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Abstract
Drug addiction is a chronically relapsing disorder characterized by a compulsion to seek and take
drugs, the development of dependence, and the manifestation of a negative emotional state when the
drug is removed. Activation of brain stress systems is hypothesized to be a key element of the negative
emotional state produced by dependence that drives drug-seeking through negative reinforcement
mechanisms, defined as the “dark side” of addiction. The focus of the present review is on the role
of corticotropin-releasing factor (CRF) and CRF-related peptides in the dark side of addiction. CRF
is a key mediator of the hormonal, autonomic, and behavior responses to stressors. Emphasis is placed
on the role of CRF in extrahypothalamic systems in the extended amygdala, including the central
nucleus of the amygdala, bed nucleus of the stria terminalis, and a transition area in the shell of the
nucleus accumbens, in the dark side of addiction. The urocortin/CRF2 systems have been less
explored, but results suggest their role in the neuroadaptation associated with chronic drug use,
sometimes in opposition to the effects produced by the CRF1 receptor. Compelling evidence argues
that the CRF stress system, including its activation of the hypothalamic-pituitary-adrenal axis, plays
a key role in engaging the transition to dependence and maintaining dependence once it is initiated.
Understanding the role of the CRF systems in addiction not only provides insight into the
neurobiology of the dark side of addiction, but also provides novel targets for identifying vulnerability
to addiction and the treatment of addiction.

Conceptual Framework: Addiction, Stress, and the Dark Side
Drug addiction is a chronically relapsing disorder characterized by (i) compulsion to seek and
take the drug, (ii) loss of control in limiting intake, and (iii) emergence of a negative emotional
state (e.g., dysphoria, anxiety, irritability) reflecting a motivational withdrawal syndrome when
access to the drug is prevented (defined here as dependence) (Koob and Le Moal, 1997Koob
and Le Moal, 2008). Addiction has been conceptualized as an evolving disorder that comprises
three stages—preoccupation/anticipation, binge/intoxication, and withdrawal/negative affect
—in which impulsivity often dominates at the early stages and compulsivity dominates at
terminal stages. As an individual moves from impulsivity to compulsivity, a shift occurs from
positive reinforcement driving the motivated behavior to negative reinforcement driving the
motivated behavior (Koob, 2004). Negative reinforcement can be defined as the process by
which removal of an aversive stimulus (e.g., negative emotional state of drug withdrawal)
increases the probability of a response (e.g., dependence-induced drug intake). These three
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stages are conceptualized as interacting with each other, becoming more intense, and ultimately
leading to the pathological state known as addiction (Koob and Le Moal, 1997).

The present review focuses on the role of corticotropin-releasing factor (CRF) in what has been
described as the “dark side” of the addiction cycle (i.e., the withdrawal/negative affect stage
of the addiction cycle and the elements of the preoccupation/anticipation stage). Different
drugs produce different patterns of addiction with emphasis on different components of the
addiction cycle, but all addictive drugs show some common elements relevant to the dark side
of addiction. The common elements include profound malaise, dysphoria, and anxiety during
withdrawal, a protracted abstinence syndrome characterized by a low-level anxiety/dysphoric
state and a high vulnerability to relapse when subjected to an acute stressor. CRF is
hypothesized to play a key role in the anxiety/stress-like effects of acute withdrawal, anxiety/
stress-like effects of protracted abstinence, and relapse to drug taking during protracted
abstinence induced by stressors.

The role of CRF in the dark side component of the addiction cycle is predicated on opponent
process theory, which been expanded into the domains of the neurobiology of drug addiction
from a neurocircuitry perspective. An allostatic model of the brain motivational systems has
been proposed to explain the persistent changes in motivation that are associated with
dependence in addiction (Koob and Le Moal 2001Koob and Le Moal 2008). In this formulation,
addiction is conceptualized as a cycle of increasing dysregulation of brain reward/anti-reward
mechanisms that results in a negative emotional state contributing to the compulsive use of
drugs. Counteradaptive processes that are part of the normal homeostatic limitation of reward
function fail to return within the normal homeostatic range. These counteradaptive processes
are hypothesized to be mediated by two mechanisms: within-system neuroadaptations (changes
in reward pathways) and between-system neuroadaptations (the recruitment of the brain stress
systems) (Koob and Bloom, 1988; Koob and Le Moal, 1997, 2008). The recruitment of the
brain stress systems, of which CRF is perhaps the prominent component, provides one key part
of the negative reinforcement processes that drive the compulsivity of addiction (Koob,
2008).

