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Introduction
The process of myelination is an exquisite and dynamic exam-
ple of cell–cell interaction, which consists of the concentric 
wrapping of multiple layers of membrane around an axon. This 
process requires a series of highly orchestrated events that bal-
ance both intrinsic and extrinsic mechanisms to coordinate the 
spatiotemporal regulation of myelination. Myelin is a product 
of vertebrate evolution that maximizes the efficiency and veloc-
ity of action potentials transmitted through nerve cells. Demye-
lination as a result of disease or injury severely disrupts the 
efficient transmission of the action potential, ultimately result-
ing in a loss of function. To effectively treat these devastating 
conditions, it is essential to expand our knowledge concerning 
the generation and maturation of the myelin-forming cells and 
the processes that lead to myelination.

In the CNS, oligodendrocytes are responsible for the for-
mation of myelin that surrounds axons. Although most oligo-
dendrocyte precursor cells (OPCs) differentiate into myelinating 

oligodendrocytes, there remains a sizeable population of OPCs 
that remain undifferentiated after the completion of myelina-
tion. In recent years, adult OPCs have generated much interest 
as a reservoir of cells with the potential to self-renew, differenti-
ate, and remyelinate the CNS (Gensert and Goldman, 1997; 
Keirstead et al., 1998; Levison et al., 1999; Nishiyama et al., 
1999; Horner et al., 2000; Levine et al., 2001; Dawson et al., 
2003; Windrem et al., 2004; Rivers et al., 2008). Although adult 
OPCs are also thought to serve other functions within the ner-
vous system (Paukert and Bergles, 2006; Nishiyama et al., 
2009), their potential for recruitment into demyelinated lesions 
points to an ideal therapeutic role, as adult OPCs represent an 
endogenous source of progenitor cells, making up 2–9% of the 
CNS cell population (Dawson et al., 2003). These cells seem to 
be distributed throughout the CNS, remaining in the undifferen-
tiated state even after other OPCs differentiate and myelinate 
axons. Current evidence suggests that these adult OPCs express 
the same markers (PDGFR- and NG2) as their developmental 
counterparts and appear morphologically similar (Nishiyama  
et al., 1996, 1999; Dawson et al., 2000, 2003; Wilson et al., 
2006; Franklin and Ffrench-Constant, 2008). It remains unclear 
as to why these particular progenitors differ from their mye
linating counterparts during development and remain as un-
committed cells. Understanding the developmental origins of 
adult OPCs would begin to address whether these cells have 
the intrinsic capabilities to differentiate and myelinate as op-
posed to having a different cellular identity. Are adult OPCs 
derived from the same population as OPCs during develop-
ment, or are they a separate population of cells? The answer 
appears complex, as during development, OPCs are hetero-
geneous in their spatiotemporal origin (Fig. 1 A). OPCs arise 
from multiple regions of the ventricular zone in a sequential 
manner. The first wave of OPCs that populate the forebrain 
originates from the medial ganglionic eminence and anterior 
entopeduncular area. These OPCs are followed by a second 
wave from the lateral ganglionic eminence and caudal gangli-
onic eminence. Finally, a third collection of OPCs originates 
within the postnatal cortex. These respective populations are 
identified not only by their spatiotemporal differences but also 
by their differential transcription factor expression (Kessaris 
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is limited to certain regions (forming what are known as 
shadow plaques, where axons are thinly remyelinated) and ul-
timately declining over time (Franklin, 2002). Which cells are 
responsible for these transient recoveries? In the adult brain, 
oligodendrocytes are terminally differentiated and generally 
do not participate in remyelination (Keirstead and Blakemore, 
1997). Instead, OPCs are found in demyelinated regions, and 
are thus able to mobilize to damaged areas (Keirstead et al., 
1998; Scolding et al., 1998; Wolswijk, 1998; Chang et al., 
2000). On these accounts, remyelination by adult OPCs does 
not appear to be hampered by issues of access or recruitment. 
Additionally, although adult OPCs divide more slowly than 
their developmental counterparts (Shi et al., 1998; Tang et al., 
2000), augmenting proliferation through increasing mitogens 
such as PDGF does not enhance remyelination (Woodruff  
et al., 2004). This further underscores OPC differentiation 
as the barrier impeding myelin repair rather than the recruit-
ment and/or migration of OPCs. The fact that most of these 
adult OPCs remain as precursors throughout development and 
after injury and/or disease begs several intriguing questions 
that are essential to understanding cellular differentiation and 
the mechanisms that maintain a precursor population in the 
adult nervous system. Does remyelination depend on success-
ful adult OPC differentiation? Is it possible that the inhibitory 
mechanisms for maintaining a precursor pool are similar to 
that which prevents remyelination in the adult nervous sys-
tem? In this review, we will attempt to address these questions 
by integrating cell-autonomous differentiation events with 
microenvironmental cues and outline how these developmental 
processes may play a role after demyelination. Although it is 
admittedly difficult to resolve this complex issue in a single re-
view and will require further developmental and demyelination 
studies, reviewing current findings should aid in formulating 
the most effective and efficient means to determine the relative 
contribution between intrinsic and extrinsic forces. Promoting 
remyelination in the CNS requires the establishment of a con-
ducive setting for differentiation and myelination. This greatly 
depends on understanding the fine balance of developmental 
signals as well as cues resulting from injury or disease.

