forms the green-emitting chromophore. X-ray analysis of the original
green and photo-converted red chromophore forms revealed a light-induced extension of the
chromophore π-electron system, known to result from backbone cleavage between the Nα and
Cα atoms of His65 and formation of a double bond between the Cα and Cβ atoms in His65
[42,43] (Figure 2). This photo-induced process occurs only in the neutral state of the
chromophore and requires no molecular oxygen. The structural basis for the β-elimination
reaction is the unique positioning of His65 and the stereochemistry of the amino acid residues
in chromophore environment. Glu222 is essential for the red chromophore formation, but it
does not decarboxylate as it does in PA-mCherrys. Other Kaede-like proteins exhibit the similar
chemical reaction during the photoconversion with minor variations, depending on the
chromophore environment. In this way, a blue shift of absorption and emission peaks of
Dendra2 can be explained by a local structural changes involving mainly Arg69 and
neighboring water molecule [44]. It was shown that reversible photoswitching of IrisFP
between the fluorescent and nonfluorescent states is based on the cis–trans chromophore
isomerization, accompanied by protonation–deprotonation events [21].

Essentially distinctive green-to-red photocoversion mechanism has been recently revealed for
EGFP and other green FPs, including aceGFP, TagGFP, zFP506, amFP486 and ppluGFP2
[45••]. In contrast to the previously described anaerobic EGFP redding, the authors found that
a redding of green FPs also occurs in the presence of oxidants in common aerobic conditions.
This oxidative redding occurred in solution as well as in live cells, when the protein was
irradiated with a high-intensity 488 nm laser. A possible explanation is that the DsRed-like red
chromophore is formed as the result of a two-electron oxidation (Figure 2). The same
mechanism could also explain the photoconversion into a far-red state found in the mOrange
variants [46•] and mKO [47]. Efficient photoconversion of mOrange occurred at 458 nm or
488 nm laser excitation. Excitation and emission maxima of the photoconverted state were
approximately at 610 nm and 640 nm, respectively. In contrast to Kaede-like proteins, the
mOrange photoconversion was not substantially affected by pH, however it required the 4–5-
fold higher illumination power than that for Dendra2 photoconversion.

Interestingly, tdKatushka and mKate underwent a red-to-green photoconversion upon single-
photon laser excitation at 405 and 561 nm, resulting in the green state with excitation and
emission maxima at 495 nm and 518 nm, respectively [46•]. This red-to-green photoconversion
suggests a reduction of the π-conjugated system of the DsRed-like chromophore. Monomeric
state of mKate, low dependence of photoconversion from pH, and low phototoxicity of the
converting blue light make mKate a promising template to design an efficient optical
highlighter for live cell imaging. Furthermore, induction of a light-driven electron transfer in
EGFP could be applied to monitor and manipulate with light the intracellular redox processes.
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Spectral properties of proteins could be also affected simply with time, without any light
irradiation. The first monomeric fluorescent timers (FTs) [48•], which exhibit distinctive fast,
medium, and slow blue-to-red chromophore maturation rates, were developed on the basis of
mCherry (Table 1). It was suggested that a blue-emitting form of FTs contain the mTagBFP-
like chromophore, which is converted after oxidation to the red-emitting DsRed-like
chromophore (SV Pletnev, VV Verkhusha, unpublished data) (Figure 1). The blue and red
forms of FTs are bright enough to use FTs either alone in protein fusions or together with green
FPs for multicolor imaging. FTs exhibit the similar timing behavior in bacteria, insect and
mammalian cells. The predictable time course of changing fluorescent colors allows a
quantitative analysis of temporal and spatial molecular events based on the ratio between the
blue and red fluorescence intensities. Availability of three FTs with distinctive blue-to-red
maturation times will be useful for studies of intracellular processes with substantially different
time scales.

Conclusions
Recently developed monomeric RFPs and PA-RFPs extend the range of available probes and
provide exciting new options in biotechnology, developmental and cell biology. We expect
further broadening of the applications of these proteins in intact tissues and transgenic animals,
using spatial-restricted deeper multi-photon laser excitation. Further studies generating the
novel far-red and infra-red genetically encoded fluorescent markers and photoactivatable
probes are of great practical interest because of high transparency of animal tissues in the 650–
900 nm region.
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Figure 1.
Mechanisms of chromophore conversion from a neutral (protonated) to anionic (deprotonated)
forms are illustrated for three key subgroups of fluorescent proteins such as PA-GFP, PS-CFP
and PS-CFP2 (left), PA-mCherry1 and PA-mRFP1 (middle), and Fluorescent Timers (right).
Chemical structures are shown for chromophores of the representative proteins before (top)
and after (bottom) the conversion reactions. Colors of the chemical structures correspond to
the spectral range of the chromophore emission except for the gray color, which indicates the
non-fluorescent chromophore. UV-violet light-induced decarboxylation of the Glu222 residue
is followed by the reorganization of the hydrogen bond network around the GFP-like
chromophore that results in the chromophore deprotonation (left). Photoactivation by UV-
violet light involves decarboxylation of the Glu222 residue and oxidation of the mTagBFP-
like chromophore by molecular oxygen to the DsRed-like chromophore in the trans-
configuration (middle). Slowed down oxidation of the mTagBFP-like chromophore by
molecular oxygen without any light irradiation results in the formation of the DsRed-like
chromophore in Fluorescent Timers (right).
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Figure 2.
Mechanisms of chromophore photoconversion from an anionic (deprotonated) green to anionic
(deprotonated) red forms are illustrated for two key subgroups of fluorescent proteins such as
Kaede, KikGR, EosFP, tdEosFP, mEos2 and Dendra2 (left), and EGFP, aceGFP, TagGFP,
zFP506, amFP486 and ppluGFP2 (right). Chemical structures are shown for chromophores of
the representative proteins before (top) and after (bottom) the photoconversion reactions.
Colors of the chemical structures correspond to the spectral range of the chromophore emission.
The Glu222 residue stabilizes a transition state of the UV-violet light-induced polypeptide
backbone cleavage by forming the hydrogen bond network with the Gln42 residue and
chromophore forming His65 residue via water molecules; protonation-deprotonation
equilibrium shown for the green chromophore is important for the photochemical behavior
(left). The oxidative redding of the GFP-like chromophore is a one-photon process, which
requires two equivalents of the oxidant per molecule of the fluorescent protein and possibly
goes via formation of a radical of the chromophore, resulting in the DsRed-like chromophore
(right).
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