Corticotropin-Releasing Factor
CRF is a 41-amino acid polypeptide that has a major role in coordinating the stress response
of the body by mediating hormonal, autonomic, and behavioral responses to stressors. CRF
(also termed corticotropin-releasing hormone, although the International Union of
Pharmacology designation is CRF) was identified by classic techniques of peptide sequencing
(Vale et al., 1981). Subsequently, genes encoding three paralogs of CRF—urocortins 1, 2, and
3 (Ucn 1, Ucn 2, Ucn 3), with Ucn 2 and Ucn3 also referred to as stresscopin-related peptide
and stresscopin, respectively—were identified by modern molecular biological approaches.
CRF agonists can be found in fish (urotensin), frogs (sauvagine), and mammals (urocortin).
Urocortin was named for its sequence similarity to carp urotensin I (63%, “uro”) and
mammalian CRF (45%, “cort”). Two G-protein-coupled receptors (CRF1, CRF2) that the CRF/
Ucn peptides bind and activate with varying affinities were similarly identified (Bale and Vale,
2004; Fekete and Zorrilla, 2007). Pharmacological and transgenic studies show that brain and
pituitary CRF1 receptors mediate many of the functional stress-like effects of the CRF system
(Heinrichs and Koob, 2004). Previous reviews by ourselves and others have surveyed the
biology of CRF systems (Bale and Vale, 2004; Heinrichs and Koob, 2004).

CRF has a wide distribution throughout the brain but particularly high concentrations of cell
bodies in the paraventricular nucleus of the hypothalamus, the basal forebrain (notably the
extended amygdala), and the brainstem (Swanson et al., 1983). Central administration of CRF
mimics the behavioral response to activation and stress in rodents, and administration of
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competitive CRF receptor antagonists generally has anti-stress effects (Heinrichs et al.,
1994; Menzaghi et al., 1994; Spina et al., 2000; for reviews, see Dunn and Berridge, 1990;
Koob et al., 1994, 2001; Sarnyai et al., 2001) (Table 1). Of the two major CRF receptors that
have been identified, CRF1 receptor activation is associated with increased stress
responsiveness (Koob and Heinrichs, 1999), and CRF2 receptor activation is associated with
decreases in feeding and decreased stress responsiveness (Spina et al., 1996; Pelleymounter et
al., 2000; but see Ho et al., 2001; Takahashi et al., 2001; Fekete and Zorrilla, 2007). Numerous
blood-brain barrier-penetrating, selective CRF1 receptor antagonists have been developed, but
no small-molecule brain-penetrating CRF2 antagonists have been developed (Zorrilla and
Koob, 2007). As a result, an extensive amount of work has been done to elucidate the role of
CRF1 receptors in addiction with limited work on the CRF2 receptor (see below).

Hormonal Stress Systems: Hypothalamic-Pituitary-Adrenal Axis
A key element of the body’s response to stress relevant to addiction is the hypothalamic-
pituitary adrenal (HPA) axis, a system largely controlled by CRF in the paraventricular nucleus
of the hypothalamus (Figure 1). The HPA axis is composed of three major structures: the
paraventricular nucleus of the hypothalamus, the anterior lobe of the pituitary gland, and the
adrenal gland (for review, see Smith and Vale, 2006). Neurosecretory neurons in the medial
parvocellular subdivision of the paraventricular nucleus synthesize and release CRF into the
portal blood vessels which enter the anterior pituitary gland. Binding of CRF to the CRF1
receptor on pituitary corticotropes induces the release of adrenocorticotropic hormone (ACTH)
into the systemic circulation. ACTH in turn stimulates glucocorticoid synthesis and secretion
from the adrenal cortex. The HPA axis is finely tuned via negative feedback from circulating
glucocorticoids that act on glucocorticoid receptors in two main brain areas: the paraventricular
nucleus of the hypothalamus and the hippocampus. The hypophysiotropic neurons of the
paraventricular nucleus of the hypothalamus are innervated by numerous afferent projections,
including from the brainstem, other hypothalamic nuclei, and forebrain limbic structures.

Extrahypothalamic CRF Systems
CRF is also located outside of the HPA axis to control autonomic and behavioral responses to
stressors. Substantial CRF-like immunoreactivity is present in the neocortex, extended
amygdala, medial septum, hypothalamus, thalamus, cerebellum, and autonomic midbrain and
hindbrain nuclei, including the ventral tegmental area (Charlton et al., 1987; Swanson et al.,
1983). The distribution of Ucn 1 projections overlaps with CRF but also has a different
distribution, including visual, somatosensory, auditory, vestibular, motor, tegmental,
parabrachial, pontine, median raphe, and cerebellar nuclei (Zorrilla and Koob, 2005). The
CRF1 receptor has abundant, widespread expression in the brain that overlaps significantly
with the distribution of CRF and Ucn 1.

