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Abstract
Mixture models have been successfully used to describe the response of articular cartilage to various
loading conditions. Mow and co-workers [1980, J. Biomech. Eng. 102, 73–84] formulated a mixture
model of articular cartilage where the collagen-proteoglycan matrix is modeled as an intrinsically
incompressible porous-permeable solid matrix, and the interstitial fluid is modeled as an
incompressible fluid. Lai and co-workers [1991, J. Biomech. Eng. 113, 245–258] proposed a triphasic
model of articular cartilage as an extension of their biphasic theory, where negatively charged
proteoglycans are modeled to be fixed to the solid matrix, and monovalent ions in the interstitial fluid
are modeled as additional fluid phases. Since both models co-exist in the cartilage literature, it is
useful to show how the measured properties of articular cartilage (the confined and unconfined
compressive and tensile moduli, the compressive and tensile Poisson’s ratios, and the shear modulus)
relate to both theories. In this study, closed-form expressions are presented that relate biphasic and
triphasic material properties in tension, compression and shear. These expressions are then compared
to experimental findings in the literature to provide greater insight into the measured properties of
articular cartilage as a function of bathing solutions salt concentrations and proteoglycan fixed-charge
density.

Introduction
Mixture models have been successfully used to describe the response of articular cartilage to
various loading conditions. In their classical study, Mow, Lai and co-workers (1980)
formulated a mixture model of articular cartilage where the collagen-proteoglycan matrix is
modeled as an intrinsically incompressible porous-permeable solid matrix, and the interstitial
fluid is modeled as an incompressible fluid. This biphasic model has been able to describe the
response of articular cartilage in confined compression creep, stress-relaxation, and dynamic
loading (Mow et al., 1980; Lee et al., 1981; Soltz and Ateshian, 1998, 2000b). By incorporating
the tension-compression nonlinearity of the solid matrix into this biphasic framework, the
model has been able to describe the response of cartilage in unconfined compression as well
(Cohen et al., 1998; Soulhat et al., 1999; Soltz and Ateshian, 2000a). However, the negatively-
charged proteoglycans in articular cartilage produce an osmotic pressure which swells the
tissue and contributes to its compressive stiffness (Maroudas, 1979; Eisenberg and Grodzinsky,
1985; Lai et al., 1991; Schwartz et al., 1994; Buschmann and Grodzinsky, 1995; Kovach,
1996; Khalsa and Eisenberg, 1997; Basser et al., 1998; Narmoneva et al., 1999, 2001; Bursac
et al., 2000). Proteoglycans are also responsible for various electromechanical effects such as
streaming potentials and currents (Frank and Grodzinsky, 1987a,b) and reduced tissue
permeability (Maroudas, 1979; Gu et al., 1993). Lai and co-workers (1991) proposed a triphasic
model of articular cartilage as an extension of their biphasic theory, where proteoglycans are
modeled as a negative charge density fixed to the solid matrix and monovalent ions in the
interstitial fluid modeled as additional fluid phases. This model was later extended to
incorporate multiple polyvalent ions by Gu et al. (1998).
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Despite the fact that the triphasic model of cartilage provides a more accurate description of
the tissue composition and mechano-electrochemical response, the biphasic model continues
to be used in the literature because of its ability to successfully describe the response of cartilage
to various loading conditions. Since both models are likely to co-exist in the cartilage literature,
it is useful to show how the measured properties of articular cartilage (the confined and
unconfined compressive and tensile moduli and the compressive and tensile Poisson’s ratios)
relate to both theories. To date, the correspondence between the two models has been typically
presented in numerical examples requiring the solution of nonlinear equations. In this study,
closed-form expression are presented that relate biphasic and triphasic material properties,
which are then analyzed to provide greater insight into the measured properties of articular
cartilage as a function of proteoglycan fixed-charge density, under various bathing solutions
salt concentrations.

