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Abstract
In a well-regulated control system, excitatory and inhibitory components work closely together with
minimum lag; in response to inputs of finite duration, outputs should show rapid rise and, following
the input's termination, immediate return to baseline. The efficiency of this response can be quantified
using the power spectrum density's scaling parameter β, a measure of self-similarity, applied to the
first-derivative of the raw signal. In this study, we adapted power spectrum density methods,
previously used to quantify autonomic dysregulation (heart rate variability), to neural time-series
obtained via functional MRI. The negative feedback loop we investigated was the limbic system,
using affect-valent faces as stimuli. We hypothesized that trait anxiety would be related to efficiency
of regulation of limbic responses, as quantified by power law scaling of fMRI time series. Our results
supported this hypothesis, showing moderate to strong correlations of β (r = 0.4–0.54) for the
amygdala, orbitofrontal cortex, hippocampus, superior temporal gyrus, posterior insula, and anterior
cingulate. Strong anticorrelations were also found between the amygdala's β and wake heart rate
variability (r = −0.61), suggesting a robust relationship between dysregulated limbic outputs and
their autonomic consequences.
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Introduction
Negative feedback loops that maintain homeostatic control are ubiquitous within the body
(Khoo, 2000); the same mechanism, involving imbalance or “dysregulation” between
excitatory and inhibitory components, can produce very different diseases depending upon the
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particular system affected. Dysregulatory diseases range from diabetes (Muscogiuri et al.,
2008), Cushing's disease (Miller and O'Callaghan, 2002), hypertension (Grassi, 2009), cancer
(Bosl and Li, 2005; Engelmann and Bauer, 2000; Ichimura et al., 2000), as well as autoimmune
diseases such as asthma (Braman, 1995) and rheumatoid arthritis (Stenberg et al., 1992). As
such, one diagnostic technique that has shown success in assessing risk for dysregulatory
diseases is to provide a system perturbation (bolus) and then observe as a single instance the
dynamics of the excitatory and inhibitory responses in modulating return to baseline; well-
known examples include the glucose tolerance test for diabetes (Norris et al., 2008) and the
dexamethasone suppression test for Cushing's disease (Elamin et al., 2008). Where strong
perturbations are not feasible, one can maintain signal detection power by using a larger number
of milder perturbations as inputs. For example, the nonlinear complexity with Shannon entropy
method of heart rate variability analysis (Kurths et al., 1995; Voss et al., 1995) measures
responses to endogenously and exogenously-produced perturbations for up to 24-hours at a
time. These are assumed to be chaotic; therefore, the degree to which resulting cardiac outputs
are also chaotic is an indicator of a well-regulated system, with increased chaos associated with
improved cardiovascular health.

In a well-regulated control system, the excitatory and inhibitory components work closely
together with minimum lag: in response to an input of finite duration, outputs should show
rapid rise and, following the input's termination, efficient return to baseline (i.e., minimum
latency and extinction times). As neuroimaging develops increasingly sophisticated methods
of characterizing connectivity between neural regions associated with control circuits, this
raises the exciting possibility of using neural time-series to quantify dysregulation within those
circuits. Doing so would provide sensitive neurobiological markers for the dynamics associated
with risk for neurological and psychiatric illnesses that are dysregulatory in nature.

This manuscript builds directly upon our previous research which, having modeled the limbic
system as a control circuit based upon animal and human research (Baxter et al., 2000; Blair
et al., 2005; Davis and Whalen, 2001; Izquierdo and Murray, 2005; Izquierdo et al., 2005;
LeDoux, 2000; Maren, 2005; Morgane and Mokler, 2006; Phan et al., 2002; Phelps et al.,
2004; Rosenkranz et al., 2003; Sotres-Bayon et al., 2004; Sotres-Bayon et al., 2006), found
that dysregulation of the excitatory (amygdala) and inhibitory (Brodmann Area 45)
components positively correlated with trait anxiety in healthy adults (Mujica-Parodi et al.,
2009). Moreover, limbic dysregulation was positively correlated with autonomic
dysregulation, suggesting a mechanism by which patients with mental illnesses such as
paranoid schizophrenia show lowered heart rate variability (Mujica-Parodi et al., 2005), since
outputs from the limbic system, via the lateral hypothalamus, project to the lateral medulla and
provide inputs for the autonomous nervous system's control circuit. Upon this model, we
hypothesized that the observed autonomic dysregulation seen in patients does not result from
autonomic abnormalities, but rather from the autonomic nervous system's dysregulated limbic
outputs (Radulescu and Mujica-Parodi, 2009; Radulescu and Mujica-Parodi, 2008).

