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Abstract
Risperidone is an atypical antipsychotic drug that is widely prescribed to young patients with different
psychotic disorders. The long-term effects of this antipsychotic agent on neuronal receptors in
developing brain remain unclear and require further investigation. In this study, we examined the
effects of long-term treatment of risperidone on two serotonin receptor subtypes in brain regions of
juvenile rat. Levels of 5-HT1A and 5-HT2A receptors in forebrain regions of juvenile rats were
quantified after 3 weeks of treatment with three different doses of risperidone (0.3, 1.0 and 3.0 mg/
kg). Findings were compared to previously reported changes in 5-HT receptors after risperidone
treatment (3.0 mg/kg) in adult rat brain. The three doses of risperidone selectively and dose-
dependently increased levels of 5-HT1A receptors in medial prefrontal and dorsolateral frontal
cortices of juvenile animals. The higher doses (1.0 and 3.0 mg/kg) of risperidone also increased 5-
HT1A receptor binding in hippocampal CA1 region of juvenile but not adult rats. In contrast, the three
doses of risperidone significantly reduced 5-HT2A labeling in medial prefrontal and dorsolateral
frontal cortices in juvenile as well as in adult animals in an equipotent fashion. 5-HT1A and 5-
HT2A receptors in other forebrain regions were not altered by repeated risperidone treatment. These
findings indicate that there are differential effects of risperidone on 5-HT1A and 5-HT2A receptors
in juvenile animals, and that the 5-HT system in developing animals is more sensitive than adults to
the long-term effects of risperidone.
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1. Introduction
Childhood-onset schizophrenia is an uncommon, but severe form of psychotic illness that
shares many features of the adult-onset disorder (Gordon et al., 1994; Nicolson and Rapoport,
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1999). It occurs about 50-times less frequently than adult-onset schizophrenia (Beitchman
1985) when diagnosed by the same criteria applied to adults (Green et al., 1992; Gordon et al.,
1994; Spencer and Campbell 1994). Children with schizophrenia can show severe impairments
in social and motor development as well as significant premorbid language-delays than those
with onset in adolescence (Russell et al., 1989; Alaghband-Rad et al., 1995). Genetic studies
confirmed elevated risk of schizophrenia-spectrum disorders in relatives of index cases of
childhood-onset schizophrenia compared to families of normal controls or adult-onset
schizophrenia patients (Jacobsen and Rapoport, 1998; Nicolson and Rapoport, 1999).
Cytogenetic abnormalities are increased in childhood-onset schizophrenia more than in adult-
onset schizophrenia, consistent with a neurodevelopmental risk model of the early-onset
disorder (Nicolson et al., 1999).

Risperidone (RSP) is widely used for treatment of early onset schizophrenia and other
psychotic disorders despite the limited investigation of its efficacy and safety in children and
adolescents (Findling and McNamara, 2004). Among the few studies that examined the clinical
effects of RSP in pediatric patients, one study found that RSP improved both positive and
negative psychotic symptoms in adolescents with schizophrenia (Armenteros et al., 1997),
while another study reported that RSP improved cognitive functions in adolescents diagnosed
with primary psychotic disorders (Grcevich et al., 1996). RSP was also effective in improving
hyperactivity, unstable mood, aggression and self-injurious behaviors in children with
pervasive developmental disorders (Perry et al., 1997; Barnard et al., 2002; McCracken et al.,
2002; Erickson et al., 2005), and in reducing the severity of motor and vocal tics in patients
with Tourette’s syndrome (Bruggeman et al., 2001).

Clinical studies have also indicated that pediatric patients are at a higher risk for adverse
neurological, hormonal and metabolic effects of RSP than in adult patients. Therefore, defining
the optimal therapeutic dose of RSP in young patients is essential to achieve maximal
therapeutic efficacy with minimal adverse side effects. In addition, the bioavailability,
absorption and metabolism of RSP in children have not been reported, and studies describing
the pharmacokinetics of RSP in children and adolescents compared with adults are rare (Grothe
et al., 2000; Frazier et al., 2003; McConville and Sorter, 2004). Well-designed clinical trials
of RSP and other newer atypical antipsychotic agents are needed to determine their optimal
doses, therapeutic effects, and long-term safety in pediatric or adolescent patients diagnosed
with idiopathic neuropsychiatric disorders.