The endogenous selective CRF2 agonists—the type 2 urocortins Ucn 2 (Reyes et al., 2001)
and Ucn 3 (Lewis et al., 2001)—differ from Ucn 1 and CRF in their neuropharmacological
profiles. Ucn 2 and Ucn 3 show high functional selectivity for the CRF2 receptor and have
neuroanatomical distributions that are distinct from those of CRF and Ucn 1 (Figure 2). Ucn
2 and Ucn 3 are notably salient in hypothalamic nuclei that express the CRF2 receptor, including
the supraoptic nucleus, magnocellular neurons of the paraventricular nucleus, and forebrain,
including the ventromedial hypothalamus, lateral septum, bed nucleus of the stria terminalis,
and medial and cortical amygdala (Li et al., 2002). The CRF2(a) receptor isoform is localized
neuronally in brain areas distinct from those of the CRF/Ucn 1/CRF1 receptor system, such as
the ventromedial hypothalamic nucleus, paraventricular nucleus of the hypothalamus,
supraoptic nucleus, nucleus tractus solitarius, area postrema, lateral septum, and bed nucleus
of the stria terminalis.
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Construct of the Extended Amygdala: Interface of CRF and the Dark Side of
Addiction

Recent neuroanatomical data and new functional observations have provided support for the
hypothesis that the neuroanatomical substrates for many of the motivational effects associated
with the dark side of addiction may involve a common neural circuitry that forms a separate
entity within the basal forebrain, termed the “extended amygdala” (Alheid and Heimer,
1988). The extended amygdala represents a macrostructure composed of several basal
forebrain structures: the bed nucleus of the stria terminalis, central medial amygdala, and a
transition zone in the posterior part of the medial nucleus accumbens (i.e., posterior shell)
(Johnston, 1923; Heimer and Alheid, 1991). These structures have similarities in morphology,
immunohistochemistry, and connectivity (Alheid and Heimer, 1988), and they receive afferent
connections from limbic cortices, the hippocampus, basolateral amygdala, midbrain, and
lateral hypothalamus. The efferent connections from this complex include the posterior medial
(sublenticular) ventral pallidum, ventral tegmental area, various brainstem projections, and
perhaps most intriguing from a functional point of view, a considerable projection to the lateral
hypothalamus (Heimer et al., 1991). Key elements of the extended amygdala include not only
neurotransmitters associated with the positive reinforcing effects of drugs of abuse, such as
dopamine and opioid peptides, but also major components of the extrahypothalamic CRF
systems associated with negative reinforcement mechanisms (Koob and Le Moal, 2005; see
below).

CRF, the HPA Axis, and Addiction
From the perspective of addiction, progressive changes in the HPA axis are observed during
the transition from acute administration to chronic administration of drugs of abuse. Acute
administration of most drugs of abuse in animals activates the HPA axis and may first facilitate
activity in the brain motivational circuits and drug reward and as a result facilitate acquisition
of drug-seeking behavior (Piazza et al., 1993; Goeders, 1997; Piazza and Le Moal, 1997; Fahlke
et al., 1996). Relevant for the role of CRF in the dark side of addiction, these acute changes
are blunted or dysregulated with repeated administration of cocaine, opioids, nicotine, and
alcohol (Kreek and Koob, 1998; Rasmussen et al., 2000; Goeders, 2002; Koob and Kreek,
2007; Sharp and Matta, 1993; Semba et al., 2004). An atypical responsivity to stressors has
been hypothesized to contribute to the persistence and relapse to cycles of opioid dependence,
and subsequently this hypothesis was extended to other drugs of abuse (Kreek and Koob,
1998).

Importantly for the role of CRF in the dark side of the addiction process, high circulating levels
of glucocorticoids can feedback to shut off the HPA axis but can “sensitize” CRF systems in
the central nucleus of the amygdala and basolateral amygdala known to be involved in
behavioral responses to stressors (Imaki et al., 1991; Makino et al., 1994; Swanson and
Simmons, 1989; Schulkin et al., 1994; Shepard et al., 2000). Thus, although activation of the
HPA axis may characterize initial drug use and the binge/intoxication stage of addiction, such
activation also can lead to subsequent activation of extrahypothalamic brain stress systems that
characterize the withdrawal/negative affect stage (Kreek and Koob, 1998; Koob and Le Moal,
2005; Koob and Kreek, 2007).

Role of CRF in Animal Models of Addiction
Chronic administration of drugs with dependence potential dysregulates the stress responses
mediated by CRF, including not only the HPA axis, but also the brain extrahypothalamic stress
system. Responses common to all drugs of abuse and alcohol include, during acute withdrawal,
an activated HPA stress response reflected in elevated ACTH and corticosteroids and an
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activated brain stress response with increased amygdala CRF release. However, with repeated
cycles of addiction, a blunted HPA response occurs but with a sensitized extrahypothalamic
CRF stress system response (Koob and Kreek, 2007; Koob, 2008).