Intrinsic versus extrinsic regulation  
of differentiation
Early efforts addressing the mechanisms involved in OPC dif-
ferentiation attempted to identify and dissect the individual 
components regulating this process by reducing the complexity 
of the environment. In vitro clonal density studies using puri-
fied OPCs provided an intriguing case for a purely cell-autonomous 
mechanism. In the absence of environmental cues, the pres-
ence of an intrinsic OPC differentiation program was ob-
served where a timer mechanism was shown to regulate OPC 
division and maturation (Raff, 2006). In the presence of PDGF, 
a mitogen for OPCs, proliferation was induced with the ab-
sence of differentiation. In the presence of both PDGF and thy-
roid hormone, OPCs would divide six to eight times before 
differentiating, and progeny of a single clone grown separately 
would differentiate after approximately the same number of 
divisions as each other (Temple and Raff, 1986; Durand and 

et al., 2006). Although these studies suggest the presence of 
heterogeneous OPC populations, the majority of the OPCs dif-
ferentiate into oligodendrocytes and myelinate axons regard-
less of their origin. Despite originating from multiple regions 
at different times throughout development, OPCs are found 
evenly distributed throughout the adult brain in both gray and 
white matter alike (Fig. 1, B–D).

Additionally, compensatory mechanisms are observed 
when specific OPC populations are eliminated, whereby OPCs 
from different regions replace eradicated cells, resulting in nor-
mal oligodendrocyte and myelin phenotype (Kessaris et al., 
2006; Kirby et al., 2006). Given the interchangeable nature of 
these OPCs despite spatiotemporal differences and the lack of 
evidence for adult OPCs originating from a separate lineage, it 
is reasonable to assume that insight into the mechanisms re-
sponsible for differentiation during development may provide 
valuable information concerning the presence and potential util-
ity of the adult OPC.

Another fundamental question that needs to be consid-
ered is what normally happens during injury and demyelin-
ating disease? Genetic fate-mapping studies show that adult 
OPCs have the capacity to myelinate continuously through-
out normal adult life (Dimou et al., 2008; Rivers et al., 2008). 
However, in diseases such as multiple sclerosis, remyelination 

