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The recent explosion in newly sequenced bacterial genomes is
outpacing the capacity of researchers to try to assign functional
annotation to all the new proteins. Hence, computational methods
that can help predict structural motifs provide increasingly impor-
tant clues in helping to determine how these proteins might func-
tion. We introduce a Markov Random Field approach tailored for
recognizing proteins that fold into mainly β-structural motifs,
and apply it to build recognizers for the β-propeller shapes. As
an application, we identify a potential class of hybrid two-
component sensor proteins, that we predict contain a double-
propeller domain.

remote homology detection ∣ motif recognition ∣ structure ∣
signal transduction ∣ histidine kinase

Bacteria are adept at sensing and adjusting to conditions in
their environment. For a bacteria to respond to its environ-

ment, it needs to be able to monitor extracellular changes in-
cluding osmotic activity, ionic strength, pH, temperature, and
the concentrations of nutrients and harmful compounds (1).
Frequently, such processes are mediated by two-component sen-
sor proteins, involving a usually membrane-bound sensor protein,
and a response regulator. A set of 32 unusual hybrid periplasmic-
sensing two-component sensor histidine kinases were discovered
in the human gut symbiont Bacteroides thetaiotaomicron (2).
These hybrid two-component sensor systems (HTCS) were
unusual in that they incorporated all of the domains found in
the classical two-component system into a single polypeptide (3).
Sonnenburg et al. (2) hypothesized that the HTCS proteins were
involved in how these microbiota sense diverse nutrients and
implement an appropriate metabolic response, and showed that
loss of one of these HTCS proteins, BT3172, reduced glycotic
pathway activity. They also found that the sensor domains of
the HTCS proteins were less highly conserved than their intracel-
lular signaling domains, suggesting that the HTCS proteins have
diversified to respond to a variety of signals while conserving
their means of intracellular signal transduction. HTCS proteins
have since been found in other prokaryote genomes, primarily in
Bacteroidetes and Proteobacteria (1, 2).

In this article, we use computational methods to predict that
over 300 bacterial proteins (primarily from Proteobacteria and
Bacteroidetes) have a unusual double β-propeller motif in their
N-terminal region, followed by Pfam’s two-component regulator
three Y (YYY) motif (4), followed by most commonly a histidine
kinase domain [but also, sometimes a diguanylate cyclase domain
(GGDEF) or a stage 2 sporulation E protein (SpoIIE) domain,
and others], see Fig. 1. Many of the histidine kinase domain-
containing sequences also have a response regulator signature
as well, confirming their role as hybrid two-component sensor sys-
tems. The prediction of the double-propeller motif was accom-
plished by use of a unique computational method that employs
Markov random fields to predict β-structural motifs in distantly
homologous proteins. Weak sequence homology already suggest-
ed that the N-terminal transmembrane sensing region contained

propeller blades (see below), but could not have determined
their exact number or how they split into different propellers,
though Mascher et al. (1) suggested that this region of the HTCS
histidine kinases in B. thetaiotaomicron could form two seven-
bladed propellers.

Markov random field (MRF) methods (5) that generalize
hidden Markov models (HMM) can allow arbitrary dependencies
between nonadjacent states, to better model β-structural motifs
such as β-propellers in protein sequence. Using an MRF frame-
work, it is possible to model interactions between residues that
participate together in a secondary or super-secondary structural
motif, but may not be close together in the 1D sequence. Such an
approach should particularly assist in the prediction of protein
structural motifs whose secondary structure is “mainly beta.” This
is because although there is evidence that residues involved in
β-sheet formation that are close in space exhibit strong statistical
biases (6–8), these residues may be difficult to discover due to
being a variable and potentially long distance apart in the protein
sequence. In fact, simply predicting the correct annotation of sec-
ondary structure of these folds can be problematic: Even the best
secondary structure predictors such as PHD (9) and PSIPRED
(10) predict α-helices more accurately than β-strands (11). Tertia-
ry structure predictors such as Rosetta (12) and LINUS (13),
although performing well on all-α- and α/β-proteins, are also chal-
lenged by topologically complex all-β-proteins (12, 13). Many
threading programs also have particular problems recognizing
and then threading β-sheet topologies correctly once sequences
fall into the so-called twilight zone (14) of less than 15–20%
sequence homology to known structures.