RSP targets multi receptor systems with different affinities (Schotte et al., 1996). Similar to
other atypical antipsychotic agents, RSP displays a greater affinity for serotonin 5-HT2A than
dopamine (DA) D2 receptors. It also has substantial affinity for DA D3 and D4 receptors,
adrenergic α1 and α2 receptors and histamine H1 receptors (Schotte et al., 1996). A substantial
number of studies have reported on the pharmacological, neurochemical and behavioral
properties of RSP (reviewed in Arnt and Skarsfeldt, 1998; Waddington and Casey, 2000). In
addition, we quantified the long-term effects of RSP and other antipsychotic drugs on 5-HT
receptor subtypes in adult rat brain and reported differential effects on cortical 5-HT1A vs. 5-
HT2A receptors (Tarazi et al., 2002). However, the repeated effects of RSP on 5-HT receptors
in developing rat brain require investigation to further elucidate the developmental effects of
RSP and its influence on brain maturation. Accordingly, we quantified the binding levels of
two major 5-HT receptor subtypes (5-HT1A and 5-HT2A) that are known to mediate, at least
in part, the actions of modern antipsychotic agents (Baldessarini and Tarazi, 2005), in different
forebrain regions after long-term administration of multiple doses of RSP. We also compared
the findings to previously reported effects of RSP-induced changes in same 5-HT receptors in
adult rat brain (Tarazi et al., 2002).
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2. Experimental procedures
2.1. Materials and animal subjects

[±]-2-(N,N-di[2,3-3H]n-propylamino)-8-hydroxy-1,2,3,4-tetrahydronaphthalene ([3H]8-OH-
DPAT; 154 Ci/mmol) was from Amersham (Arlington Heights, IL); and [ethylene-3H]
ketanserin hydrochloride ([3H]ketanserin; 63.8 Ci/mmol) was from New England Nuclear-
Perkin-Elmer Corp. (Boston, MA). Kodak biomax MR films and D-19 photographic developer
and fixative were from Eastman-Kodak (Rochester, NY).

Janssen Pharmaceutica (Titusville, NJ) donated RSP. Methysergide maleate, pargyline
hydrochloride, prazosin hydrochloride, and serotonin hydrochloride were from Sigma-RBI
(Natick, MA). Cation hydrochlorides and tris-(hydroxymethyl)-aminomethane (Tris)
hydrochloride were from Sigma Chemicals (St. Louis, MO).

Subjects were male Sprague-Dawley rats (Charles River Labs., Wilmington, MA) initially
weighing 70–80 g at 22 d of age, weaned at 21 d, and maintained under artificial daylight (on,
07:00–19:00 h), in a temp.- and humidity-controlled environment with free access to standard
rat chow and tapwater in a USDA-inspected, veterinarian-supervised, small-animal research
facility of the Mailman Research Center of McLean Hospital. Animal procedures were
approved by the Institutional Animal Care and Use Committee (IACUC) of McLean Hospital,
in compliance with pertinent federal and local regulations.

2.2. In vitro serotonin receptor affinity
RSP was tested for affinity at the 5-HT1A and 5-HT2A receptors in juvenile (PD 30) and adult
(PD 90) animals using whole rat brain preparations. Sprague-Dawley rats were sacrificed by
decapitation. Brains were quickly removed and dissected on ice. Tissue was homogenized in
50 mM Tris-HCl buffer (pH 7.4) containing 150 mM NaCl, washed twice and resuspended in
the same buffer. For the 5-HT1A receptor assay, homogenate was incubated with 800 pM [3H]
8-OH-DPAT for 30 min at 30°C; nonspecific binding was defined with 10 μM 5-HT (Taylor
et al., 1988). For the 5-HT2A receptor assay, homogenate was incubated with 400 pM [3H]
ketanserin for 10–15 min at 30°C; nonspecific binding was defined with 10 μM 5-HT (Leysen
et al., 1982). Binding was terminated by immersion in an ice bath. Tissue homogenates were
rapidly separated from assay buffer mixtures on glass-fiber filter sheets (ISC BioExpress Co.,
Kaysville, UT) in a Brandel (Gaithersburg, MD) cell harvester, and washed with excess, ice-
cold 150 mM saline. Samples on fiber sheets were punched out as discs and placed in minivials
containing 4.5 ml Emulsifier-Safe (Packard Instruments, Meriden, CT), and samples were
counted for tritium at 50% efficiency in a Beckman-Coulter liquid scintillation
spectrophotometer (Fullerton CA). Assay included more than 10 different concentrations of
RSP, in triplicate. IC50 ± SE was obtained with the ALLFIT program to fit percent inhibition
of specific binding vs. drug concentration, and converted to Ki from the Cheng-Prusoff
relationship, Ki = IC50/(1 + F/Kd), all as described previously (Kula et al., 1994).