Figure 1.  Developmental origins of OPCs and the final distribution of 
adult OPCs in the telencephalon. (A) Schematic illustration outlining the 
origin of OPCs in the telencephalon during development. As indicated by 
the arrows, OPCs arise first from the medial ganglionic eminence (MGE) at 
embryonic day 12.5 followed by the lateral ganglionic eminence (LGE) sev-
eral days later. Cortically derived OPCs appear soon after birth (adapted 
from Richardson et al., 2006). (B) Despite their spatial and temporal dif-
ferences in origin, OPCs are evenly distributed throughout the adult brain 
and are found in regions such as the cortex (CTX), corpus callosum (CC), 
caudate putamen (CP), and anterior commissure (ACO). PDGFR- (red) in-
dicates the presence of OPCs. Myelin basic protein (MBP; green) identifies 
the heavily myelinated white matter tracts. Bar, 500 µm. (C and D) Magni-
fied view of the adult brain, showing the presence of PDGFR-–expressing 
adult OPCs dispersed throughout both gray matter, as represented by the 
cortex, and white matter tracts such as the corpus callosum. Myelin basic 
protein illustrates the myelinated fibers. Bar, 100 µm.
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generation of the oligodendroglial lineage. This investment has 
provided valuable insight, especially with the identification of 
the Olig genes (Lu et al., 2000; Tekki-Kessaris et al., 2001; Qi 
et al., 2002; Takebayashi et al., 2002). Olig1/2 are basic helix-
loop-helix transcription factors that play multiple roles in deter-
mining the oligodendroglial lineage and are expressed in mature 
oligodendrocytes as well as in both developmental and adult 
OPCs (Zhou et al., 2000; Ligon et al., 2006). These genes are 
responsive to Sonic hedgehog, a ventrally expressed morpho-
gen, which is both sufficient and necessary to induce Olig gene 
expression for the generation of OPCs (Lu et al., 2000). Olig1/2 
knockout mice fail to develop cells of the oligodendroglial lin-
eage (Lu et al., 2002; Zhou and Anderson, 2002), and this is at-
tributed specifically to Olig2 function, as the Olig2-null mouse 
displays a similar impairment in the generation of oligoden-
droglia and deficits in motor neuron specification (Lu et al., 
2002; Takebayashi et al., 2002). Olig1 functions later in devel-
opment, as the null mouse displays a specific defect in the matu-
ration of oligodendrocytes while maintaining a seemingly 
normal pool of OPCs throughout development (Xin et al., 2005). 
Ectopic expression of Olig2 results in an oligodendroglial fate 
rather than a neural fate with the induction of Sox10, a high 
mobility group box transcription factor expressed by oligoden-
drocytes (Lu et al., 2000, 2001; Zhou et al., 2000; Stolt et al., 
2002; Liu et al., 2007). Interestingly, the coexpression of Olig2 
with Nkx2.2 induces oligodendrocyte differentiation (Sun et al., 
2001; Zhou et al., 2001; Fu et al., 2002). Olig1 participates in 
differentiation by up-regulating several myelin genes, including 
Mbp, Plp, and Mag as well as suppressing Gfap, an astrocytic 
gene (Xin et al., 2005; Li et al., 2007). The localization of 
Olig1/2 is observed in the nucleus of OPCs during develop-
ment; however, although Olig2 remains in the nucleus of OPCs 
in the adult mouse, Olig1 is found to be cytoplasmic (Arnett et al., 
2004). Could the repression of Olig1 function in a population of 
OPCs give rise to the adult precursor cell, and what mechanisms 
selectively regulate this repression? In a murine demyelination 
model and within tissue from multiple sclerosis patients, Olig1 
is translocated into the nucleus of OPCs as in development and 
may be associated with oligodendrocyte differentiation in the 
repair process, and as anticipated, remyelination is impaired in 
the Olig1 knockout mouse (Arnett et al., 2004; Balabanov and 
Popko, 2005).