Model Formulation
This presentation specializes the formulation of Gu et al. (1998) to the case of a solid phase,
and three fluid phases consisting of the solvent (water) and two solutes (anion and cation)
representative of sodium and chloride ions. The balance of linear momentum for the entire
mixture, and the balance of momentum for the fluid phases, under quasi-static conditions, are
given by

(1)

(2)

where summations are performed over the solid, water, and ion phases (α,β= s,w,+,−) with
exceptions as specified. In these expressions, σ is the total stress in the mixture, ρα is the
apparent density of phase α, vα is its velocity, μ̃α is its electrochemical potential, and fαβ is the
diffusive drag coefficient between phases α and β. If the diffusive drag between anions and
cations, and between ions and the solid matrix are neglected (f+− ≈ fs+ ≈ fs− ≈ 0), the remaining
diffusive drag coefficients relate to the ion diffusivities D+,D− and interstitial fluid permeability
k through (Gu et al., 1993)

(3)

where R is the universal gas constant, θ is the absolute temperature, and ϕw is the water
volumetric fraction (tissue porosity). The concentrations cα (moles of solute per unit solvent
volume) are related to apparent densities through

(4)

where Mα is the molecular weight. The balance of mass for the entire mixture and the balance
of mass for the individual phases are given by
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(5)

(6)

Equation (5) derives from Eq.(6) under the assumption of mixture saturation and intrinsic
incompressibility of the solid and fluid phases. The volumetric fraction ϕα is related to the true
density  of phase α through . It is generally assumed that the ion phases are dilute
so that their volumetric fractions are negligibly small, ϕ+,ϕ− ≪ 1. The constitutive relations
for the total mixture stress and the electrochemical potentials of the fluid phases are

(7)

(8)

where p is the interstitial fluid pressure (inclusive of osmotic effects), λ1, λ2, μ are elastic
constants within a cubic symmetry framework, E is the small strain tensor (E= (gradu +
gradT u)/2 where u is the solid matrix displacement and vs= ∂u/∂t), and A i= a i ⊗a i (a i · a j
= δij) are texture tensors as described in our earlier study (Soltz and Ateshian, 2000a). The
texture directions a i correspond with the direction parallel to local split lines (i = 1),
perpendicular to local split lines (i = 2), and normal to the articular surface (i = 3). According
to the conewise linear elasticity (CLE) theory of Curnier et al. (1995), if the solid matrix
response differs in tension and compression, then λ1 {A i:E} = λ±1 depending whether the
normal strain component A i: E along the texture direction a i is positive or negative. The
reference chemical potential  depends on temperature only, whereas zα is the charge
valence and aα is the activity of phase α, F c is Faraday’s constant, and ψ is the electrical
potential in the mixture. For a fluid mixture with water as the solvent and ions as the solutes
in a dilute solution, the electrochemical potentials can be further reduced to

(9)

(10)
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(11)

where Φ is the osmotic coefficient of the solution and γ+,γ− are the activity coefficients of the
ions. Finally, the electroneutrality condition is given by

(12)

where zw= 0 (neutral solvent), z+ = 1, z− = −1 (monovalent ions), and zscs≡ −cF where c F is
the charge density of proteoglycans fixed to the solid phase. Combining this equation with the
balance of mass equations yields the current condition

(13)

From the balance of mass for the solid matrix, and the mixture saturation condition Σβ ϕβ ≈
ϕs+ ϕw= 1, it is also possible to relate the proteoglycan fixed charge density c F and the
interstitial water volume fraction ϕw to their respective reference values  and  in the absence
of solid matrix dilatation,

(14)

These governing equations must be solved subject to appropriate boundary conditions. At any
interface between a triphasic material and its surroundings, defined on the solid matrix by a
unit normal n, the continuity of fluid and ion fluxes and solid velocity normal to the interface,
the total traction, and the fluid and ion electrochemical potentials must be satisfied (Hou et al.,
1989; Lai et al., 1991; Sun et al., 1999; Ateshian et al., 2003):

(15)

(16)

The triphasic model can be reduced to the biphasic model by dropping the ion phases (ρ+ =
ρ− = 0, fw+ = fw− = 0) and letting the reference fixed charge density reduce to zero, .