2.3. Drug treatment and tissue preparation
Four groups of rats (N=6/group), at postnatal day 22 [PD 22]), received single, morning (10:00
h) intraperitoneal (i.p.) injections at 2 ml/kg body wt daily for 21 d. The four groups were given
RSP in doses of 0.3, 1.0 or 3.0 mg/kg/d, or physiological saline (0.9% w/v) as a control. RSP
doses were guided by molecular and in vivo occupancy studies in adult animals (Kusumi et
al., 2000; Tarazi et al., 2002; Kapur et al., 2003). No significant changes in body weight were
observed after repeated treatment of juvenile animals with three doses of RSP compared to
saline-treated animals. After 3 weeks of treatment, juvenile rats were sacrificed 24 hrs after
the last injection of RSP or saline (PD 43) by decapitation; brains were removed, quick-frozen
in isopentane on dry ice, and stored at −80°C.

Choi et al. Page 3

Eur Neuropsychopharmacol. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Frozen sections (10 μm) were prepared in a cryostat (Microm HM-505E) at −20°C, mounted
on gelatin-coated, glass microscope slides, and stored at −80°C until use. Coronal brain sections
were taken through medial prefrontal (MPC) and dorsolateral-frontal (DFC) cerebral cortex,
nucleus accumbens (NAc), hippocampus (HIP), and medial and lateral caudate-putamen (CPu)
[Fig. 1]. These cortical, limbic and extrapyramidal forebrain regions of interest are implicated
in cognitive, emotional, and motor behaviors typically disturbed in young and adult patients
with psychotic disorders (Baldessarini and Tarazi, 2005).

2.4. Receptor autoradiography
Brain sections from all drug- and saline-treated rats (total 864 sections) were evaluated at the
same time in each receptor assay to minimize experimental variability. Sections were first
preincubated for 1 h at room temperature (RT) in assay buffer to minimize the effects of
endogenous 5-HT and potential interference with residual RSP. Preincubation step is effective
in minimizing the effects of endogenous neurotransmitters and potential interference of
residual drugs (Florijn et al., 1997).

2.4.1. 5-HT1A receptors—Sections were preincubated for 60 min at RT in 50 mM Tris-HCl
buffer (pH 7.6) containing ascorbic acid (0.1%, w/v), CaCl2 (4 mM), and the monoamine
oxidase (MAO) inhibitor pargyline-HCl (10 μM). Sections were then incubated for another 60
min at RT in buffer containing 2.0 nM [3H]8-OH-DPAT. Nonspecific binding was defined by
5-HT (1 μM). After incubation, slides were washed (2 × 5 min) in ice-cold buffer and dried
under a stream of air (Simpson et al., 1996; Tarazi et al., 2002). The inclusion of Ca2+ and the
exclusion Na+ and GTP selectively enhances the binding of [3H] 8-OH-DPAT to high-affinity
agonist binding state of 5HT1A receptors (Gilman, 1987).

2.4.2. 5-HT2A receptors—5-HT2A receptors were assayed by our previously reported
method (Florijn et al., 1997; Tarazi et al., 2002). [3H]ketanserin was used to label the total
5HT2A receptor population (Teitler et al., 1990). Brain sections were preincubated for 60 min
at RT in 50 mM Tris-HCl buffer (pH 7.7), and then incubated for another 60 min at RT in fresh
buffer containing 3.0 nM [3H]ketanserin and 1 μM prazosin (to block α1-adrenoceptors).
Nonspecific binding was defined by methysergide (1 μM). After incubation, slides were
washed (2 × 30 min) in ice-cold buffer, dipped in ice-cold water, and dried under a stream of
air.