In vivo microdialysis during acute withdrawal following chronic administration or self-
administration of drugs of abuse produces increases in extracellular CRF in the extended
amygdala, a stress-like response (Merlo-Pich et al., 1995; Richter et al., 2000). During alcohol
withdrawal, extrahypothalamic CRF systems become hyperactive, with an increase in
extracellular CRF within the central nucleus of the amygdala and bed nucleus of the stria
terminalis of dependent rats (Merlo-Pich et al., 1995; Olive et al., 2002). Extracellular CRF
also increased in the central amygdala during precipitated withdrawal from chronic nicotine
(George et al., 2007), withdrawal from binge cocaine self-administration (Richter and Weiss,
1999), and precipitated withdrawal from opioids (Weiss et al., 2001) and cannabinoids
(Rodriguez de Fonseca et al., 1997). Amygdala CRF tissue content was reduced during acute
withdrawal from ethanol exposure and from binge cocaine self-administration (Zorrilla et al.,
2001; Funk et al., 2006; Koob, 2009).

Another common response to acute withdrawal and protracted abstinence from all major drugs
of abuse is the manifestation of a negative emotional state, including anxiety-like responses.
Animal models in which the dependent variable is often a passive response to a novel and/or
aversive stimulus, such as the open field, elevated plus maze, defensive withdrawal test, or
social interaction test, or an active response to an aversive stimulus, such as defensive burying
of an electrified metal probe, have shown anxiety-like responses to acute withdrawal from all
major drugs of abuse. Withdrawal from repeated administration of cocaine, alcohol, nicotine,
cannabinoids, and benzodiazepines produces an anxiogenic-like response in the elevated plus
maze, defensive withdrawal, or defensive burying test, and these effects are reversed by
administration of CRF antagonists (Sarnyai et al., 1995; Basso et al., 1999; Knapp et al.,
2004; Overstreet et al., 2004; Tucci et al., 2003; George et al., 2007; Rodriguez de Fonseca et
al., 1997; Skelton et al., 2007).

Moreover, the decreased brain reward function associated with drug withdrawal is CRF1
receptor-dependent. Elevation of reward thresholds during nicotine withdrawal is blocked by
CRF1 antagonists (Bruijnzeel et al., 2007, 2009). Using the place aversion model, a CRF1
antagonist also blocked the development of conditioned place aversion induced by precipitated
opioid withdrawal in opioid-dependent rats (Stinus et al., 2005). Studies with microinjections
of noradrenergic and CRF antagonists have provided evidence for a role of the bed nucleus of
the stria terminalis (Delfs et al., 2000) and central nucleus of the amygdala (Heinrichs et al.,
1995), respectively, in the place aversions produced by precipitated opioid withdrawal.

Significant evidence from our laboratory and those of others have demonstrated a key role for
CRF in the motivational effects of ethanol in dependence. During ethanol withdrawal,
extrahypothalamic CRF systems become hyperactive, with an increase in extracellular CRF
within the central nucleus of the amygdala and bed nucleus of the stria terminalis in dependent
rats (Funk et al., 2006; Merlo-Pich et al., 1995; Olive et al., 2002). The dysregulation of brain
CRF systems is hypothesized to underlie both the enhanced anxiety-like behaviors and
enhanced ethanol self-administration associated with ethanol withdrawal. Supporting this
hypothesis, subtype-nonselective CRF receptor antagonists, such as α-helical CRF9-41 and D-
Phe CRF12-41 (intracerebroventricularly injected) reduce ethanol withdrawal-induced anxiety-
like behavior (Baldwin et al., 1991; see above).

Exposure to repeated cycles of chronic ethanol vapor produces substantial increases in ethanol
intake in rats, both during acute withdrawal and protracted abstinence (2 weeks or more post-
acute withdrawal) (O’Dell et al., 2004; Rimondini et al., 2002). Intracerebroventricular
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administration of a CRF1/CRF2 antagonist blocked the dependence-induced increase in ethanol
self-administration during acute withdrawal (Valdez et al., 2004). CRF antagonists had no
effect on ethanol self-administration in nondependent animals (Valdez et al., 2004). When
administered directly into the central nucleus of the amygdala, CRF antagonists also attenuated
anxiety-like behavior produced by ethanol withdrawal (Rassnick et al., 1993) and ethanol self-
administration in dependent rats (Funk et al., 2006, 2007). Again, no effect of the CRF
antagonists were observed on ethanol self-administration in nondependent animals. CRF1
small-molecule antagonists selectively reduced the increased self-administration of drugs
associated with extended access to intravenous self-administration of cocaine (Specio et al.,
2008), nicotine (George et al., 2007), and heroin (Greenwell et al., 2009). These data suggest
an important role for CRF, primarily within the central nucleus of the amygdala, in mediating
the increased self-administration associated with dependence.