Equilibrium Response Under Uniaxial Loading
The objective of this study is to relate the triphasic material properties λ±1, λ2, μ, k to what
might be determined from experimental measurements of the confined and unconfined
compressive and tensile moduli, and the torsional or shear modulus. Because the biphasic
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theory can always be deduced as a special case of the triphasic theory, the analysis focuses on
the latter. All of these loading configurations can be analyzed under axisymmetric conditions
using a cylindrical coordinate system. All problems consider a cylindrical cartilage specimen
of radius r0 and height h, with its axis aligned along the z–coordinate. A zero-current (open-
circuit) condition is assumed in all cases, representative of most experimental configurations
reported in the literature. The specimen is placed in a well-mixed bathing solution of sodium
chloride of homogeneous concentration c*, with ambient pressure p* and electric potential
ψ* (it is common to set p*= 0 and ψ* = 0). It is also assumed that the material properties are
homogeneous and that solid matrix strains remain sufficiently small.

In this section, the steady-state response to loading is analyzed to extract the equilibrium
properties of the tissue. Thus vβ = 0 for all phases and the remaining unknowns are the solid
matrix displacement u, the ion concentrations c+,c−, the interstitial fluid pressure p, and the
electric potential ψ.

Uniaxial Loading with Lateral Confinement—In confined compression or tension under
equilibrium conditions, the shear strain components are equal to zero, and the normal strains
are given by E rr = Eθθ = 0 and E zz= constant. The applied equal and opposite stress at the two
ends of the cylindrical specimen is given by σa. Satisfying the jump conditions of Eq.(16) yields
the relations

(17)

(18)

(19)

where γ± = γ+γ−, and the aggregate modulus HA {Ezz} depends on the sign of the strain,

(20)

Substituting Eq.(19)2 into Eq.(19)1 yields a quadratic equation in the strain Ezz which can be
solved in closed-form, though the expression is too cumbersome to present here. Performing
a Taylor series expansion of the radical for small strains about zero yields the approximate
relation
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(21)

where

(22)

(23)

In these expressions π is the osmotic pressure in the tissue and Π is (the negative of) the rate
of change of the osmotic pressure with dilatation (tr E), both evaluated in the limit of zero
dilatation. To get the free-swelling strain , which represents the swelling of the tissue in
response to the osmotic pressure difference given by Eq.(18)1 or Eq.(22), it suffices to let σa
= 0 and HA {E zz} = H+A in Eq.(21) since the swelling strain is tensile,

(24)

To get the effective confined (aggregate) modulus of the specimen, which represents the
modulus measured experimentally from the slope of the stress-strain response, Eq.(21) is
rearranged and differentiated to yield

(25)

Note that the effective aggregate modulus is dependent upon the sign of E zz, yielding different
values in tension and compression.

In the biphasic theory, the effect of the fixed charge density of the proteoglycans is not explicitly
included. Hence, , Π = 0, and . Therefore, when modeling
the tissue with the biphasic theory, the measured tissue modulus is attributed entirely to the
solid matrix, whereas in the triphasic theory the measured modulus has contributions from the
solid matrix and from the rate of change of the osmotic pressure with dilatation, Π (Lai et al.,
1991). The biphasic and triphasic aggregate moduli do not represent the same physical quantity;
they are related through

(26)
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where HA {E zz} = H±A represents triphasic properties.

