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Abstract
Cationic peptides known as protein transduction domains (PTDs) provide a means to deliver
molecules into mammalian cells. Here, nonaarginine (R9), the most efficacious of known PTDs, is
used to elucidate the pathway for PTD internalization. Although R9 is found in the cytosol as well
as the nucleolus when cells are fixed, this peptide is observed only in the endocytic vesicles of live
cells. Co-localization studies with vesicular markers confirm that PTDs are internalized by
endocytosis rather than by crossing the plasma membrane. The inability of R9 to enter living cells
deficient in heparan sulfate (HS) suggests that binding to HS is necessary for PTD internalization.
This finding is consistent with the high affinity of R9 for heparin (Kd = 109 nM). Finally, R9 is shown
to promote the leakage of liposomes, but only at high peptide:lipid ratios. These and other data
indicate that the PTD-mediated delivery of molecules into live mammalian cells involves: (1) binding
to cell-surface HS, (2) uptake by endocytosis, (3) release upon HS degradation, and (4) leakage from
endocytic vesicles.

Facilitating the delivery of molecules into mammalian cells is of substantial interest (1–6).
Developing the means to do so can generate both insights into cellular function and potential
applications in biomedicine. As early as 1965, Ryser noted that mixing polylysine or other
cationic macromolecules with proteins greatly increases the uptake of those proteins by cells
(7). In 1988, Frankel and Green independently discovered that the RNA-binding HIV1 TAT
protein was capable of crossing lipid bilayers (8,9). The dissection of HIV TAT function has
revealed that a small cationic domain, residues 47–57, is responsible for transduction (10).
Other cationic, nucleic acid-binding sequences are likewise capable of entering cells (11,12).
Peptide-like molecules and even non-peptidyl polycations are capable of crossing lipid bilayers
(11,13). These cationic “protein transduction domains” (PTDs) are not only capable of entering
cells but also can be used to deliver molecular cargo (14–16), such as proteins, oligonucleotides,
and small molecules (1,17–20).

What are the physicochemical characteristics of cationic PTDs? A natural backbone is not
necessary for transduction, as D-amino acid (21), peptoid (18), oligocarbamate (22), β-peptide
(23,24), and 6-aminocaproic acid (25) analogs are capable of entering cells. In contrast, the
positive charge of cationic PTD is essential for transduction, and arginine is preferred over
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lysine or histidine (13). Nonaarginine (R9) is the most efficacious known PTD that is composed
of natural L-amino acid residues (18).

Although the use of PTDs as macromolecular delivery devices has received much attention,
the mechanism of PTD internalization remains controversial (4). To date, most mechanistic
studies have been performed with fixed cells (11,13,22–28). Recently, Johansson, Lebleu, and
their coworkers showed that cell fixation alters the transduction of cationic peptides (29,30).
Internalization was found to be energy-dependent, and the internalized peptide was observed
in the endocytic vesicles of living cells (30). Dervan, Johansson, and their coworkers have
reported similar cell-fixation artifacts for the transduction of N-methylpyrrole/N-
methylimidazole polyamides (31) and PTD–green fluorescent protein fusions (32).

There have also been conflicting reports on whether PTDs bind to cell-surface
glycosaminoglycans (GAGs) (11,27,33,34). The cell surface is coated with polysaccharides
such as HS and sialic acid, and these molecules are known to mediate the binding of many
proteins to cells (34). GAGs are actively internalized from the cell surface in vesicles (35), and
this turnover could allow for the passive uptake of interacting macromolecules. Tyagi has
shown that the internalization of HIV TAT protein is dependent on the presence of heparan
sulfate proteoglycans (HSPGs) (33). Subsequently, however, Sugiura reported that this
constraint does not exist for polyarginine internalization into fixed cells (11).

Here, we examine the internalization of R9 into both fixed and living cells. We also analyze
R9 internalization into living GAG-deficient Chinese hamster ovary (CHO) cells, and we
extend those analyses with both qualitative and quantitative experiments on the binding of
R9 to heparin. Finally, we determine whether R9 is able to promote the leakage of liposomes.
Together, the data reveal provisions for the entry of a cationic PTD into mammalian cells.