2.5. Autoradiography and image analysis
Radiolabeled sections on microscope slides, along with calibrated [3H]standards (Amersham),
were exposed to Hyperfilm for 3–4 weeks at 4°C in light-tight cassettes. Films were developed
in Kodak developer and fixative. Brain regions of interest were outlined and their optical
density (OD) was quantified with a computerized densitometric image analyzer (MCID-M4,
Imaging Research; St. Catharines, Ontario). OD was converted to nCi/mg of tissue with
calibrated [3H]standards and, after subtracting nonspecific from total binding, specific binding
was expressed as fmol/mg tissue (Tarazi et al., 2002).

2.6. Data analysis
Serotonin receptor binding data were analyzed first for overall effects of drug vs. vehicle for
all receptor types and brain regions, using multiple regression modeling methods. Density
measures were logarithmically transformed to achieve more Gaussian-like distributions prior
to regression modeling. Model goodness-of-fit was checked using partial residual plot methods.
Since individual brain specimens provided receptor density data for several brain regions,
making for incomplete independence across observations, we used robust standard error
estimates to adjust for this clustering effect. The estimation method permits relaxation of the
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assumption of independence of all observations and requires only that the observations be
independent across specimens (Greene, 2000). Estimates of interaction effects were employed
for post-hoc tests of drug effects for specific receptors and brain regions, with adjustment of
p-values obtained from the regression analyses estimating these multiple comparisons by the
standard method of Sidák (Winer et al., 1991). Data are presented as means ± SEM.
Comparisons were considered significant at two-tailed p<0.05 based on N=6 rats/treatment
group.

3. Results
Experiments with rat brain homogenates indicated that RSP exhibits low affinity for 5-HT1A
receptors in juvenile and adult animals (Ki > 600 nM; Table 1). In contrast, RSP has very high
affinity for 5-HT2A receptors in both aged groups (Ki < 1.7 nM; Table 1). No significant
differences were observed in RSP’s affinity for either 5-HT1A or 5-HT2A receptors in
developing vs. mature animals.

Three weeks of daily injections of 0.3, 1.0 and 3.0 mg/kg of RSP to juvenile rats (from PD 22
to PD 42) significantly and dose-dependently increased binding of [3H]8-OH-DPAT to 5-
HT1A receptors in MPC (by 22%, 49% and 75%, respectively; F [df =3; 20] = 11.8, p<0.001)
and DFC (by 29%, 51% and 67%; F [df=3; 20] = 15.2, p<0.001) of juvenile rats (Table 2). In
addition, repeated treatment with 1.0 and 3.0 mg/kg RSP increased levels of 5HT1A receptors
in hippocampal CA1 region (by 38% and 57%; F [df=3; 20] = 16.1, p<0.001) of juvenile rats
(Table 2).

Long-term treatment with the three doses of RSP (0.3, 1.0 and 3.0 mg/kg) significantly
decreased binding of [3H]ketanserin to 5HT2A receptors in an equipotent fashion in the MPC
(by 41%, 38% and 36%, F [df=3; 20] = 17.4, p<0.001) and DFC (by 40%, 42% and 44%, F
[df=3; 20] = 22.0, p<0.001) of juvenile rats (Table 3). There were no changes in 5-HT2A-
selective labeling in other brain region analyzed after long-term administration of three doses
of RSP (Table 3).

4. Discussion
4.1. Effects of risperidone treatment on 5-HT1A receptors

Developmental studies reported that the highest densities of 5-HT1A receptors were found in
the cerebral cortex and hippocampus of the human fetal brain between the 16th and 22nd weeks
of gestation. These levels were even higher than that reported in cortex and hippocampus of
adult human brain (Bar-Peled O et al., 1991). Animal studies found that 5-HT1A receptor
expression increased steadily in cerebral cortex, hippocampus and septum from birth till
reaching adulthood levels around the third postnatal week (Daval et al., 1987). In our study,
we found that long-term administration of 0.3, 1.0 and 3.0 mg/kg of RSP for 21 days
significantly and dose-dependently increased 5-HT1A receptor binding in MPC (by 22%, 49%
and 75%, respectively), and DFC (by 29%, 51% and 67%) of juvenile rats (age 43 days; Table
2). The significant increases in cortical 5-HT1A receptors in juvenile animals after repeated
treatment with RSP parallel the observed increases in 5-HT1A receptors in adult animals after
long-term treatment with 3.0 mg/kg of RSP (Table 2; Tarazi et al., 2002).