CRF antagonists injected intracerebroventricularly or systemically also blocked the potentiated
anxiety-like responses to stressors observed during protracted abstinence (Breese et al.,
2005; Valdez et al., 2003) and the increased ethanol self-administration associated with
protracted abstinence (Sabino et al, 2006; Funk et al., 2007; Richardson et al., 2008; Chu et
al., 2007; Gilpin et al., 2008; Sommer et al., 2008; Gehlert et al., 2007). These results suggest
that a residual dysregulation of CRF systems continues into the protracted abstinence
associated with the preoccupation/anticipation stage. Supporting this hypothesis, both ethanol-
and cocaine-withdrawn animals showed reduced CRF-like immunoreactivity in the amygdala
followed by a progressive increase culminating in elevated levels 6 weeks post-withdrawal
(Zorrilla et al., 2001).

Thus, the brain CRF system has an important role in mediating the shift from positive to
negative reinforcement associated with the development of motivational aspects of dependence
reflected in increased drug intake with extended access (see Koob and Le Moal, 2008, for
further elaboration of this conceptual framework). Data from microdialysis, anxiety-like
responses, place conditioning (conditioned place aversion), and extended access to intravenous
drug self-administration have converged to provide a neuropharmacological framework for the
present hypothesis.

Urocortin and Addiction
A limited number of studies have explored the role of urocortin systems independent of CRF
receptors in addiction. A number of studies suggest that urocortin systems may play a role in
ethanol self-administration (Ryabinin and Weitemier, 2006). Mouse and rat strains that drink
ethanol excessively have higher amounts of urocortin-expressing cells in the Edinger-Westphal
nucleus compared with strains that do not drink excessively (Bachtell et al., 2002, 2003; Turek
et al., 2005). High alcohol intake induced activity in urocortin cells in the Edinger-Westphal
nucleus (Ryabinin et al., 2003). Ucn 1 microinjection into the projection area of the urocortin
cells in the Edinger-Westphal nucleus attenuated the increase in limited-access drinking in
mice (Ryabinin et al., 2008). Lipopolysaccharide stress also increased the activity of urocortin
cells in the Edinger-Westphal nucleus (Kozicz, 2003). Subsequent studies have shown that
other stressors and acute administration of psychostimulants activate urocortin cells in the
Edinger-Westphal nucleus region, now termed the pIIIu, suggesting that multiple drugs of
abuse and stressors can activate the Ucn 1 system in this region (Spangler et al., 2009).
However, the locomotor sensitization observed in mice with repeated administration of ethanol
was blocked by CRF1 antagonists and not in Ucn 1 or CRF2 knockout mice (Pastor et al.,
2008). CRF2 knockout mice also failed to show decreases in ethanol consumption in both 24
h two-bottle choice and limited-access paradigms (Sharpe et al., 2005). Altogether, these results
suggest that the Ucn 1 system deriving from the pIIIu in the region of the Edinger-Westphal
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nucleus is activated by excessive ethanol consumption. However, its action may be mediated
more by CRF1 receptors than CRF2 receptors.

In the domain of increased ethanol intake associated with ethanol dependence, a highly
selective CRF2 agonist, Ucn 3, when injected intracerebroventricularly or directly into the
central nucleus of the amygdala, had an effect similar to a CRF1 antagonist in reducing the
increase in ethanol self-administration associated with acute withdrawal in dependent rats.
However, no effect was observed in nondependent rats (Valdez et al., 2004; Funk and Koob,
2007). Ucn 3 also selectively attenuated the increase in ethanol intake observed in C57BL/6J
mice during limited access to ethanol (Sharpe and Phillips, 2009). These results suggest that
the Ucn 3 system may block excessive drinking under a number of conditions and suggest a
role for CRF2 receptors that is opposite to the role of CRF and Ucn 1 via CRF1 receptors in
modulating ethanol intake in dependent animals.