EXPERIMENTAL PROCEDURES
Materials

Amino acids for peptide synthesis were from Novabiochem (Darmstadt, Germany). 5-(and 6-)
Carboxytetramethylrhodamine (TAMRA), Hoescht 33342, and FM 1-43 were from Molecular
Probes (Eugene, OR). Solvents were from Aldrich Chemical (Milwaukee, WI). Egg
phosphatidylcholine (PC) and low-molecular weight heparin (Mr 3000) were from Sigma
Chemical (St. Louis, MO). All other chemicals were from Fisher Scientific (Pittsburgh, PA)
or Aldrich Chemical (Milwaukee, WI), and were used without further purification.

CHO-K1 cells were from the American Type Culture Collection (Manassas, VA). CHO–
pgsD-677 cells (36) and CHO–pgsA-745 cells (37) were gifts of R. I. Montgomery. Cell culture
medium and supplements were from Life Technologies (Gaithersburg, MD).

Peptide Synthesis
R9 was synthesized by normal Fmoc-based solid-phase peptide synthesis with an Applied
Biosystems Model 432A peptide synthesizer. R9 was cleaved from the Rink acid resin by
incubation for 4 h in trifluoroacetic acid/ethanedithiol/phenol/thioanisole (32:4:3:1) and
precipitated in diethylether. R9 was purified by reversed-phase HPLC on a C4 column using
a gradient of water:acetonitrile containing trifluoroacetic acid (0.1% v/v), and analyzed by
matrix-assisted laser desorption ionization–time-of-flight (MALDI–TOF) mass spectrometry
using a Bruker Biflex III instrument (m/z 1424.97; expected: 1423.69).
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Peptide Labeling
R9 was labeled on resin by incubation for 4 h with TAMRA (4 equivalents) in
dimethylformamide containing benzotriazole-1-yl-oxy-tris-pyrolidino-phosphonium
hexafluorophosphate (4 equivalents) and diisopropylethylamine (8 equivalents). The resin was
washed with dimethylformamide and dichloromethane before deprotection as described above.
TAMRA–R9 was purified by reversed-phase HPLC and analyzed by MALDI–TOF mass
spectrometry (m/z 1837.92; expected: 1837.13).

Liposomal Leakage
Egg phosphatidyl choline liposomes containing carboxyfluorescein (100 mM) were formed as
described previously (38). Liposomes of 100-μm diameter were generated by passage (≥10
times) through a mini-extruder (Avanti Polar Lipids). Promotion of vesicular leakage by R9
was monitored by an increase in fluorescence intensity at 515 nm (excitation: 495 nm) using
a QuantaMaster 1 photon-counting fluorometer from Photon Technology International (South
Brunswick, NJ). Experiments were performed in 20 mM HEPES–NaOH buffer, pH 7.2.
Percent leakage (%L) was calculated as 100 × (I − Io)/(Idetergent − Io) where Io is the initial
fluorescence intensity and Idetergent is the intensity following the addition of Triton X-100 (to
0.1% v/v). Following each experiment, exact phospholipid concentrations were measured by
using the method of Ames (39).

Cell Culture
CHO cell lines were cultured in Ham’s F-12 medium supplemented with fetal calf serum (to
10% v/v) and antibiotics. Cells were grown in a CO2(g) (5% v/v) atmosphere at 37 °C.

Peptide Internalization
CHO cells were seeded in 4-well Lab-Tek-II chamber slides (Nalge Nunc International,
Naperville, IL) in Ham’s F-12 medium. Labeled peptide was added to each slide, which was
then incubated at 37 °C. After 60 min, cells were washed (6 times) with PBS containing
Ca2+ (0.1 g/L) and Mg2+ (0.1 g/L). Fixed cells were prepared according to the procedure that
we described previously (24). Cellular localization was visualized using an Eclipse E800
fluorescence microscope from Nikon (Tokyo, Japan) equipped with an × 60 or × 100 lens.

Heparin-Affinity Chromatography
The interaction of R9 and heparin was assessed qualitatively by affinity chromatography. A1.0-
mL HiTrap Heparin HP column from Amersham Pharmacia Biotech (Piscataway, NJ) was
equilibrated with 50 mM sodium acetate buffer (pH 5.0). Labeled peptide (~2 mg) was loaded
onto the column, and eluted with a linear gradient of NaCl (0–2 M) in the same buffer. Peptide
elution was monitored by absorbance at 280 and 535 nm.