RSP displayed low affinity for cortical 5-HT1A receptors in both juvenile and adult animals
(Ki = 750 nM and 620 nM, respectively, Table 1). This is in agreement with the reported low
5-HT1A receptor-potency of RSP (Ki = 490 nM; Bymaster et al., 1996). The relatively low 5-
HT1A receptor-affinity of RSP in juvenile and adult animals suggests that RSP-induced
increases in [3H]8-OH-DPAT binding to 5HT1A receptors in MPC and DFC reflect indirect
mechanisms resulting from more potent effects of RSP on 5-HT2A (Table 2) and D2 receptors
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(Moran-Gates et al., 2007). Microdialysis study in adult animals suggested that RSP-induced
increases in cortical DA release resulted from combined blockade of 5-HT2A and D2 receptors
through a 5-HT1A-sensitive stimulatory mechanism and not from direct 5-HT1A receptor
activation by RSP (Ichikawa et al., 2001). It is likely that such interactions also occur in juvenile
animals and contribute to RSP-induced increases in cortical 5-HT1A receptors

Autoradiographic studies conducted on adult rat brain tissue found that 5-HT1A receptors are
highly expressed in rat raphe nuclei, cerebral cortex, and hippocampus, with much lower levels
in CPu and NAc (Pazos and Palacios 1985; Pompeiano et al., 1992). In frontal cortex,
substantial levels of 5-HT1A receptors are found on neocortical glutamatergic pyramidal
neurons that are implicated in cognitive and executive functions (Francis et al., 1992). 5-
HT1A receptors have been suggested as neurotherapeutic targets that mediate the beneficial
effects of atypical antipsychotic drugs (Millan, 2000). Our findings further support a role for
5-HT1A receptors in mediating actions of RSP and other antipsychotic drugs not only in adults
but also in developing animals. It should be noted that postmortem studies reported significant
increases in 5-HT1A receptors in frontal cerebral cortex of adult patients diagnosed with
schizophrenia (Hashimoto et al., 1993; Burnet et al., 1996; Simpson et al., 1996; Sumiyoshi et
al., 1996). Nonetheless, these findings were not reported in young schizophrenia patients,
largely owing to the low prevalence of the early-onset disorder and lack of access to postmortem
brain tissue from developing patients.

RSP, at 1.0 and 3.0 mg/kg, also increased the abundance of 5-HT1A receptors in the
hippocampal CA1 region of juvenile animals (Table 2). This effect was unique to developing
animals as a similar dose of RSP (3.0 mg/kg) failed to alter levels of 5-HT1A receptors in
hippocampus of adult animals (Tarazi et al., 2002). This unique age-related receptor and
neurochemical differences in RSP’s actions suggests that RSP can selectively modulate signal
transduction cascades associated with hippocampal 5-HT1A receptors in juvenile and not adult
animals.

4.2. Effects of risperidone treatment on 5-HT2A receptors
RSP displayed potent affinity for cortical 5-HT2A receptors in both juvenile and adult animals
(Ki = 1.5 nM and 1.2 nM, respectively, Table 1). This is also in agreement with the reported
high 5-HT2A receptor-potency of RSP (Ki = 0.6 nM; Bymaster et al., 1996). Three weeks of
daily administration of 0.3, 1.0 and 3.0 mg/kg RSP significantly and equipotently decreased
binding of [3H]ketanserin to 5HT2A receptors in MPC (by 41%, 38% and 36%, respectively)
and DFC (by 40%, 42% and 44%, respectively), and DFC (by 29%, 51% and 67%) of juvenile
rats (age 43 days; Table 2). These findings are in agreement with the observed decreases in 5-
HT2A receptors in adult animals after continuous treatment with 3.0 mg/kg of RSP (Table
3;Tarazi et al., 2002). It is worthy to note that a low dose of RSP (0.3 mg/kg) reduced cortical
5-HT2A receptor levels in juvenile animals similar to that detected after treatment with a high
dose of RSP (3.0 mg/kg) in adult animals (Table 3,Tarazi et al., 2002). These findings further
support our hypothesis that developing animals are more sensitive than adults to the long-term
neuronal effects of RSP.