Unconfined Uniaxial Loading—The next equilibrium loading configuration to be
considered is unconfined uniaxial tensile or compressive loading (traction-free lateral
boundary). In this case, E rr= Eθθ = constant, E zz = constant, and from the interface jump
conditions of Eq.(16) the relations that need to be satisfied are of the same form as Eqs.(17)–
(18), as well as

(27)

(28)

where

(29)

Given the Taylor series expansion

these equations can be solved for the strain components as a function of the applied stress,

(30)

(31)

and they can be rearranged and differentiated to yield the effective Young’s modulus and
Poisson’s ratio,
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(32)

(33)

To get the free-swelling strain , let σa= 0, HA {Err} = H+A and HA {E zz} = H+A in Eqs.
(30)–(31),

(34)

The biphasic Young’s modulus and Poisson’s ratio can be obtained from Eqs.(32)–(33) by
letting  (or equivalently, Π = 0). Thus it can be noticed that in addition to Eq.(26), it is
possible to establish the relation

(35)

such that

(36)

(37)

Note that in general E rr and E zz will have opposite signs in this loading configuration, so that
 will not be the same as . These results also indicate that Young’s modulus

and Poisson’s ratio differ in tension and compression.

Torsion
The last equilibrium loading configuration considered here is torsion of an unconfined cylinder.
The initial state can be given by the solution for unconfined loading described above, upon
which a torsional displacement is superposed. In this case, the state of strain is supplemented
by the non-zero shear strain component Eθz = αr/2, while the stress is supplemented by the
non-zero shear stress-component σθz= 2μEθz= αμr according to Eq.(22), where α is the torsional
angle per unit length. Since the shear stress component is not influenced by the fixed-charge
density and osmotic pressure, it is found that the effective shear modulus is equal to μ and
remains the same in both triphasic and biphasic theories,
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(38)

Results
The expressions derived above for the free-swelling strains in confined and unconfined
configurations, and for π,Π, , νeff and μeff, are presented in closed-form and are
therefore straightforward to evaluate for any choice of intrinsic material properties. For
illustration purposes, plots are generated using representative values for the temperature (θ),
water volumetric content ( ) and intrinsic material properties of the triphasic theory (H±A,
λ2, μ): θ = 20°C=293K, , H+A= 6 MPa, H−A= 0.2 MPa, and λ2= 0.1 MPa. The external
bath concentration c* is varied from 0.001 M to 2 M, with 0.15 M representing physiological
conditions. (While the general framework of the triphasic theory allows for H±A, λ2, μ to be
functions of their ionic environment, and thus vary with c*, they are assumed to remain constant
in this study.) The reference fixed charge density, , is varied from 0 to 0.4 mEq/ml, with the
typical range for normal articular cartilage being 0.05–0.2 mEq/ml (Maroudas, 1979). In SI
units the universal gas constant is R= 8.314 J/K.Mole; to use the above formulas, c* should be
converted to units of Mole/m3 and  to Eq/m3. In all plots, it is assumed that Φ = Φ* = 1 and

, representing ideal physicochemical conditions; deviations of these coefficients from
unity are described, for example, by Maroudas (1979) and Buschmann and Grodzinsky
(1995).

The rate of change of osmotic pressure with dilatation, Π in Eq.(23), is shown in Figure 1. In
confined compression, the effective modulus, , is given by Eq.(26) with HA {E zz} =
H−A, and can be deduced from the response of Π by the simple addition of the constant H−A;

similarly for the effective aggregate modulus in tension  and the “off-diagonal”

effective modulus . The free-swelling strain  in the laterally confined
configuration, Eq.(24), is presented in Figure 2.

In the unconfined configuration, the free swelling axial strain,  from Eq.(34), is presented
in Figure 3. The effective Young’s modulus, Eq.(36), is provided in Figure 4 for compression
( , with  and ). In tension ( , with 
and ), the Young’s modulus is found to remain almost constant, at

, for all values of c* and . Corresponding effective Poisson’s ratios, Eq.(37), are
provided in Figure 5 in compression (with ) and Figure 6 in tension (with

).