Binding of TAMRA–R9 to Heparin
An increase in the fluoresence of TAMRA–R9 at 590 nm (excitation: 531 nm) accompanies
its binding to soluble heparin. This increase was used to quantitate the affinity of TAMRA–
R9 (1.0 nM) for heparin (Mr 3000) in 20 mM HEPES–NaOH buffer, pH 7.5, using an EnVision
multilabel plate reader from PerkinElmer (Wellesley, MA).

RESULTS
R9 Internalization in CHO Cells

Earlier this year, the intracellular localization of HIV TAT peptide in fixed cells was reported
to differ from that in living cells (30). To explore whether this dichotomy is a general feature
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of cationic PTDs, TAMRA–R9 internalization was examined in living and fixed CHO-K1 cells.
In living cells, TAMRA–R9 was found in what appeared to be vesicles within the cell (Figure
1A). Upon fixing with paraformaldehyde (4% w/v), TAMRA–R9 migrated to the nucleolus
and diffused throughout the cytoplasm (Figure 1B). Similar results were observed when cells
were fixed with acetone/methanol (1:1) (data not shown).

To confirm that TAMRA–R9 did indeed localize to the vesicles of living cells, the localization
of TAMRA–R9 was compared to that of the dyes FM 1-43 (which is a marker for endocytotic
vesicles) and Hoescht 33342 (which is a cell-permeable nuclear stain). Both TAMRA–R9 and
FM 1-43 appeared in punctate vesicular structures (Figure 2). No TAMRA–R9 was visible in
the nucleus of living cells.

R9 Uptake by Glycosaminoglycan-Deficient CHO Cells
The CHO–pgsD-677 and CHO–pgsA-745 cell lines have mutations in the glycosaminoglycan
(GAG) biosynthetic pathway. Specifically, CHO–pgsD-677 cells do not produce HS (36), and
CHO–pgsA-745 cells produce neither HS nor chondroitin sulfate (CS) (37). TAMRA–R9 was
incubated with these mutant cells and wild-type CHO-K1 cells (positive control experiment),
and its uptake was examined by fluorescence microscopy. Although TAMRA–R9 was clearly
visible in CHO-K1 cells, there was almost no detectable fluorescence from TAMRA–R9 in
GAG-deficient cell lines (Figure 3). These data indicate that interaction with GAGs on the cell
surface is critical for TAMRA–R9 internalization. Adding exogenous heparin to CHO-K1 cells
prior to the addition of TAMRA–R9 leads to results similar to that with the GAG-deficient cell
lines (data not shown), presumably because the exogenous heparin competes with cell-surface
GAGs for TAMRA–R9.

Binding of TAMRA–R9 to Heparin
The interaction of R9 with heparin (Figure 4A), which mimics the GAGs on the surface of a
mammalian cell,2 was probed in both qualitative and quantitative assays. The qualitative assay
used affinity chromatography with immobilized heparin. TAMRA–R9 was found to bind
extremely tightly to immobilized heparin, eluting at approximately 1.5 M NaCl in 50 mM
sodium acetate buffer, pH 5.0 (Figure 4B). This affinity is comparable to that of the HIV TAT
peptide under similar conditions (40).

The affinity of TAMRA–R9 for soluble heparin was quantitated with a direct titration
monitored by fluorescence spectroscopy. To determine the value of the equilibrium
dissociation constant (Kd), binding data were fitted by nonlinear regression analysis to the
equation: Kd

n = [heparin][TAMRA–R9]n/[heparin·nTAMRA–R9] with the program Prism 4
from GraphPad (San Diego, CA). Because heparin (Mr 3000) and TAMRA–R9 (Mr 1836) are
essentially homopolymers of similar mass, the value of n is likely to be near unity. For n = 1,
Kd = 109 ± 13 nM (Figure 4C). Allowing the value of n to vary gave n = 0.87 ± 0.05 and Kd
= 119 ± 16 nM, which is not distinguishable from the value of Kd calculated with n = 1.