Withdrawal-induced enhanced long-term potentiation in hippocampal slices associated with
chronic high-dose cocaine exposure was blocked by both CRF1 and CRF2 receptor antagonists
(Guan et al., 2009). In brain slice recordings from the lateral septum following acute withdrawal
from chronic cocaine, a shift in CRF2 receptor activity from inhibition to facilitation was
observed (Liu et al., 2005). Spontaneous somatic withdrawal from chronic opioid
administration was blocked in CRF2 knockout mice (Papaleo et al., 2008), whereas the
motivational effects of opioid withdrawal, measured by conditioned place aversion, were
blocked in CRF1 knockout mice (Contarino and Papaleo, 2005). Altogether, these results
suggest that during withdrawal from drugs of abuse, the CRF2 system may become engaged
in the neuroplasticity that conveys somatic withdrawal, motivational withdrawal, and aspects
of changes in learning. The specific sites that are involved (e.g., septum, amygdala,
hippocampus), however, remain to be determined.

Stress-Induced Reinstatement
A state of stress and stressor exposure have long been associated with relapse and vulnerability
to relapse (Koob and Kreek, 2007; Marlatt and Gordon, 1980). In human alcoholics, numerous
symptoms that can be characterized by negative emotional states such as dysphoria, malaise,
irritability, and anxiety, persist long after acute physical withdrawal from alcohol (Alling et
al., 1982). These symptoms, post acute withdrawal, often precede relapse (Hershon, 1977;
Annis et al., 1998). Negative emotion, including elements of anger, frustration, sadness,
anxiety, and guilt, is a key factor in relapse (Zywiak et al., 1996) and was the leading precipitant
of relapse in a large-scale replication of Marlatt’s taxonomy (Lowman et al., 1996). Negative
affect, stress, or withdrawal-related distress also increases drug craving (Childress et al.,
1994; Cooney et al., 1997; Sinha et al., 2000).

The role of CRF in stress-induced reinstatement of drug-seeking follows a pattern of results
somewhat parallel to the role of CRF in the anxiety-like effects of acute withdrawal and
dependence-induced increases in drug intake (for reviews, see Shaham et al., 2003; Lu et al.,
2003). Mixed CRF1/CRF2 antagonists injected intracerebroventricularly and/or CRF1 small-
molecule antagonists blocked stress-induced reinstatement of cocaine, opioid, alcohol, and
nicotine seeking behavior (see Liu and Weiss, 2002; Shaham et al., 2003; Lu et al., 2003; Le
et al. 2000; Shaham et al. 1998; Gehlert et al., 2007; Bruijnzeel et al., 2009; Marinelli et al.,
2007). These effects have been replicated with intracerebral injections of a mixed CRF1/
CRF2 antagonist or small-molecule CRF1 antagonist into the bed nucleus of the stria terminalis,
median raphe nucleus, and ventral tegmental area, but not the amygdala or nucleus accumbens
(see Shaham et al., 2003; Lu et al., 2003), suggesting that different sites, such as the bed nucleus
of the stria terminalis, median raphe nucleus, and ventral tegmental area, may be important for
stress-induced relapse, in contrast to the role of CRF in dependence-induced increases in drug
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self-administration which to date has been localized primarily to the central nucleus of the
amygdala (Funk et al., 2006). Notice that stress-induced reinstatement occurs independent of
stress-induced activation of the HPA axis (Erb et al., 1998; Le et al., 2000; Shaham et al.,
1997).

For example, CRF systems have also been identified in the ventral tegmental area, and
footshock stress can release CRF into the ventral tegmental area and has a role in stress-induced
reinstatement (Wang et al., 2005). Footshock-induced reinstatement of cocaine-seeking was
blocked by administration of a CRF2 receptor antagonist, and CRF agonists with strong affinity
for the CRF binding protein mimicked the effects induced by footshock, suggesting the
involvement of both CRF2 receptors and the CRF binding protein in the ventral tegmental area
in stress-induced reinstatement (Wang et al., 2007). These results complement the role of the
CRF1 system in the extended amygdala in stress-induced reinstatement (Shaham et al.,
1998). Other brain stress systems implicated in stress-induced reinstatement possibly linked
to brain CRF systems include norepinephrine, orexin, vasopressin, and nociceptin (see Shaham
et al., 2003; Lu et al., 2003).

Thus, the brain stress systems may impact both the withdrawal/negative affect stage and
preoccupation/anticipation stage of the addiction cycle, albeit by engaging different
components of the extended amygdala emotional system (central nucleus of the amygdala
vs. bed nucleus of the stria terminalis; see above), and the dysregulations that comprise the
negative emotional state of drug dependence persist during protracted abstinence to set the tone
for vulnerability to “craving” driven by activation of the drug-, cue-, and stress-induced
reinstatement neurocircuits.