Anatomical studies have located 5-HT2A receptors on local GABAergic neurons as well as on
corticostriatal glutamatergic pyramidal neurons in frontal cortex (Francis et al., 1992; Wright
et al., 1995). Long-term treatment with dissimilar atypical, and not typical, antipsychotic agents
reduced 5-HT2A receptor labeling in rat frontal cerebral cortex (O’Dell et al., 1990; Florijn et
al., 1997; Kuoppamaki et al., 1995; Kusumi et al., 2000; Tarazi et al., 2002). We have also
found that repeated treatment with atypicals clozapine and olanzapine, and not typical agent
fluphenazine, decreased 5-HT2A receptor binding in frontal cortex of juvenile animals [PD 43;
Gardner et al., in preparation]. The high 5-HT2A receptor-affinity of RSP suggests that the
observed decrease in 5-HT2A binding may reflect adaptations to direct 5-HT2A receptor
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blockade in both developing and mature animals. Alternatively, and based on the close
functional interactions between 5-HT2A and glutamate NMDA receptors (Higgins et al.,
2003), it is possible that RSP-induced downregulation of NMDA receptors (Choi et al., 2007)
may alter 5-HT neurotransmission and lead to the observed reductions in cortical 5-HT2A
receptors. Downregulation of 5-HT2A receptor after long-term treatment with antipsychotic
drugs and other 5-HT2A antagonists is a paradoxical effect that contrasts the expected
upregulation of neurotransmitter receptors after chronic blockade. Antagonist-induced
internalization of 5-HT2A receptors is a possible explanation for this unique molecular
phenomenon (Gray and Roth, 2001).

These findings suggest that 5-HT2A receptors constitute one of the common targets that mediate
the actions of RSP in juvenile and adult animals. 5-HT2A receptor downregulation may help
to compensate for the loss of dopaminergic function in the striatum due to RSP-induced D2
receptor upregulation and accordingly may lower the incidence of extrapyramidal adverse
events and tardive dyskinesia associated with RSP and perhaps other atypical antipsychotics
compared with typical antipsychotics in both young and adult patients (Tarsy et al., 2002;
Baldessarini and Tarazi 2005). Selective changes in 5-HT2A receptors in cerebral cortex and
not in other brain regions examined (Table 3) reflects the differential regional responses of 5-
HT2A receptors in juvenile animals to repeated RSP treatment.

4.3. Conclusions
Long-term administration of multiple doses of RSP produced dose-dependent increases in 5-
HT1A receptors in MPC and DFC of juvenile animals. Such increases were also observed in
adult animals (Table 2). In contrast, repeated treatment with 1.0 and 3.0 mg/kg RSP increased
5-HT1A receptors in hippocampal CA1 region of juvenile and not adult animals (Table 2).
Differences in concentrations of 5-HT1A receptors or magnitude of associated signal
transduction cascades evelopmental may have contributed to age-related differences in
hippocampal 5-HT1A receptor responses to long-term RSP treatment. Downregulation of
cortical 5-HT2A receptors after repeated administration of RSP and other atypical antipsychotic
agents suggest that these receptors are common targets that mediate, at least in part, the actions
on RSP in developing and mature animals. However, the observed reduction in cortical 5-
HT2A receptors in juvenile animals after treatment with a low dose of RSP (0.3 mg/kg) was
similar to that observed after treatment with a high dose of RSP (3.0 mg/kg) in adult animals
(Table 3). Together, these findings suggest that the 5-HT system in developing animals is more
sensitive than adults to the long-term effects of RSP and perhaps other atypical antipsychotic
agents.
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Fig. 1.
Sites of autoradiographic analyses of rat brain regions sampled in 10 μm coronal sections from:
A (A 3.2–4.2), B (A 1.7–2.2), C (A 0.7–1.2), and D (A 0.2–0.7 mm anterior to bregma,
according to Paxinos & Watson (1982). Abbreviations: NAc, nucleus accumbens septi; CPu,
caudate-putamen (L, lateral and M, medial); DFC, dorsolateral-frontal cerebral cortex; EC,
entorhinal cortex; CA1 and CA3, hippocampal regions; MPC, medial prefrontal cortex.
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Table 1

Affinity (Ki, nM ± S.E.) of risperidone at 5-HT1A and 5-HT2A receptors in juvenile vs. adult whole rat brain
preparations

Rat brain tissue 5-HT1A 5-HT2A

Juvenile animals (PD 30) 750 ± 44 1.5 ± 0.4

Adult animals (PD 90) 620 ± 58 1.2 ± 0.2
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Table 2

5-HT1A receptor binding in juvenile rats (PD 42) after three weeks of daily administration of risperidone