The method we used previously to characterize dysregulation was to measure cross-
correlations (“coupling”) between time-series for nodes within the circuit. While the method
showed a relationship to trait anxiety in healthy individuals, it had several important limitations
as diagnostic or risk-assessment technique for patients. First, although analyses of the dynamics
showed that the most dominant control was exerted by BA45 upon the amygdala, the cross-
correlation method showed that trait anxiety was associated with uncoupling between different
node-pairs within the circuit. To maximize clinical utility, it would be preferable that systemic
uncoupling be characterized by a single output, as per the nonlinear complexity method of
heart rate variability analysis. Second, the method made certain assumptions about the
dynamics that seem to be violated by the more severe dysregulation seen in patients (Radulescu
and Mujica-Parodi, 2008). While the most straightforward method of accomplishing both of
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these aims would be to measure Shannon entropy of the system, we found that entropy measures
are unstable for the limited temporal resolution obtained by fMRI time-series. Therefore, the
approach we took was to measure variability directly by looking at frequency analyses (i.e.,
power spectrum density) of the time-series.

Power spectrum scale invariance (PSSI) has been conventionally used as an efficient tool for
analyzing irregular time series (Shelhamer, 2007) by measuring the relative frequency content
of a signal. In our study of temporal variability of human brain activity we utilize the fact that
the time series of functional magnetic resonance imaging (fMRI) data show power-law scaling
behavior (Thurner et al., 2003; Zarahn et al., 1997). Scaling or scale-invariance means that
there is no preferred temporal scale, and that the power spectrum density of the signal follows
the power law:

where β is the scaling exponent. This form of the PSSI, peculiar to fractional Brownian motion
(Beran, 1994; Hurst, 1951; Mandelbrot, 1982; Mandelbrot and van Ness, 1968), is related to
statistical self-similarity or fractal property of the signal.

Temporal scaling laws in biological time series are usually explained by the existence of the
underlying complex control system involving various feedback mechanisms (Bak et al.,
1987, 1988; Tang and Bak, 1988). The absence of characteristic time scales gives to the system
important biological advantages, such as adaptability of response to a constantly changing
environment (Goldberger et al., 1990). Scaling behavior in human brain oscillations using
electroencephalogram (EEG) time series (Linkenkaer-Hansen et al., 2001) suggests that
power-law scaling behavior of spontaneous oscillations can be explained within the theory of
self-organized criticality, in which a system contains a critical point as an attractor.
Conceptualized in these terms, a well-regulated control system is “self-organizing” in a sense
that it arranges itself naturally without any external mechanism. The criticality of the system
is in its balancing between structural stability in response to perturbations and the ability to
react to perturbations without the need to tune the control parameters.

The scaling parameter β (Shelhamer, 2007 and references therein) serves as a measure of the
auto-correlations within the signal. Estimating the β exponent for a time series provides a
measure of whether the data are a pure random walk or have underlying trends. A flat spectrum
(β = 0) corresponds to the uncorrelated time series; i.e., white noise. Increasing (negative)
values of the scaling exponent indicate the persistence in the time series (i.e., the system's
“memory”) over many different time scales. However, for reasons explained below, many of
the physiological applications of the scaling parameter calculate β not from the raw signal, but
from its first derivative. The derivative shifts β by a constant, making negative values of β
across the brain positive without changing between-voxel relationships.