CRF, the Dark Side, and Addiction: A Conceptual Framework for Linking
Stress Systems and Addiction

All drugs of abuse engage the HPA axis during acquisition of drug-taking and again during
acute withdrawal from the drug via activation of CRF in the paraventricular nucleus of the
hypothalamus. As the cycle of drug taking and withdrawal continues, the HPA axis response
becomes blunted, but the repeated exposure of the brain to high levels of glucorticoids can
continue to have profound effects on the extrahypothalamic brain stress systems (Figure 3).
Strong evidence suggests that glucocorticoids “sensitize” the CRF system in the amygdala
(Imaki et al., 1991;Makino et al., 1994;Swanson and Simmons, 1989). Thus, the first
component of the contribution of CRF to the dark side is activation of the HPA axis and
glucocorticoids, which are linked initially to high responsivity to novelty and facilitation of
reward. Subsequently, sensitization of CRF systems in the extended amygdala occurs in which
they contribute to a stress component of the shift from homeostasis to pathophysiology
associated with drug addiction. This stress component may reflect a component of the opponent
process response to excessive activation of reward systems, termed anti-reward (Koob and Le
Moal, 2008).

Opponent process, between-system neuroadaptations are hypothesized to involve
neurochemical systems other than those involved in the positive rewarding effects of drugs of
abuse that are recruited or dysregulated by chronic activation of the reward system (Koob and
Bloom, 1988). A between-system neuroadaptation is a circuitry change in which another
different circuit (anti-reward circuit) is activated by the reward circuit and has opposing actions,
again limiting reward function. Therefore, recruitment of the CRF system during the
development of dependence for all drugs of abuse would have key motivational significance.
Additional between-system neuroadaptations associated with motivational withdrawal of a
between-system opponent process include activation of the dynorphin/κ-opioid system,
norepinephrine brain stress system, extrahypothalamic vasopressin system, and possibly the

Koob Page 8

Brain Res. Author manuscript; available in PMC 2011 February 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



orexin system. Brain anti-stress systems, such as neuropeptide Y and nociceptin, may also be
compromised during the development of dependence, thus removing a mechanism for restoring
homeostasis (Koob and Le Moal, 2008). Additionally, activation of the brain stress systems
may not only contribute to the negative motivational state associated with acute abstinence,
but also may contribute to the malaise, persistent dysphoria, and vulnerability to stressors
observed during protracted abstinence in humans. These results suggest that the motivation to
continue drug use during dependence not only includes a change in the function of
neurotransmitters associated with the acute reinforcing effects of drugs of abuse during the
development of dependence, such as dopamine, opioid peptides, serotonin, and γ-aminobutyric
acid, but also recruitment of the brain stress systems and/or disruption of the brain anti-stress
systems (Koob, 2008; Koob and Le Moal, 2008).

Thus, the activity of neural circuits involving CRF normally involved in appropriate responses
to acute stressors contributes to the aversive emotional state that drives the negative
reinforcement of addiction. The withdrawal/negative affect stage defined above consists of key
motivational elements, such as chronic irritability, emotional pain, malaise, dysphoria,
alexithymia, and loss of motivation for natural rewards, and is characterized in animals by
increases in reward thresholds during withdrawal from all major drugs of abuse (Koob,
2008). A key component of the dark side of addiction is the concept of anti-reward (i.e.,
processes put in place to limit reward) (Koob and Le Moal, 1997Koob and Le Moal, 2005Koob
and Le Moal, 2008). As dependence and withdrawal develop, brain anti-reward systems such
as CRF are hypothesized to be recruited to produce stress-like, aversive states (Koob and Le
Moal, 2001; Nestler, 2005; Aston-Jones et al., 1999).

An overall conceptual framework throughout this review is that engagement of a key brain
stress system mediated by CRF represents more than a simple break with homeostasis in the
context of addiction, but rather the development of allostasis. Allostasis is defined as “stability
through change” and is different from homeostasis because feed-forward, rather than negative
feedback, mechanisms are hypothesized to be engaged (Sterling and Eyer, 1988). However,
precisely this ability to mobilize resources quickly and to use feed-forward mechanisms leads
to an allostatic state if the systems do not have sufficient time to reestablish homeostasis. An
allostatic state can be defined as a state of chronic deviation of the regulatory system from its
normal (homeostatic) operating level.

The brain stress systems respond rapidly to anticipated challenges to homeostasis but are slow
to habituate or do not readily shut off once engaged (Koob, 1999). Thus, the very physiological
mechanism that allows a rapid and sustained response to environmental challenge becomes the
engine of pathology if adequate time or resources are not available to shut off the response.
Drug addiction, similar to other chronic physiological disorders such as high blood pressure,
worsens over time, is subject to significant environmental influences (e.g., external stressors),
and leaves a residual neural trace that allows rapid “re-addiction” even months and years after
detoxification and abstinence. These characteristics of drug addiction have led to a
reconsideration of drug addiction as more than simply homeostatic dysregulation of emotional
function, but rather as an allostatic state with CRF activation as a key contributor. This state
of compulsive drug seeking represents a combination of chronic elevation of reward set point
fueled by numerous neurobiological changes, including decreased function of reward circuits,
loss of prefrontal cortex executive control, facilitation of striatal stimulus-response
associations, and recruitment of the CRF brain stress system (Koob and Le Moal, 2008).
Finally, it is becoming increasingly clear that genetic vulnerability may also play a role in the
dark side axis of compulsivity.