Discussion
The objective of this study was to formulate closed-form expressions for the equivalence of
biphasic and triphasic equilibrium properties. Biphasic properties also represent effective, or
measured, equilibrium properties typically reported in the literature. Many studies have shown
that the equilibrium properties of articular cartilage depend on the bathing solution
concentration as well as the fixed charge density in the tissue as described below. This
dependence becomes explicit in the triphasic theory of Lai et al. (1991) and the results of this
study provide straightforward formulas that express this dependence.
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As expected from the earlier work of Lai et al. (1991), the formulas for the equilibrium moduli,

, and Poisson’s ratio, νeff, depend not on the osmotic pressure π but on the rate of
change of osmotic pressure with dilatation, Π; Eq.(23) can also be inferred directly from
equation (2) of Narmoneva et al. (2001). Indeed, if the osmotic pressure in cartilage were to
remain constant with even small changes in strain, it would not contribute to the stiffness of
the tissue. In contrast, the swelling strains in confined and unconfined configurations depend
on both π and Π.

Examining the response of Π in Figure 1, it is noted that this modulus decreases with increasing
bathing solution salt concentration and increases with fixed-charge density. According to Eq.
(26) the effective confined compression aggregate modulus, , is obtained by simply adding
the constant value H−A to Π. The resulting response is in good agreement with the experimental
data for articular cartilage in Figure 8 of the study by Eisenberg and Grodzinsky (1985), for
the functional dependence of the aggregate modulus on salt concentration. The corresponding
free-swelling strain predicted in Figure 2 also agrees with Figure 11 of these authors. The
dependence of  on proteoglycan content, and thus fixed charge density, has been verified
in many experimental studies as well (e.g., Kempson et al., 1970;Mow et al., 1990;LeRoux et
al., 2000;Rivers et al., 2000;Chen et al., 2001); for example, the experimental behavior
observed in Figure 10A of Chen et al. (2001) is consistent with the response shown in Figure
1b of the current study.

The aggregate modulus in tension, , is similarly predicted to depend on Π, and is thus a
function of salt concentration and fixed charge density. In practice this property cannot be
measured directly because it is predicated on a uniaxial tensile elongation with no lateral
contraction, which is not experimentally feasible under general conditions. Consequently, there
is no experimental study against which the theoretical expression for  can be compared. It
should be noted however that Narmoneva et al. (2001) inferred the value of H+A by fitting
experimental data to theory and found that this parameter was dependent on salt concentration;
as mentioned above, the current analysis assumes that the intrinsic triphasic properties (such
as H+A) are constant, as a first approximation.

The value of  is similarly obtained by adding the constant value λ2 to Π (Figure 1), according
to Eq.(35), where λ2 < H−A (Soltz and Ateshian, 2000a). To our knowledge, this theoretical
relationship has not been described previously. Khalsa and Eisenberg (1997) performed

experimental measurements of  and  in confined compression (see Figure 3 of their
study) and found that they both decrease with increasing salt concentration, as predicted by
the triphasic model expression derived in this study. Moreover, according to Eqs.(26)&(35),

the difference  is expected to remain independent of salt concentration
(and fixed charge density, assuming that H−A, λ2 are indeed constant), which is reasonably well
supported by Figure 3 of Khalsa and Eisenberg.

These authors also calculated the shear modulus from their experimental measurements,
assuming standard theoretical relationships from linear isotropic elasticity, and found that the
shear modulus remained constant at various salt concentrations (their Figure 4B). Though the
current cubic symmetry formulation does not establish a relationship between μ and λ2, it is
nevertheless interesting that their conclusion regarding the shear modulus is in agreement with
Eq.(38), which also finds that this parameter is independent of salt concentration. It should be
noted that a later study by the same group (Bursac et al., 2000) did not confirm this earlier
finding. Conversely, some experimental studies have shown that the shear modulus of articular
cartilage decreases with loss of proteoglycans (Zhu et al., 1993; LeRoux et al., 2000), which
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is not predicted from the simple expression of Eq.(38). However, most of these experimental
studies have involved degradative mechanisms of cartilage which may potentially have altered
the properties of the collagen matrix.