Previous methods have been introduced by our group and
others to identify β-structural motifs from sequence by capturing
pairwise dependencies between residues that come together to
form the β-sheets of the motif (8,15–19). These methods were
shown to be more successful than a variety of competing methods
at recognizing the right-handed parallel β-helix fold (8,15–18),
the β-trefoil fold (18, 19), TM-barrel proteins (20), and Leucine-
Rich repeat folds (16). These methods have been shown to
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Fig. 1. Schematic of a hybrid two-component sensor YYY protein with a
histidine kinase HisKA domain; we predict two beta propellers in the N-
terminal region.
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produce meaningful results on particular β-structural motifs de-
spite the fact that they are throwing away almost all sequence infor-
mation (of the type learned by a profile HMM). None of the
previous methods solved the elusive problem of combining both
HMM information and higher-order β-sheet dependency infor-
mation at the same time.

In this article, we show how to combine both HMM informa-
tion and higher-order β-sheet dependency information into a sin-
gle, integrated MRF whose energy function can be solved exactly
in a computationally tractable way using multidimensional dy-
namic programming. We introduce the structural motifs using
random fields (SMURF) framework and apply it to the recogni-
tion of the large classes of β-propeller folds. We test it on solved
protein structures comprising three structural motifs in stringent
leave-family-out cross-validation experiments; namely the six-,
seven-, and eight-bladed β-propellers. These β-propellers are
ideal structural motifs on which to test our methods because they
are highly diverse in sequence, taxa, and function (21), with some
families having a strong sequence signature and others not, while
also having a repeating β-strand topology (see Fig. 2). We then
chain two six-, seven-, or eight-bladed SMURF propeller models
together to construct a recognizer of a double-propeller motif
that we test on the putative hybrid two-component regulatory
system proteins we discuss above, with strong positive results.
We show SMURF is better able to recognize this potential motif
than HMM-based models on the one hand, and also better than
an MRF that measures pairwise propensities for β-sheet forma-
tion alone.

To test the double-propeller hypothesis, we constructed nine
SMURF-based templates of two β-propellers: namely, two six-
bladed, a six-bladed followed by a seven-bladed, a six-bladed fol-
lowed by an eight-bladed, etc. Using a SMURF-based template
of two seven-bladed propellers, we now find over 300 proteins
predicted to form double propellers, followed by a YYY motif,
in over 100 bacterial species, primarily in Proteobacteria and
Bacteroidetes (see Results and SI Text). We show that a domain
architecture of twin seven-bladed propellers is computationally
favored by the most structures over six-bladed, eight-bladed,
or any mix of the other numbers of blades in the propellers,
and no structures are predicted to contain eight-bladed pro-
pellers. Based on sequence motifs that follow the YYY motif
in sequence, these proteins appear to also be two-component
regulatory system proteins.

Results
Predicting Propeller Folds. We tested our methods on the superfa-
milies of the six-, seven-, and eight-bladed propeller folds, where
we performed leave-family-out cross-validation on each one. We
compared this to the latest version of one of the most popular
HMM programs, HMMER 3.0 (22). (For both SMURF and
HMMER, we removed all six-, seven-, and eight-bladed propel-
lers from the negative set; distinguishing the number of blades in
the propeller is a more difficult problem that we discuss below.)
Recall that SMURF has a two-component score, one component
that roughly corresponds to HMMER alone, and one that mea-
sures pairwise correlations, which it gives equal weight. As can be
seen in Table 1, SMURF outperforms HMMER in every cate-
gory, often substantially. We also wanted to get a sense of how
powerful the pairwise probabilities alone would be, so the
SMURF(P) column in the table shows the results of our SMURF
algorithm reweighted so that the HMM component score gets a
weight of zero and the pairwise correlation score gets a weight of
one. From Table 1, it can be seen that this performs substantially
worse than SMURF or even HMMER on the six-bladed and se-
ven-bladed propellers. Strangely, however, SMURF(P) performs
best of all three methods on the eight-bladed propellers. The
eight-bladed propellers are the fold class where there are the few-
est training examples, and thus it is not surprising that the HMM/
sequence-based component is least helpful in cross-validation in
this case. This suggests that for each new structural motif, the two
components of the SMURF score should be weighted according
to how good the training data are for a sequence-based model.
This weighting can be part of the model building for SMURF
(we did not do it here because we wanted to make sure we did
not overtrain SMURF when reporting cross-validation results).