Our approach is similar to that used in heart rate variability analysis. The scale-invariant
properties of heartbeat sequences have been studied by various groups and methods (Ivanov
et al., 1999; Ivanov et al., 2001; Peng et al., 1993; Thurner et al., 1998). It has been found that
the scaling laws strongly depend upon the state of the underlying physiologic control system,
and are consistent with a nonlinear feedback system that shifts the signal away from the
extremes (Ivanov et al., 2001). The PSSI analysis of the time series defines the complexity of
heart-beat dynamics through its scale-free behavior, thus identifying a single scaling exponent
as an index of healthy or pathological regulation (Peng et al., 1993).
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While power spectrum density has long been used for analyzing inter-beat (R-R) intervals for
heart rate variability analysis (Akselrod et al., 1981; Pagani et al., 1986; Pomeranz et al.,
1985), applying the method to neural time-series required some modifications. Heart rate
variability analyses assume chaotic inputs, and therefore by extension that well-regulated (i.e.,
highly adaptive) systems should also be characterized by high degrees of variability. However,
given the inherent design limitations placed upon fMRI time-series, by both TR as well as
hemodynamic lag, inputs for most fMRI studies, even those that are event-related, cannot be
truly chaotic. For block designs, in which the stimuli are presented at regular intervals of
consistent duration, this is even more so the case. Therefore, to be able to adapt the PSSI method
to as many different types of fMRI designs as possible, we took the power spectrum not of the
raw time-series but of its first-derivative (Shelhamer, 2007). This allowed us to quantify the
suppleness of the system in responding quickly to new inputs (both endogenous and exogenous)
and also returning to baseline quickly following input termination, without the assumption that
inputs must be chaotic. For clarity it is important to note that in contrast to PSSI, what is
normally known as “power spectrum density” or “spectral” analysis of heart rate variability
measures not the degree to which all frequencies are represented, but specifically upon
frequency ranges associated with excitatory (sympathetic) and inhibitory (parasympathetic)
components (Task Force of the European Society of Cardiology, 1996). For fMRI this need is
somewhat ameliorated, since unlike R-R intervals, fMRI time-series permit gross
discrimination of their influences via spatial localization. However, in performing fMRI PSSI
analyses it is important to exclude frequencies associated with physiological factors such as
respiration and heart rate, as these may provide confounds in interpreting the neural response.

For this study, we “perturbed the system” using visual stimuli (affect-valent faces) known to
reliably provoke a limbic response. Since frequency analyses optimally require a larger number
of data points than would typically be found for one condition, we included the entire time-
series in our analyses rather than specifying condition. We hypothesized that individuals with
higher levels of trait anxiety would show less efficient regulation (β > 0) of limbic responses.

Materials and Methods
Participants

We recruited 50 healthy adult subjects into this study (N=22 males, N=28 females; μage=26
yrs; s.d.=7.7; max/min age=18-49). A lengthy phone screening, as well as the Scheduled
Clinical Interview for DSM-IV (Ventura et al., 1998), were administered to rule out subjects
with current or prior psychiatric illness. All subjects received a history and physical; subjects
were excluded if they had a history of drug abuse, traumatic brain injury, cardiovascular illness
(including high blood pressure), regular nicotine use, or any MRI exclusion criteria, including
metal in the body, claustrophobia, or pregnancy. This study was approved by the Institutional
Review Board of Stony Brook University, and all subjects provided informed consent.