The free-swelling strain in unconfined conditions (Figure 3) behaves similarly to the strain
under laterally confined conditions (Figure 2), though it exhibits slightly smaller magnitudes.
The theoretical dependence on salt concentration demonstrated in the model is in good
agreement with various experimental studies (Maroudas, 1976;Myers et al., 1984;Setton et al.,
1998;Narmoneva et al., 1999;Chahine et al., 2002b); for example, Figure 3a compares
favorably with Figure 3 of Setton et al. (1998), where the stretch ratio is used as a measure of
strain.

The dependence of Young’s modulus on Π is slightly more complex than in the case of the
aggregate modulus, as shown in Eq.(32). According to theory,  and these two
measured properties can be equal to each other only when Π=0 and λ2 = 0, conditions which
are unlikely to happen in cartilage in general. The response of Young’s modulus in compression
(Figure 4) is consistent with the compressive aggregate modulus, decreasing in magnitude with
increasing salt concentration and decreasing fixed charge density. Our recent experimental
results on the equilibrium response of articular cartilage in unconfined compression (Chahine
et al., 2002b) confirm the theoretical finding of Figure 4a, showing a decrease in  with
increasing salt concentration. However, in tension, the current theoretical model predicts very
little dependence of  on salt concentration or fixed charge density. This can be seen from
the formula of Eq.(32) with the proper substitution made for the tensile response,

(39)

In this expression, when Π ≫ H−A, λ2 (i.e., for low values of c* and high values of ), it is
found that , whereas when Π ≪ H−A, λ2 (for high values of c* and low values of

) this relation yields , and since H−A,λ2 ≪ H+A this expression
also reduces to . Consequently the theoretical model is unable to predict any
significant dependence of the tensile Young’s modulus on salt concentration or fixed charge
density, despite experimental indications that such a dependence does exist (Grodzinsky et al.,
1981; Myers et al., 1984; Chahine et al., 2002b).

This study also establishes, for the first time to our knowledge, an expression for the
dependence of the effective Poisson’s ratio on salt concentration and fixed charge density, Eq.

(33). Conveniently, the dependence of νeff on  and  maintains the same general form as
in a linear elastic or biphasic-CLE cubic symmetry framework (Soltz and Ateshian, 2000), as
shown in Eq.(37). Note that in a cubic symmetry framework, as in isotropic symmetry, the
upper bound on νeff is 0.5; higher values of Poisson’s ratio can be achieved in an orthotropic
symmetry framework, as shown in our recent study (Wang et al., 2003). The dependence of
the compressive Poisson’s ratio, , on salt concentration and fixed charge density is shown
in Figure 5, demonstrating that this parameter decreases with increasing c* and decreasing

. The dependence on salt concentration agrees with the calculations of Khalsa and Eisenberg

(1997) based on their experimental results for  (their Figure 4A), and with the direct
measurements of Poisson’s ratio as a function of c* in our recent study (Chahine et al.,
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2002a). The tensile Poisson’s ratio, , exhibits a similar trend (Figure 6) with respect to
variations in c* and , and the dependence on c* is also confirmed in our recent study (Chahine
et al., 2002a). Furthermore, Poisson’s ratio in tension is significantly greater than in
compression according to the model (Figure 5 and Figure 6) as supported by direct
measurements of Poisson’s ratio reported in the literature (Woo et al., 1979;Jurvelin et al.
1997,Wong et al. 2000, Elliott et al., Chahine et al., 2002a).