Although these studies illustrate the importance of Olig 
genes in OPC fate and differentiation, the extracellular path-
ways coupled to differentiation remains to be elucidated. By 
screening for molecules dynamically regulated in the Olig1 
knockout mouse, GPR17, a Gi protein–coupled orphan recep-
tor, was identified as a negative regulator of oligodendrocyte 
differentiation (Chen et al., 2009). GPR17 is related to P2Y 
(purinergic) and cysteinyl–leukotriene receptors and can be 
activated by nucleotides and inflammatory mediators (Ciana  
et al., 2006). GPR17 is expressed by OPCs and down-regulated 
in mature myelinating oligodendrocytes. Further studies demon-
strate that GPR17 is up-regulated in mouse oligodendrocytes 
after demyelination, and analysis of human multiple sclerosis 
plaque tissue by quantitative PCR reveals an increase in GPR17 
expression. To further investigate the role of this potential 

Raff, 2000). This surprising finding suggested the presence of 
an intrinsic mechanism responsible for temporally controlling 
differentiation. Although OPCs were initially thought to moni-
tor the number of divisions (Temple and Raff, 1986), it was 
later confirmed that the cells could somehow monitor time 
and not necessarily the number of divisions (Gao et al., 1997). 
Although this mechanism still remains unclear, thyroid hormone 
acts through thyroid hormone receptor-1 to influence the acti-
vation of the timer, and various cyclin-dependent kinases, in-
hibitors, and other cell cycle regulatory proteins have been 
identified to influence both proliferation and differentiation 
(Durand et al., 1998; Tokumoto et al., 2001, 2002; Dugas et al., 
2007). These findings suggest that differentiation is not just a 
default mechanism of inhibited proliferation but is dependent 
on other intrinsic mechanisms within the cell. Interestingly, 
OPCs grown in the presence of PDGF over an extended period 
of time in vitro appear to take on characteristics of adult OPCs, 
as both express similar markers and require a longer duration 
of time before differentiating (Tang et al., 2000). As an exten-
sion from these studies, thyroid hormone treatment to promote 
differentiation after demyelinating insult has shown some 
promise (Fernandez et al., 2004; Harsan et al., 2008).

Contrary to these findings, when OPCs are in direct con-
tact with neurons, evidence for extrinsic regulation of differen-
tiation prevails. These findings suggest the possibility that 
environmental cues may override any timer mechanism via 
OPC/neuronal signaling within the dynamic CNS milieu. Over-
expression of PDGF by neurons in vivo leads to hyperprolif-
eration of OPCs; however, the generation and maturation of 
oligodendrocytes are not inhibited or delayed, resulting in a 
normal myelination phenotype (Calver et al., 1998). Perhaps to 
perfectly myelinate the axons of the nervous system, a purely 
intrinsic mechanism may not be sufficient, as OPCs need to 
adapt to the ever-changing environment of the CNS, and contri-
butions from the microenvironment consisting of other cell 
types may modulate the differentiation process. Studies cocultur-
ing purified OPCs with dorsal root ganglion neurons provide 
additional evidence for extrinsic regulation whereby the density 
of OPCs influences differentiation. Increasing the number of 
OPCs seeded onto neurons accelerates the process of differenti-
ation, and this effect is induced by spatial constraints exerted by 
neighboring OPCs rather than a secreted or contact-mediated 
molecular cue (Rosenberg et al., 2008). Addition of exogenous 
PDGF to the cocultures enhances differentiation rather than 
maintaining OPCs in a proliferative state, as would be expected 
from the clonal density studies (Rosenberg et al., 2008). These 
findings imply the importance of the interaction between OPCs 
and their surrounding environment and that differentiation is 
likely dependent on extrinsic cues that activate a transcriptional 
program for differentiation. Understanding the balance of sig-
nals for these processes will provide valuable insight into the 
spatiotemporal control of differentiation during development 
and remyelination.

Transcriptional regulation
In recent years, a great deal of research has been devoted to 
understanding the transcriptional program necessary for the 
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expression of -catenin impairs OPC differentiation and re-
myelination (Fancy et al., 2009; Ye et al., 2009). Knocking out 
adenomatous polyposis coli, a -catenin antagonist, results in 
a similar phenotype (Fancy et al., 2009). Furthermore, a de-
myelination microarray screen identifies the increased expres-
sion of Tcf4/Tcf712 in the normal developing human CNS and 
tissue from multiple sclerosis lesions (Fancy et al., 2009). 
Tcf4/Tcf712 was originally found to be repressed by tran-
scription factor Ying Yang 1, which also suppresses ID4, an-
other transcriptional inhibitor of OPC differentiation (He et al., 
2007). Collectively, these findings highly suggest that mecha-
nisms which control differentiation during development likely 
influence differentiation after injury and/or disease. More im-
portantly, the Wnt pathways provide a means of extracellular 
input, which further broadens our appreciation for the com-
plexity of coordinating extrinsic and intrinsic mechanisms 
(Rosenberg and Chan, 2009).