Study Design
All subjects were hospitalized for 48 hours at the Stony Brook University Hospital's General
Clinical Research Center, to provide maximum control over the testing environment. Subjects
were admitted to the hospital at 8pm, provided informed consent, and received a physician-
administered history and physical to ensure eligibility in the study. The morning after the first
night, subjects were asked to complete the State-Trait Anxiety Inventory (Spielberger, 1983),
an instrument that provides a psycho-social assessment of anxiety in healthy adults. Starting
at 10:30 am, subjects then received ambulatory cardiac monitoring for the next 24 hours until
10:30am the second day. At this point, subjects received an MRI.
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Visual Stimuli
To “perturb” the control circuit, we used gray-scale images of male and female faces depicting
angry, fearful, happy and neutral emotions (Ekman, 1993), which are known to reliably activate
a limbic response (Phillips et al., 1997; Williams et al., 2004). Each face block consisted of
nine different faces of the same emotion type, displayed for 2.2s each for total block duration
of 20s. Each fMRI run consisted of eight 20s blocks: angry, neutral, happy, and fearful face
blocks, each of which alternated with a 20s “rest” block (fixation cross composed of white
cross-hairs presented on a black background). There were two runs. Subjects passively viewed
visual stimuli during scanning using an angled mirror mounted on the head coil and a screen
placed directly outside the magnet bore. Stimuli were presented using a computer running E-
prime software (version 1.0; Psychology Software Tools, Inc.; Pittsburgh, PA) and were
projected onto the screen using a projector placed outside the scanner room.

Image Acquisition
Subjects were scanned on a 1.5T Philips Intera MRI scanner at the Stony Brook University
Hospital using an 8-channel SENSE parallel head coil. Data were acquired using four blocks
(one for each fMRI run) of 136 T2*-weighted echoplanar single-shot images covering the
frontal and limbic areas of the brain, with TR=2500ms, SENSE factor=2, TE=45ms, Flip
angle=90° Matrix=64×64, 3.9×3.9×4mm3 voxels, and 30 contiguous oblique coronal slices.
In addition to the functional scan, we obtained an anatomical scan to match the slice orientation
of the functional scan. The acquisition parameters for this sequence were: TR=15ms,
TE=450ms, Matrix=256×256, FOV=250 and 30 contiguous oblique coronal slices with 4mm
slice thickness and no gap between the slices. The anatomical data were used to generate a
customized EPI template to normalize our EPI scans to the standard frame of reference. The
subject's head was secured with tape to minimize head movements during the scans.

Image Analyses
The fMRI data analyses were performed using the Statistical Parametric Mapping software
(SPM99; http//www.fil.ion.ucl.ac.uk/spm), running under Matlab 6.5 (Mathworks, Natick,
Massachusetts). The raw functional BOLD images were first realigned to the first volume to
remove movement-related artifacts using a sinc interpolation. The motion correction algorithm
in the SPM99 software package is capable of correcting for motion within 3mm. Movement
for all 50 of the subjects was found to be within 3mm in each of the functional runs and was
fully corrected. Realigned images were then spatially normalized into 3×3×3mm3 using an
affine transformation with a set of 7×8×7 basis functions and a customized template that was
created using the data for the first 12 subjects; the incomplete brain coverage and oblique nature
of our slices required us to use a custom template for normalization. For each subject, the scalp
was removed from a low-resolution EPI image, using the Brain Extraction Tool (BET) (Smith,
2002) available in MRIcro software, at a fractional intensity threshold of 0.5. These skull
stripped images were then registered and normalized to each other and the average image was
smoothed with a Gaussian kernel of 8mm full-width half maximum and registered to the EPI
template provided by SPM99 to generate the final template. The realigned and normalized time
series were then smoothed with a Gaussian kernel of 8mm full-width half maximum.

Extraction of fMRI Time-series
Based upon prior research (Mujica-Parodi et al., 2009), we identified eight a priori regions of
interest: these were the bilateral amygdala, hippocampus, BA45, and BA9. Using the WFU
PickAtlas Toolbox, we defined masks for each of these regions. The time series for each region
were extracted from voxels corresponding to the coordinates of the nonzero values in the
resliced (binary) masks. The time series for the entire brain were generated in a similar fashion
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by applying a binary mask of the entire brain generated from the abovementioned custom
template.

Power Spectrum Scale Invariance Method
The power spectral density of the time series was estimated using Welch's averaged modified
periodogram method of spectral estimation (8 segments, with 50% overlap, Hamming
window). The scaling parameter β was determined by estimating the slope of the power
spectrum of linearly detrended first derivative of the time series on a log-log scale. β was
obtained by applying a linear fit to the data in the 0.06-0.2Hz range.