Adult Rats Juvenile Rats

Brain region Controls (3.0 mg/kg) RSP (0.3 mg/kg) RSP (1.0 mg/kg) RSP (3.0 mg/kg)

Cerebral cortex

 Medial-prefrontal 34.5 ± 1.0 (100) (152)* 42.0 ± 2.3 (122)* 51.3 ± 3.3 (149)* 60.2 ± 2.0 (175)*

 Dorsolateral 21.5 ± 1.5 (100) (173)* 27.8 ± 1.5 (129)* 32.4 ± 2.1 (151)* 36.0 ± 2.3 (167)*

 Nucleus accumbens 4.8 ± 0.3 (100) (119) 4.7 ± 0.3 (98) 5.0 ± 0.5 (104) 5.1 ± 0.4 (106)

Caudate-putamen

 Medial 4.9 ± 0.2 (100) (101) 5.0 ± 0.2 (102) 5.1 ± 0.3 (105) 5.2 ± 0.2 (106)

 Lateral 5.4 ± 0.3 (100) (96) 4.9 ± 0.1 (91) 5.3 ± 0.3 (98) 4.8 ± 0.2 (89)

Hippocampus

 CA1- Region 67.7 ± 5.7 (100) (98) 74.3 ± 6.7 (110) 93.2 ± 7.8 (138)* 106.1 ± 9.0 (157)*

 CA3- Region 32.4 ± 1.2 (100) (105) 32.0 ± 1.5 (99) 36.1 ± 2.0 (111) 35.2 ± 1.3 (109)

Entorhinal cortex 35.7 ± 2.5 (100) (99) 34.2 ± 3.0 (96) 34.2 ± 3.6 (96) 35.1 ± 2.6 (98)

Data are mean ± SEM values for binding (fmol/mg tissue, [% of control]), determined by quantitative autoradiography following daily i.p. injection
of vehicle or risperidone (RSP) for 3 weeks, with significant differences from controls indicated in bold ([*] p<0.05, N=6 rats/group). Data (% of
control) for RSP (3 mg/kg/d) in adult animals were reported previously (Tarazi et al., 2002) and are shown for comparison.
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Table 3

5-HT2A receptor binding in juvenile rats (PD 42) after three weeks of daily administration of risperidone

ADULT RATS JUVENILE RATS

Brain region Controls (3.0 mg/kg) RSP (0.3 mg/kg) RSP (1.0 mg/kg) RSP (3.0 mg/kg)

Cerebral cortex

 Medial-prefrontal 80.9 ± 5.3 (100) (56)* 48.1 ± 2.5 (59)* 50.0 ± 2.7 (62)* 51.8 ± 2.4 (64)*

 Dorsolateral 74.8 ± 4.7 (100) (69)* 45.0 ± 2.4 (60)* 43.4 ± 3.8 (58)* 42.2 ± 2.3 (56)*

 Nucleus accumbens 20.0 ± 3.1 (100) (98) 17.3 ± 1.4 (87) 17.9 ± 1.9 (90) 18.8 ± 2.9 (94)

Caudate-putamen

 Medial 20.9 ± 3.5 (100) (87) 21.5 ± 3.2 (103) 22.4 ± 2.1 (107) 22.2 ± 3.3 (106)

 Lateral 23.3 ± 10.6 (100) (92) 24.6 ± 1.7 (106) 22.2 ± 1.4 (95) 22.8 ± 1.0 (98)

Hippocampus

 CA1- Region 44.4 ± 3.1 (100) (96) 45.4 ± 3.0 (102) 46.2 ± 3.1 (104) 45.7 ± 2.8 (103)

 CA3- Region 38.2 ± 1.7 (100) (96) 36.0 ± 2.3 (94) 36.2 ± 3.7 (95) 34.7 ± 3.9 (91)

Entorhinal cortex 34.0 ± 3.9 (100) (87) 33.9 ± 2.0 (100) 31.4 ± 1.6 (92) 32.9 ± 1.6 (97)

Data are mean ± SEM values for binding (fmol/mg tissue, [% of control]), determined by quantitative autoradiography following daily i.p. injection
of vehicle or risperidone (RSP) for 3 weeks, with significant differences from controls indicated in bold ([*] p<0.05, N=6 rats/group). Data (% of
control) for RSP (3 mg/kg/d) in adult animals were reported previously (Tarazi et al., 2002) and are shown for comparison.
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