Axonal inhibition of differentiation
Throughout development, OPCs are in constant contact with 
axons, suggesting that glial–neuronal communication is essen-
tial for regulating OPC development, including the timing of 
differentiation and myelination. During development, the axon 
expresses numerous inhibitory cues preventing OPC differenti-
ation to ensure the proper spatial arrangement of oligodendro-
cytes and temporal control of myelination along axon tracts. 
However, many of these same extrinsic signals expressed along 
axons are reexpressed during demyelinating conditions, which 
may impair efforts to promote remyelination. Identifying these 
molecular cues and understanding how they influence differen-
tiation of OPCs may provide new insight into providing a per-
missive environment for myelin repair.

The neural cell adhesion molecule (NCAM) is expressed 
ubiquitously by nearly all neurons, and axons express the poly
sialylated (PSA) form during development before the onset of 
myelination (Jakovcevski et al., 2007). This modification re-
duces homophilic interactions between NCAMs as a result of 
the negative charge and/or hydration volume of the PSA (Kleene 
and Schachner, 2004). In addition, PSA-NCAM can modulate 
heterophilic interactions with other glycans, such as heparan 
sulfate proteoglycans, which are also expressed by OPCs 
(Winkler et al., 2002). Correlative studies report a decrease in 
expression of PSA-NCAM before the onset of oligodendrocyte 
myelination, and prematurely eliminating PSA-NCAM from 
neurons in vitro enhances differentiation and myelination 
(Charles et al., 2000), suggesting an inhibitory role when pres-
ent (Jakovcevski et al., 2007). As adhesion is a process that is 
required for numerous cellular processes, including migration 
and other forms of cell–cell interaction, adult OPCs may re-
quire a permissive substrate lacking PSA-NCAM to differenti-
ate and remyelinate. Indeed, PSA-NCAM is reexpressed in 
multiple sclerosis lesions but not in regions where remyelin-
ation occurs (Charles et al., 2002).

Another axonal inhibitor of OPC differentiation is the 
Notch receptor Jagged1 (Wang et al., 1998). Notch is an evo-
lutionarily conserved transmembrane protein, whereby activa-
tion through its putative receptors Jagged and Delta results in 

receptor, mice with sustained GPR17 overexpression in oligo-
dendrocytes were generated under the control of a CNP1 
promoter and exhibit severe myelin deficits. Overexpressing 
GPR17 in vitro results in the nuclear localization of ID2/4, 
which complex with Olig1/2 and inhibit OPC differentiation 
(Samanta and Kessler, 2004; Chen et al., 2009). Conversely, 
knocking out GPR17 results in precocious myelination and ac-
celerated OPC differentiation (Chen et al., 2009). GPR17 is a 
novel putative extracellular receptor that inhibits OPC differ-
entiation, and its expression in adult OPCs after demyelination 
deems it a valuable potential therapeutic candidate. Identifying 
the exogenous ligand for this receptor would provide a valu-
able link between the environmental and transcriptional con-
trol of oligodendrocyte differentiation.