The bandwidth of 0.06-0.2Hz was chosen to be conservative in excluding the influence of both
acquisition parameters and task design. The upper limit for the bandwidth was determined by
the maximum time resolution for our time-series possible given a TR=2.5s (while we could
have increased the time-resolution by reducing the TR to 1s, it would have been at the cost of
obtaining insufficient brain coverage to acquire data from all components of the limbic circuit).
The choice for the lower limit for the bandwidth used was based on the structure of the task.
Since the design utilized 20s blocks, it was important to exclude the basic frequency of the task
from the analyzed frequency range (the block was composed of 2.2s presentations, whose
frequency therefore also fell outside the upper limit). Frequencies of 0.05Hz (1/20s) and below
therefore needed to be excluded, and this cutoff also took care of the higher order harmonics
(1/40s, etc.).

Region of Interest Analyses and Exploratory Confirmation of Regions of Interest
For each subject, the trait anxiety score was correlated with scaling parameter β for each voxel
in the eight regions of interest. To compensate for the issue of spuriously inflated values due
to the multiple comparisons, we required spatial contiguity larger than the smoothing kernel;
within each region of interest correlated voxels (p < 0.05) were collected into clusters with
connectivity=26 (i.e., each voxel has 26 neighbors: 33-1, in 3D space). This approach, rather
than Bonferroni-correcting p-values, was taken to avoid overly conservative correction in
potentially large areas of the prefrontal cortex. We additionally performed a whole-brain
exploratory analysis, disregarding clusters < 5 voxels. For each cluster of significantly
correlated voxels (p < 0.01) the maximally correlated voxel was used to identify the region
using Talairach Daemon (Lancaster et al., 2000).

Heart-Rate Variability Analyses
ECG were obtained, processed, and analyzed for 40 subjects according to previously-published
methods (Mujica-Parodi et al., 2009). As per our previous work, we used the Principal Dynamic
Modes method as it has shown superior accuracy, as compared to the more commonly used
Power Spectrum Density method, in separating out the sympathetic and parasympathetic
components (Chon et al., 2006; Zhong et al., 2006). The PDM-derived measures of sympathetic
and parasympathetic activity were then correlated with the scaling parameter β for each voxel
within the eight regions of interest and clustered as described above for trait anxiety.

Results
Trait Anxiety

The trait anxiety scale, like the characteristic it represents, is a continuous measure that, in our
sample of N = 50, provided a normal distribution (Shapiro-Wilk: W=0.98, p=0.4;
μtrait anxiety score=38; s.d.= 10; max/min score=21-58). Trait anxiety was not correlated with
age (r=−0.04, p=0.8), nor was it different for males and females (t=0.5, p=0.6).
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Power Spectrum Scale Invariance Method
Power spectrum logarithmic slope β, a measure of frequency spectrum density, was > 0 for all
individuals and correlated with trait anxiety (r=0.49, p=0.000, N=50) for the left amygdala
(Figure 1; Table 1), right BA45 (r=0.43, p=0.002) and right BA9 (r=0.48, p=0.000).
Relationships were not seen for the right amygdala or bilateral hippocampus. Our primary
analyses used correlations since they most accurately retain the continuous nature of the trait
anxiety variable. However, for purposes of illustration (Figure 2), we separated out subjects
into extreme high and low-anxiety groups, defined as individuals with anxiety scores G=1.5
standard deviations above (N=4; μ=56.5, s.d.=1.73) and below (N=3; μ=22.33, s.d =1.15) the
mean. Distribution of points in state space with time-delay reconstruction of TR=2.5s, indicates
that high anxiety subjects had less temporal variability in response to stimuli (Figure 2a) and
that the two groups' temporal variability distributions were statistically significant (Figure 2b;
Wilcoxon rank-sum test: Z=7.82, p=0.000).