An association was found between haplotype tagging single-nucleotide polymorphisms of the
CRF1 gene with patterns of alcohol consumption in binge drinking in adolescents and alcohol-
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dependent adults (Treutlein et al., 2006). In a subsequent study, adolescents homozygous for
the C allele of the R1876831 single-nucleotide polymorphism drank more alcohol per occasion
and had higher lifetime rates of heavy drinking in relation to negative life events than subjects
carrying the T-allele (Blomeyer et al., 2008). In a follow-up study, homozygotes of the C allele
of rs1876831, as well as carriers of the A allele of rs242938, when exposed to stress, exhibited
significantly higher drinking activity than carriers of other alleles (Schmid et al., 2009). In the
genetically selected Marchigian-Sardinian preferring rat line, high ethanol preference
correlated with a genetic polymorphism of the crhr1 promoter and an increase in CRF1 density
in the amygdala, as well as increased sensitivity to stress and increased sensitivity to a CRF1
antagonist (Hansson et al., 2006). In non-genetically selected rats exposed to repeated cycles
of ethanol intoxication and dependence, a CRF1 antagonist blocked the increased ethanol intake
associated with protracted abstinence, an effect that coincided with upregulation of the CRF1
gene and downregulation of the CRF2 gene in the amygdala (Sommer et al., 2008). Altogether
these results suggest the exciting possibility that certain single-nucleotide polymorphisms in
the human population may predict vulnerability to certain subtypes of excessive drinking
syndromes associated with the dark side.
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Figure 1.
Diagram illustrating the multiple actions of CRF in mediating stress responses in the body.
CRF drives the hypothalamic-pituitary adrenal axis by acting to release adrenocorticotropic
hormone (ACTH) in the portal system of the pituitary. CRF activates the sympathetic system
by actions in the brainstem and mediates arousal and behavioral responses to stressors by
actions in the amygdala, other basal forebrain regions, and ventral midbrain such as the ventral
tegmental area. Ach, acetylcholine; NE, norepinephrine.
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Figure 2.
Schematic of mammalian corticotropin-releasing factor (CRF) receptors (red polygons), their
putative natural ligands (green ovals), and synthetic receptor antagonists (blue squares). Black
arrows indicate receptor affinity. Grouped ligands are broadly ordered from top (earliest) to
bottom in chronological order of reported discovery. oCRF, ovine CRF; r/hCRF, rat/human
CRF. [Taken with permission from Zorrilla et al., 2003.]
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Figure 3.
Brain circuits hypothesized to be recruited at different stages of the addiction cycle as addiction
moves from positive reinforcement to negative reinforcement. The top right circuit refers to
the hypothalamic-pituitary-adrenal (HPA) axis which (i) feeds back to regulate itself, (ii)
activates the brain reward neurocircuit, and (iii) facilitates the extrahypothalamic stress
neurocircuit. The bottom right circuit refers to the extrahypothalamic brain stress circuits in
feed-forward loops from the brain stem, some of which may be noradrenergic. The
extrahypothalamic brain stress system outputs via the hypothalamus, brain stem, and ventral
tegmental area to engage stress-like and fear-like behavioral responses. BNST, bed nucleus of
the stria terminalis; NE, norepinephrine. [Adapted from Koob and Le Moal, 2004.]
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Table 1

Behavioral effects of centrally administered CRF peptides

CRF Agonist Paradigm CRF Antagonist

• Suppresses exploration of unfamiliar
environment

Elevated plus-maze • Reverses stress-, drug-, and
genotypically induced
suppression of exploration

• Facilitates startle Acoustic startle • Blocks fear-potentiated startle

• Induces conditioned fear Conditioned Emotional Response • Blocks acquisition of
conditioned emotional response

• Enhances stress-induced freezing Cued electric shock • Attenuates stress-induced
freezing

• Decreases food intake Deprivation-induced eating • Reverses stress- and drug-
induced anorexia

• Produces aversion Taste/Place conditioning • Weakens drug-induced place
aversion

• Enhances sensitization Amphetamine stereotypy • Attenuates stress-induced
sensitization

• Enhances defensive burying Shock-probe • Reduces defensive burying
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