Liposomal Leakage
Some cell-permeating peptides enter mammalian cells by interacting directly with the lipid
bilayer (41). The ability of peptides to disrupt membrane integrity can be measured with a
liposomal leakage assay (38). Carboxyfluorescein was encapsulated in liposomes at a high
concentration (>100 mM), which quenches its intrinsic fluorescence. Upon vesicle disruption,
leakage occurs, resulting in an increase in fluorescence. In a negative control experiment, no
leakage leakage of carboxyfluorescein from egg PC vesicles was observed in buffer alone (data

2Both HS and heparin are acidic glycosaminoglycans characterized by a repeating unit of α-D-glucosamine linked 1→4 to a uronic (α-
L-iduronic or β-D-glucuronic) acid and modified to a variable extent by O- and N-sulfation, and N-acetylation.
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not shown). R9-Induced leakage in a peptide concentration-dependent manner (Figure 5A).
This result indicates that R9 is capable of disrupting the lipid bilayer. Yet, a peptide:lipid molar
ratio of nearly 1:1 was required to induce leakage by R9 (Figure 5B). In a positive control
experiment, melittin (which forms pores in lipid bilayers (42)) caused more rapid leakage at
30 nM than did R9 at 260 nM (data not shown).

DISCUSSION
The efficacy of nascent chemotherapeutics can be limited by their ability to enter mammalian
cells (43,15). PTDs can expedite delivery (1–6). Determining the requirements for PTD entry
into cells could enable the creation of even better molecular devices to effect internalization,
as well as reveal new aspects of cellular biochemistry and biophysics.

Previous work has led to conflicting conclusions regarding the interaction of PTDs with cells.
The mechanism by which peptide toxins, such as mellitin and magainin, interact with cells has
been studied extensively, and these peptides are known to form pores in the plasma membrane
(42). Penetratin, which is a cationic peptide corresponding to the third α-helix of the
Antennapedia homeodomain, is capable of crossing membranes without causing vesicle
disruption. In the presence of a lipid bilayer, penetratin appears to form an amphipathic α-helix,
which facilitates its insertion into the bilayer (44,45). HIV TAT peptide has likewise be found
in a helical structure by NMR spectroscopy, suggesting that HIV TAT and perhaps other PTDs
could act in a manner similar to penetratin (46).

Early mechanistic studies on the cellular entry of PTDs were performed with fixed cells (11,
13,22–28). Fixation is believed to permeate membranes (30), and allows vesicle-entrapped
peptides and proteins to travel to new locations (29,30,32). Likewise, we find that TAMRA–
R9 is found in different cellular locations in fixed and living cells. Specifically, TAMRA–R9
localizes in the nucleolus and cytoplasm of fixed cells (Figure 1B). In living cells, however,
TAMRA–R9 is found primarily in vesicles (Figures 1A and 2). As a result, our efforts to
elucidate the requirements for PTD internalization have focused on living cells.

In living cells, cationic proteins such as HIV TAT protein and some analogues of ribonuclease
A (which is a small cationic protein (47)) are thought to bind to anionic carbohydrates on the
cell surface (33,48). Moreover, polysaccharides such as heparan sulfate are believed to play
important roles in cellular signaling by initiating the binding of certain proteins to their cellular
receptors (34,49,50). On the cell surface, heparan sulfate is attached to either transmembrane
proteins to form syndecans or GPI-anchored proteins to form glypicans (51,52). The HS side
chains of these heparan sulfate proteoglycans (HSPGs) undergo hydrolytic degradation by
heparanases en route to the lysosome (53).

A number of proteins are known to bind to specific HSPGs. For some of these proteins, HS is
believed to act as the receptor for cellular entry (54). We find that the entry of a cationic PTD
into living mammalian cells relies on the presence of HSPGs. Specifically, the entry of
TAMRA–R9 into CHO cells that are deficient in HS is decreased greatly relative to that into
wild-type cells (Figure 3). Similar results have been observed with the intact HIV-1 TAT
protein (54).