We also ran SMURF on a large database of sequences of
unsolved structures, namely, version 14.9 of Uniprot filtered to
50% sequence identity (23). Lists of the top 1,000 proteins that
SMURF predicts to form six- or seven-bladed propellers can be
found in the SI Text. A webserver that will accept any protein se-
quence and score the likelihood that it matches each propeller
template is available at http://smurf.cs.tufts.edu.

Two-Component Sensor YYY Proteins. Pfam (4), a database of pro-
tein sequence motifs derived from HMMER models, identifies
506 protein sequences, putative protein sequences, or fragments
as containing instances of a YYY motif. Of these, 237 are pre-
dicted to contain the HisKA motif by Pfam, signature of a histi-
dine kinase domain. We built nine double-bladed β-propeller
templates by simply chaining two six-, seven-, or eight-bladed
SMURF propeller templates together, in all combinations. For
each template, we compute the best scoring match to the pair
of propellers using dynamic programming. In the 506 YYY-motif
containing proteins, Pfam predicts 102 to have no instances of the
motif RegProp, and between 3 and 13 instances of the motif Re-
gProp in the remaining proteins, where RegProp is supposed (by
sequence similarity) to be homologous to a blade of a propeller.
Restricted to proteins that contain both the YYYand the HisKA
motif, Pfam also predicts between 0 and 13 instances of the motif
RegProp. Fig. 3 shows the number of instances of the motif pre-
dicted by Pfam in the N-terminal region of proteins where both a
YYY and a HisKA motif is recognized.

We constructed nine templates, based on chaining together
two of the SMURF six-,seven-, and eight-bladed propeller tem-
plates, consisting of (a) two six-bladed propellers, (b) a six-bladed
followed by a seven-bladed propeller, (c) a seven-bladed followed
by a six-bladed propeller, (d) a six-bladed followed by an eight-
bladed propeller, etc. Of the 506 YYY-motif proteins, there were
475 for which at least one template was accepted with a p value
<0.01 for containing the motif. Table 2 breaks down the SMURF
predictions of the double-propeller motif by p value; we have high
confidence the motif is present when the p value is less than 0.001;Fig. 2. Seven-bladed β-propeller.
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we predict the motif (but with lower confidence) when the p value
is between 0.001 and 0.01. Many of these sequences appear to be
two-component regulators, with the propeller domain preceding
the YYY in sequence, and a known sensing domain (such as a
histidine kinase or the GGDEF domain) appearing after the
YYY. We also list SMURF scores for the three most common
families by signature domain after the YYY motif: the HisKA
histidine kinase domain, the GGDEF adenylyl cyclase signaling
domain, and the SpoIIE sporulation domain. (Other domains
that Pfam recognizes in at least one sequence that appear after
the YYY domain include cGMP phosphodiesterase/adenylcy-
clase/Fhla (Gaf), Per/Art/Sim (PAS), and Histidine kinase-like
ATPase (HATPase) domains.) Many of the histidine kinase struc-
tures also have a detectable “response regulator” sequence sig-
nature after the histidine kinase, confirming their role as two-
component sensor systems. SMURF scores a double propeller
with confidence in a greater proportion of the HisKA containing
protein sequences than in the GGDEF or SpoIIE domain-
containing protein sequences. We note that 24 of the lowest-
scoring proteins are clearly fragments. An additional 26 of the
low-scoring proteins consist of proteins with multiple copies of
the YYY domain that do not appear to be two-component reg-
ulators. Their conjectured function remains unknown.

In terms of the species distribution, SMURF tends to score
highest YYY proteins that come from the Bacteroidetes,
particularly the Bacteroidacea subclass, and nearly all the
highest-confidence double-propeller predictions come from

Bacteroides species. Proteins from the Xanthomonas genus tend
to be lower scoring, indicating perhaps either a less common se-
quence pattern (which would lower the HMM score component),
or a less regular propeller blade structure (which would lower the
pairwise score component). Three figures describing the species
distribution of the YYY sequences appear in SI Text.