Epigenetic regulation
To complicate things even further, although the process of 
OPC differentiation undoubtedly requires transcriptional changes, 
epigenetic mechanisms also influence OPC differentiation 
and can do so in a spatiotemporal-specific manner (Li et al., 
2009). Additionally, several of these studies implicate con-
served signaling pathways for adult OPCs after demyelinat-
ing insult. The transition from a precursor cell to a mature, 
myelinating oligodendrocyte requires a coordinated effort and 
can be achieved by modulating transcription via DNA modifi-
cation. These epigenetic states can be heritable and are sus-
ceptible to environmental influences, which may allow for the 
dynamic interaction between intrinsic and extrinsic factors to 
occur. Epigenetic changes as a result of senescence may be 
one such example. Multiple sclerosis is a progressive disease, 
and the severity worsens with age (Compston and Coles, 
2008). In correlation, recent findings demonstrate a decline in 
the efficiency of myelin repair in a cuprizone-induced model 
of demyelination in an age-dependent manner (Shen et al., 
2008). This age-related decrease is attributed to epigenetic 
regulation of adult OPCs dependent on the recruitment of his-
tone deacetylases (HDACs; Popko, 2008; Shen et al., 2008). 
Administering HDAC inhibitors to young and older mice re-
sult in different remyelination efficiencies (Shen et al., 2008). 
HDACs normally remove acetyl groups from histones to allow 
for the compaction of chromatin, which subsequently silences 
transcription. How does inhibiting transcription lead to the 
differentiation of OPCs? Recent evidence suggests that this is 
the result of the repression of pathways that normally prevent 
differentiation from occurring (Popko, 2008; Shen et al., 2008; 
Li et al., 2009). Two independent studies demonstrate that 
Wnt signaling is responsible for repressing OPC differentia-
tion (Fancy et al., 2009; Li and Richardson, 2009; Rosenberg 
and Chan, 2009; Ye et al., 2009). The Wnt signaling pathway 
usually prevents the degradation of -catenin, and knocking 
out HDAC1/2 in oligodendroglial cells results in the stabiliza-
tion of -catenin in the nucleus, which in turn represses Olig2 
(Ye et al., 2009). These findings also demonstrate the direct 
association of HDAC1/2 with Tcf4/Tcf712 and -catenin. 
Signaling through the Wnt pathway can interfere with this in-
teraction and inhibit OPC differentiation (Li and Richardson, 
2009; Ye et al., 2009). Both studies report that the constitutive 
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express LINGO-1, and disruption of LINGO-1 functions on 
oligodendrocytes or neurons, respectively, is sufficient to pro-
mote differentiation and myelination (Mi et al., 2005; Lee  
et al., 2007). Additionally, LINGO-1 activates the Rho family 
GTPase RhoA and decreases Fyn expression and activation 
(Mi et al., 2005). These intracellular signaling molecules have 
both been implicated in oligodendrocyte differentiation (Liang 
et al., 2004; Goto et al., 2008; Rajasekharan et al., 2009). Fur-
ther studies concerning the developmental regulation of the 
axonal expression of LINGO-1 should illuminate this paracrine 
relationship between axons and OPCs, which may also be rele-
vant after injury and disease.

Connective tissue growth factor (CTGF) is another para-
crine signal expressed and secreted by neurons to inhibit OPC 
differentiation. Ectopic expression of CTGF in vivo through 
adenovirus transduction reduces the number of oligodendro-
cytes formed during development (Stritt et al., 2009). CTGF is 
thought to sequester and thereby antagonize the function of 
insulin-like growth factor 1, which has been implicated in stimu-
lating OPC differentiation (McMorris et al., 1986; Hsieh et al., 
2004). Suppression of CTGF relies on the transcription factor 
serum response factor (SRF), permitting differentiation during 
development (Stritt et al., 2009). SRF is a transcription factor 
with multiple binding partners such as TCFs and myocardin-
related transcription factors (MRTFs) and can be activated by 
growth factors, such as NGF and brain-derived neurotrophic 
factor, or through neuronal activity (Wickramasinghe et al., 
2008; Knöll and Nordheim, 2009). Deletion of SRF specifi-
cally in neurons results in an increase in the number of OPCs 
and inhibits the maturation and differentiation processes (Knöll 
and Nordheim, 2009; Stritt et al., 2009). These results clearly 
illustrate the shared importance and reciprocal nature of under-
standing transcriptional, epigenetic, and the extrinsic signals 
that modulate oligodendrocyte maturation. By fully consider-
ing the mechanisms required for the activation of these pro-
cesses, we hope to gain valuable insight into establishing an 
environment conducive for OPC differentiation during devel-
opment and remyelination.