Exploratory Confirmation of Regions of Interest
We initially performed the analysis using regions that were defined, a priori, as components
of the limbic circuit reliably triggered by fMRI studies of emotional stimuli. However, to check
whether our results might have been biased by pre-defined regions of interest, we additionally
performed an exploratory analysis that investigated which areas showed correlations between
β and trait anxiety. As shown by Figure 3 and Table 2, correlated voxels were not randomly
dispersed within the brain but tightly defined by a few clusters that, in addition to the pre-
defined regions of interest, included the orbitofrontal cortex, superior temporal and frontal
gyrus, posterior insula, and anterior cingulate.

Heart-Rate Variability Analyses
Individuals with richer frequency spectra, as quantified by smaller β, showed significantly
greater autonomic (both sympathetic and parasympathetic) activity for wake ECG in all regions
of interest except for the left hippocampus (Table 3).

Discussion
Our aim was to develop a more sensitive global measure of limbic regulation. We started from
a control systems model, in which the bilateral amygdala and hippocampus, as well as right
BA9 and BA45, were defined—on the basis of previous research—as excitatory and inhibitory
components of a negative feedback loop modulating emotional arousal to these same stimuli.
By definition, the more supple the control circuit, the more tightly outputs should couple inputs;
i.e., respond quickly to new stimuli and then return to baseline following their termination.
Sharper responses to stimuli would be characterized by a richer power spectrum (a perfect
impulse response would show a flat power spectrum, i.e. β=0). We quantified neural reactivity
by calculating the power spectrum density, taking the log and then plotting its slope β: power
spectra that included more frequencies showed smaller (flatter) β, with power spectra that
included fewer frequencies showed larger (steeper) β. Since we hypothesized that individuals
with greater trait anxiety would have less supple limbic regulation, by extension, we predicted
that trait anxious individuals would show larger β with respect to their limbic hemodynamic
responses.

The data supported our hypothesis, showing significant positive correlations between β for
components of the limbic control circuit and trait anxiety, which focused on the left amygdala,
BA9, and BA45. The exploratory analysis additionally identified several other regions: the
insula, orbitofrontal gyrus, anterior cingulate, and superior frontal gyrus, that are known to be
strongly associated with autonomic regulation, emotion regulation, and cognitive functions
associated with emotion regulation such as risk-assessment (Baird et al., 2006; Banks et al.,
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2007; Critchley et al., 2003; Critchley et al., 2005; Paulus et al., 2005; Petrovic et al., 2008;
Simmons et al., 2008; Simmons et al., 2006; Stein et al., 2007). As suggested by our hypothesis
that dysregulated outputs from the limbic system would provide dysregulated inputs to the
autonomic nervous system, we also observed that limbic β was inversely correlated with
autonomic regulation, both sympathetic and parasympathetic.

We considered a number of potential confounds. The fact that the cluster sizes for the
correlations were reasonably large (>11 voxels), combined with robust correlation coefficients
of approximately r ≅ 0.5, suggest that the effect is unlikely to be attributable to voxel-specific
random variation. All band ranges associated with the task itself (both the entire block as well
as the block's individual stimulus presentations) were deliberately excluded from the analysis
in order to avoid confounds due to experimental design. To confirm that the observed dynamics
were task-independent, we ran the analysis for the frequency range including within the task
(0.002-0.06Hz). Within this frequency range, there were no significant correlations with trait
anxiety or HRV in any of the regions of interest, suggesting that the observed dynamics were
unrelated to task demands. While it could be possible that the relationship between trait anxiety
and time-course dynamics reflects differences in HRV embedded within the BOLD signal, this
scenario seems unlikely for several reasons. First, if the differences found were mostly due to
the general cardiovascular component of the signal, then the correlations found would be
expected to be brain-wide, as opposed to especially localized to the limbic regions of interest.
Second, the trait anxiety scores were not correlated with LF, HF, LF/HF ratio, PDM-
sympathetic, PDM-parasympathetic, or PDM-sympathetic/parasympathetic for either the
Power Spectrum Density or Principal Dynamic Modes methods of evaluating HRV. Likewise,
while respiration rate was not monitored for our subjects as they were all healthy, it is
reasonable to assume that respiration rate falls outside the specified bandwidth, since the
normal adult rest-state breathing rate of 12-20bpm (Tortora and Anagnostakos, 1990) is above
0.2Hz.