An important prediction of the current model stems from the initial free swelling state of the
tissue. Since the strain in the solid matrix is tensile in this initial configuration, the aggregate
and Young’s moduli employ HA {E zz} = H+A according to Eqs.(20), (25) and (32). Thus, as
long as the applied compressive strain on the tissue is smaller in magnitude than the tensile
swelling strain, the solid matrix remains in tension and the equilibrium modulus measured from
such a compressive test would be equal to the tensile modulus of the solid matrix (e.g., on the
order of 6 MPa for the representative properties used in this study). Only when the applied
compressive strain magnitude exceeds the free swelling strain would the effective modulus
reduce to the typical compressive properties, e.g., on the order of 0.5 MPa. This theoretical
prediction, which may initially seem at odds with literature results, is in fact supported by our
recent experimental studies where compressive strains of small magnitudes were applied
relative to a free-swelling state, in an unconfined compression experiment (Chahine et al.,
2002b); the initial Young’s modulus measured at 2% compression was as high as 9 MPa under
hypotonic conditions, but reduced to 0.4 MPa under compressive strains of 10% or greater.
This strain-softening effect, which was also noted to a smaller extent by Schinagl et al.
(1997),Bursac et al. (1999,2000), and Wang et al. (2003), will be addressed in greater detail
in a future study. These results also suggest that the tensile modulus of cartilage is strain-
dependent (rather than the constant modulus used in this study), as modeled for example by
Li et al. (1999).

In summary, this study presents a series of simple formulas which relate biphasic and triphasic
properties within a framework of cubic symmetry and a bilinear response in tension-
compression. These expressions are derived from the nonlinear triphasic theory equations of
Lai et al. (1991), coupled with the conewise linear elasticity theory of Curnier et al. (1995),
using Taylor series expansions about the condition of zero strain. They help to explain why
the equilibrium biphasic properties reported in the literature depend on the bathing solution
salt concentration, the fixed charge density within the tissue, and the tensile or compressive
nature of the strain. The theoretical behavior predicted from these expressions is shown to
agree, at least qualitatively, with most experimental findings reported in the articular cartilage
literature for the dependence of the equilibrium moduli, Poisson’s ratios, and swelling strains
on bathing solution salt concentration. However the model in its current form does not predict
the experimentally observed dependence of the tensile modulus on salt concentration. The
experimentally observed dependence of the compressive modulus of cartilage on fixed charge
density is well predicted by the expression presented here. The current study uses the theoretical
model of the triphasic theory of Lai et al. (1991) and includes tension-compression nonlinearity
of the solid matrix, as also described in our recent study (Ateshian et al., 2003). It offers newly
derived formulas for the dependence of the tensile and compressive Young’s modulus and
Poisson’s ratio, as well as the off-diagonal modulus, on proteoglycan fixed charge density and
bathing solution salt concentration. This mathematical framework complements other models
in the literature which have also examined the relationship between osmotic pressure and the
equilibrium response of cartilage (Schwartz et al., 1994; Buschmann and Grodzinsky, 1995;
Kovach, 1996; Basser et al., 1998; Narmoneva et al., 1999, 2001; Bursac et al., 2000). In future
studies it will be shown that the transient response of biphasic and triphasic materials can also
be related through the expressions derived here.
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Figure 1.
Rate of change of osmotic pressure with dilatation, Π, as a function of (a) c* and (b)  [Eq.

(23)].  and  can be obtained by offsetting the response of Π with the
appropriate constant.
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Figure 2.
Free-swelling strain, , in laterally confined configuration, as a function of (a) c* and (b)

 [Eq.(24)].
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Figure 3.
Axial strain, , in unconfined free swelling configuration, as a function of (a) c* and (b) 
[Eq.(34)].
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Figure 4.

Effective Young’s modulus in compression, , as a function of (a) c* and (b)  [Eq.(36),
with  and )].
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Figure 5.
Effective Poisson’s ratio in compression, , as a function of (a) c* and (b)  [Eq.(37), with

)].
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Figure 6.
Effective Poisson’s ratio in tension, , as a function of (a) c* and (b)  [Eq.(37), with

)].
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