Tapping into the glial reservoir
One of the most fundamental questions in biology is whether it 
is possible to resolve pathological states by recapitulating de-
velopment. The OPC is a prototypical cell for answering this 
question, as an abundant number of endogenous undifferenti-
ated precursors exist in the adult nervous system. Additionally, 
the simplicity in the binary decision to become a terminally dif-
ferentiated oligodendrocyte or remain a precursor cell reduces 
the complexity when addressing cell fate decisions. Making the 
commitment to differentiate during development is a complex 
process, as it requires the coordination of transcriptional ma-
chinery in conjunction with epigenetic regulation within the 
cell. Ongoing research has also provided evidence for the 
impact of extrinsic factors on OPC differentiation. Curiously, 
many of these environmental influences appear to be inhibitory 
in nature, with the axon delaying OPC differentiation rather 
than promoting it. Fig. 2 summarizes the molecular components 
discussed in this review, with all of them playing a role during 

the cleavage of its intracellular domain. Upon cleavage, Notch 
is translocated to the nucleus and modulates transcription to 
influence cell fate and differentiation (Kopan and Ilagan, 
2009). Notch1 is thought to act through Hes5, a basic helix-
loop-helix transcription factor, which in turn suppresses tran-
scription of myelin genes (Wang et al., 1998; Liu et al., 2006). 
Knocking out Notch1 in vivo results in premature differentia-
tion and ectopic oligodendrocyte formation in the gray matter 
(Genoud et al., 2002). Inhibiting -secretase (the protease in-
volved in Notch1 cleavage) in vitro also enhances differentia-
tion (Watkins et al., 2008). Targeted deletion of Notch1 in 
Olig1-expressing OPCs results in precocious differentiation, 
and consistent with its inhibitory effect on OPC differentiation 
during development, remyelination is enhanced in this mouse 
model (Zhang et al., 2009). As adult OPCs still express Notch1 
(Wang et al., 1998), further investigation is required to deter-
mine the possible role for Notch signaling in maintaining adult 
OPCs and the lack of differentiation and myelination after de-
myelinating insult.

A potent example of an axonal inhibitor of oligodendro-
cyte differentiation that has been examined in various demye-
linating animal models is the leucine-rich repeat and Ig 
domain–containing, Nogo receptor–interacting protein (LINGO-1;  
Mi et al., 2005, 2007, 2008, 2009; Lee et al., 2007). Function 
blocking LINGO-1 using an anti–LINGO-1 antibody has 
proved to enhance functional recovery and remyelination after 
experimental autoimmune encephalomyelitis, lysolecithin 
treatment, and after cuprizone-induced demyelination (Mi  
et al., 2007, 2009). Although these results illustrate great thera-
peutic potential, the mechanisms that control this inhibition re-
main unclear. It seems that both oligodendrocytes and neurons 

Figure 2.  Intrinsic and extrinsic mechanisms prevent the differentiation 
of OPCs to myelinating oligodendrocytes. These mechanisms act during 
development and in some cases after injury and disease. Solid arrows in-
dicate contact-mediated interactions such as Jagged1 expressed on axons 
acting through Notch1 on OPCs, leading to the suppression of myelin 
genes via Hes5. Dashed arrows indicate secreted molecules such as CTGF 
from the neuron and Wnt from a yet-unidentified source. Although its li-
gand has not been determined, GPR17 expressed by OPCs is likely sensi-
tive to environmental signals.
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Figure 3.  A proposed model for the maintenance of adult OPCs. OPCs 
(red) reside in a reservoir and are upstream of the dam. They are inhibited 
from differentiating into oligodendrocytes (green) by several cell-autonomous 
(intrinsic) and microenvironmental (extrinsic) inhibitory cues. Presumably 
unidentified inductive cues may act to overcome the inhibitory barrier and 
allow differentiation to occur.
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