HS and heparin are analogous glycosaminoglycans (51,55).2 Accordingly, heparin has been
used as a surrogate for HS in a wide variety of biochemical experiments (56–58). We reasoned
that if HSPGs mediate the cellular entry of PTDs, then cationic peptides such as TAMRA–
R9 should have a measurable affinity for heparin. Indeed, we find that TAMRA–R9 binds
strongly to immobilized heparin (Figure 4B), which mimics the HS side chains of cell-surface
HSPGs. Moreover, the soluble heparin·TAMRA–R9 complex has a value of Kd near 0.1 μM
(Figure 4C), which is similar to that of a typical receptor–ligand interaction.
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How does R9 release from HS and escape from endocytic vesicles? HS is cleaved by
heparanases, first in vesicles of neutral pH and then in acidic endosomes (34,53,59). HS
cleavage would diminish its anion valency and should thus diminish its affinity for R9. We
find that free R9 is capable of disrupting a lipid bilayer and causing a liposome to leak (Figure
5). This leakage is maximal between pH 7.5 and 9.5 (data not shown), suggesting that R9 could
escape from endosomes prior to their acidification. Regardless, R9-induced liposomal leakage
occurs at a peptide:lipid molar ratio that is 10- to 100-fold greater than that for known pore-
forming peptides (38). Thus, the disruption of lipid bilayers is likely to play a limited role in
transduction at low concentrations of R9, and a relatively high concentration could be necessary
for efficient transduction.

Our findings are consistent with a four-step pathway for the entry of cationic PTDs into the
cytoplasm of mammalian cells (Figure 6). First, peptides bind to HSPGs on the cell surface.
These peptides are then taken up a cell by heparan sulfate-mediated endocytosis. Once in
vesicles, HS is degraded by heparanases, releasing the PTD. Finally, unbound PTD escapes
from the vesicles after achieving a concentration high enough to promote vesicular leakage.
This pathway bears some analogy to those proposed for the cellular entry of other HS-binding
proteins, such as bFGF (60) or follistatin (61). The identity of the rate-limiting step for PTD
entry (Figure 6) is not known. Identifying that step could lead to more efficacious PTDs or to
transduction agonists.
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Figure 1.
Localization of TAMRA–R9 in living and fixed cells. The internalization of TAMRA–R9 (1.0
μM) was analyzed by fluorescence microscopy. Cells were counterstained with Hoescht 33342.
(A) living CHO-K1 cells. (B) CHO-K1 cells fixed with paraformaldehyde. Bar, 10 μm.
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Figure 2.
Co-localization of TAMRA–R9 in living cells. The internalization of TAMRA–R9 (1.0 μM)
and marker dyes into living CHO-K1 cells was analyzed by fluorescence microscopy. (A)
TAMRA–R9. (B) FM 1-43. (C) TAMRA–R9, FM 1-43, and Hoescht 33342. (D) Bright-field
image of CHO-K1 cells. Bar, 10 μm.
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Figure 3.
Dependence of TAMRA–R9 internalization into living cells on glycosaminoglycans.
Internalization of TAMRA–R9 (1.0 μM) into living wild-type and mutant CHO cells. (A) CHO-
K1 cells (wild-type). (B) CHO–pgsD-677 cells (which lack HS). C, CHO–pgsA-745 cells
(which lack HS and CS). Bar, 10 μm.
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Figure 4.
Affinity of TAMRA–R9 for heparin. (A) Prevalent structural motif in heparin.2 (B) Elution
profile from affinity chromatography of TAMRA–R9 on immobilized heparin. TAMRA–R9
was eluted with a linear gradient of NaCl (0–2 M) (conductivity, thin line), and monitored by
its absorbance at 280 nm (thick line). (C) Fluorescence titration of TAMRA–R9 (1.0 nM) with
heparin (Mr 3000) in 20 mM HEPES–NaOH buffer, pH 7.5. The equilibrium dissociation
constant is Kd = 109 ± 13 nM.
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Figure 5.
R9-Induced leakage of egg PC liposomes. (A) Time course for the leakage of
carboxyfluorescein from egg PC liposomes (100-μm diameter) upon exposure to various
concentrations of R9. (B) Leakage of carboxyfluorescein from egg PC liposomes (100-μm
diameter) as a function of peptide:lipid molar ratio. Data in panel B are derived from data in
panel A at 180 s.
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Figure 6.
Pathway for the transduction of R9 into cells. Cationic PTDs such as R9 bind to HSPGs on the
cell surface. PTDs are internalization by endocytosis. HS is degraded by heparanases. Free
PTDs leak from endocytic vesicles and enter the cytosol.
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