The most important limitation of our study was its low temporal resolution. Unfortunately,
given the locations of the excitatory and inhibitory nodes of the circuit (i.e., both prefrontal
and amygdala), the scans required imaging most of the brain. It would have been foolhardy to
do otherwise, since we had no way to know a priori whether the dynamics would be confined
to the excitatory regions, inhibitory regions, or both. As a first study, the exploratory approach
was deliberate: the fact that the entire brain was imaged but that the dynamics themselves
picked out the limbic circuit, itself provided added support for the method. However, given
that we now have greater spatial specificity with respect to which ROIs contain scale-invariant
dynamics, future studies of trait anxiety could restrict acquisition to only one node of the circuit
(for example, the amygdala), present the stimuli for shorter periods, and image at higher
temporal resolution to permit expansion of the bandwidth.

In order to most accurately compare the efficacy of our power spectrum scale invariance
method versus previously-reported cross-correlations(Mujica-Parodi et al., 2009), the current
and previous studies used the same data set of N=65 healthy adults. We excluded fifteen
subjects in the current data set due to concerns regarding EPI quality in all regions of interest;
however, recalculation of previous cross-correlation coefficients did not show differences
between the original and reduced data sets (Table 4). While the two methods were consistent
in showing relationships between limbic dysregulation and trait anxiety, as well as limbic
dysregulation and diminished heart rate variability, there were important differences between
the two results.

First, the PSSI results for the ROI analysis were more focused, specifically identifying the left
amygdala, right BA9, and right BA45 as regions of less supple regulation, whereas the cross-
correlation method identified correlations between trait anxiety and nearly all ROI pairs. These
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results cohere well with the “local” results for the same article, which suggested an excitatory-
inhibitory modulation specifically between the left amygdala and BA45.

Second, the PSSI method permitted measurement of limbic regulation from single-ROI
outputs, rather than relying upon dual-ROI-output pairs. This has significant implications for
future research and potential clinical applications, since one of the critical obstacles in
increasing sensitivity for measurement of limbic regulation is the low sampling-rate of fMRI
time-series. Yet other methods with greater temporal resolution, by which a signal might
provide frequencies over several orders of magnitude rather than a half-decade—such as EEG
and near-infrared spectroscopy—would not be capable of obtaining signals for both
components of the pair, since they have no access to subcortical ROIs. Our current results
happily suggest that it may be possible to measure the regulation of the limbic system as a
whole simply by obtaining coupled signal from prefrontal regions, which should be accessible
by both EEG and near-infrared spectroscopy.

Third, the PSSI method showed equivalent or increased detection sensitivity as compared to
our previous results using cross-correlations. Whereas previously-reported measures
correlated with trait anxiety between r=0.29-0.36 (r=0.29-0.41 for N=50), the PSSI method
shows correlations with trait anxiety between r=0.35-0.49; while previous correlations with
heart rate variability were r = −0.27, they now reach r = −0.61.

Finally, whereas cross-correlations correlated with increased sympathetic activity, the PSSI
method negatively correlated with both sympathetic and parasympathetic activity, suggesting
that sluggish limbic regulation translated down-stream into sluggish autonomic regulation, at
both shorter-acting (parasympathetic) and slower-acting (sympathetic) time-domains.
Importantly, neither autonomic variable significantly correlated with trait anxiety (PDM
sympathetic: r=0.14 p=0.4 N=40; PDM parasympathetic r=0.04 p=0.8 N=40) and correlations
were not transitive, suggesting that the relationship between limbic and autonomic outputs
reflected a mediation, rather than being trivially linked via a common origin.

While scaling has been applied previously to both fMRI and heart rate variability data, fMRI
papers have generally applied the method to distinguish spatially-defined activation patterns;
i.e., a purely data-driven analog to the general linear model but that does not require a priori
specification of the experimental design. For example the scaling nature of fMRI time series
was studied (Thurner et al., 2003), and demonstrated that scaling exponents depend upon the
underlying level of neural activity, with activated regions showing greater persistence. This
occurs because lasting brain activity leads to the presence of smoother structures in the signal,
so the dominance of singularities in a signal is reduced. By contrast, heart rate variability
research has applied PSSI in order to quantify control systems dysregulation of the autonomic
nervous system. Here, we tried to bridge the gap between the two fields by applying scaling
to model neural regulation, using a relatively well-understood control system in the brain. In
our application, the time series of trait anxious individuals persist longer in the excited state,
producing larger values of β.

The strengths of the current method, outlined above, suggest three important directions for
future research. First, while cross-correlations provide some gross measure of dysregulation
for time-series that are roughly congruent and can be modeled using equivalent hemodynamic
response functions, the PSSI method is a more robust method that requires that fewer
assumptions be met, a feature that suggests its potential utility with respect to patients. Second,
because the PSSI method requires perturbations but does not require that their structure be
defined in order to construct a basis function for analysis, the method might lend itself well to
resting activation, analogously to heart rate variability. Finally, while cross-correlations require
dual-output pairs from cortical and subcortical regions, the PSSI method retains many of the
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same benefits while permitting single-output cortical measures, a feature that suggests that it
could be applied to near-infrared spectroscopy and/or EEG. Doing so could provide even
greater sensitivity, since both technologies' sampling frequencies would permit collection of
data over significantly longer time-scales without inducing habituation. This would be an
important direction for future research, permiting a more rich characterization of scale
invariance (which in physics normally is measured over several orders of magnitude) and
potential multi-fractality (Shimizu et al., 2004). Morover, increased temporal resolution would
also permit future exploration of computational characterizations, such as nonlinear
complexity/entropy, which have shown significant diagnostic promise with heart rate
variability (Voss et al., 2007) but that are unstable at fMRI's low sampling rates.
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Figure 1.
Correlation between the irregularity of the time series quantified by β (calculated from
the first derivative of the timeseries) and trait anxiety within the left amygdala. Size of
cluster is 25 voxels with a p-threshold < 0.05. For the maximally correlated voxel MNI=
[ -24 -3 -18 ] p=0.000, r =0.49. The correlation coefficients are color-coded according to
the bar.
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Figure 2.
Illustration of difference between high and low trait anxious individuals. (a) Time series from
maximally correlated voxel in the left amygdala (MNI: -24, -3, -18) for high and low trait
anxiety groups are shown in the state space using time-delay reconstruction with a delay of TR
(2.5 seconds). (b) Histogram showing the distribution of points in the state space as a function
of the distance defined by . The distributions of points for high and low anxiety
subjects are significantly different as determined by Wilcoxon rank-sum test (Z=7.82, p=0.000)
(c) Power spectrum density of the first derivative of the time series corresponding to high and
low anxiety individuals plotted on the logarithmic scale. Linear fit of slope β with standard
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error is shown, together with the correlation coefficient r between the linear fit and the averaged
power spectrum density. The difference in slopes indicates that the time series from high trait
anxiety subjects show less variability than the time series from low trait anxiety subjects.
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Figure 3.
Voxel-wise whole-brain map reflecting exploratory analysis for correlations between β
(calculated from the first derivative of the timeseries) and trait anxiety (p < 0.05, cluster
threshold > 20 voxels).
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Table 4
Trait anxiety negatively correlated with cross-correlation coefficients r for region-of-
interest pairs (N=50)

Contrast Cross-Correlation pairs Cross-correlation coefficient × trait anxiety
(r)

Significance
(P)

Neutral-rest L Amygdala × R Amygdala -0.35 0.001

L Amygdala × R Hippocampus -0.41 0.003

L Amygdala × L Hippocampus -0.38 0.006

L Amvedala × BA45 -0.29 0.04

R Hippocampus × BA45 -0.33 0.02

Happy-rest L Amvedala × BA45 -0.31 0.03

R Hippocampus × BA45 -0.35 0.01

BA45 × BA9 -0.38 0.007
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