Because propellers of differing numbers of blades appear to
share considerable homology (24), like other homology-based
methods such as HMMs, SMURF is better at distinguishing pro-
pellers from nonpropellers than in determining the number of
blades, particularly because the seventh blade is so irregular that
it is not consistently captured in the SMURF template. For our
original templates, we found that, although SMURF predicts
them to be less likely to contain eight-bladed propellers, it could
not distinguish between 6–6, 6–7, 7–6, or 7–7 templates reliably.
To address this issue, we built a SMURF seven-bladed propeller
template from only 23 of the 30 solved seven-bladed propeller
structures in the nonredundant protein data bank (PDB), exclud-
ing the seven-bladed propellers that had the most irregularity be-
tween blades six and seven (namely, the seven-bladed propellers
in 1mda, 1a0r, 2i3s, 1u4c, 1jtd, 1utc, and 1c9i). This unique seven-
bladed template scores all 30 seven-bladed propellers higher than
75% of the six-bladed propellers in the nonredundant PDB in
stringent cross-validation, whereas the original seven-bladed tem-
plate scores both six- and seven-bladed propellers highly. Substi-
tuting in the new, stricter seven-bladed template, we created four
new double-propeller templates: two six-bladed, a six-bladed fol-
lowed by a seven-bladed, a seven-bladed followed by a six-bladed,
and two seven-bladed. We considered the 478 of the 506 YYY
structures that have a p value of 0.01 or better for one of those
four templates. For each template, the percentage of the YYY-
containing sequences on which it scores best appears in Table 3. If
we conjecture that the motif is conserved across all the YYY
structures that contain double propellers, we thus predict that
the motif consists of two seven-bladed propellers. The full list

Table 1. Our results versus HMMER 3.0

Six-bladed Seven-bladed Eight-bladed

TN HMMER SMURF(P) SMURF HMMER SMURF(P) SMURF HMMER SMURF(P) SMURF

97% 52 20 80 80 23 87 0 40 0
96% 56 24 80 80 33 87 20 40 40
95% 64 36 80 87 47 93 20 40 40
94% 68 36 84 90 53 93 40 60 40
93% 68 48 84 90 53 97 40 100 40
92% 68 60 88 90 57 97 40 100 40
91% 68 60 92 90 57 97 40 100 40
90% 68 60 92 93 57 100 60 100 100

The numbers represent the percent of true positives correct for a given threshold of percent of true negatives (TN) on a leave-
superfamily-out cross-validation. Best results (in bold) come from SMURF, or, on the eight-bladed propellers, SMURF(P) which
reweights SMURF away from the HMM entirely to consider only our pairwise scores. Note that structures with fewer than 150
residues were removed from the test set, as they are too short to fold into β-propellers with six or more blades.

Fig. 3. The x axis of this histogram gives the number of “blade”motifs that
Pfam predicts in the N-terminal region, and the y axis gives the number of
structures for which Pfam predicts that number of blades. Pfam (based on an
HMM alone) fails to predict a double-propeller structure, instead predicting
between 0 and 13 propeller blades in the N-terminal region of the 237 pro-
tein sequences containing both a YYY and a HisKA domain. SMURF predicts
these blades are organized into two β-propellers.

Table 2. SMURF double-propeller predictions for the
proteins containing Pfam’s YYY motif

Motif Total <0.0001 <0.001 <0.01 ≥0.01

all 506 80 259 136 31
HisKA 237 59 143 29 6
GGDEF 90 9 36 42 3
SpoIIE 22 0 16 6 0

The columns indicate the SMURF p value for the best of the nine templates.
In addition to statistics for all YYY sequences, we also report separately per-
formance on several large classes for which there is a sequence motif signa-
ture after the YYY: the HisKA family of Histidine kinases, the GGDEF family,
and the SPoIIE family.
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of SMURF double seven-bladed propeller predictions appears
in SI Text.

Discussion
A major challenge in protein structural motif recognition has
been to find a tractable way to integrate local sequence informa-
tion with higher-order structural dependencies in an integrated,
computationally tractable, energy function. We have presented a
framework, SMURF, that integrates long-distance pairwise cor-
relations involving β-sheet formation with an HMM using a ran-
dom field, and tested it on three fold classes, namely, the five-,
six-, and seven-bladed propellers. There is nothing in the method,
however, that restricts it to propellers. The method can be ap-
plied to any β-structural motif where there is enough training
data, and the number of interleaved pairs of β-strands is not
too great (to maintain feasible computational resources). We will
be applying SMURF to additional classes of β-structural motifs in
the future.

We predict that the HTCS proteins containing the Pfam YYY
motif contain double β-propellers; however, it seems that pre-
dicting propeller motifs is much easier than determining the num-
ber of propeller blades. As can be seen in Table 3, the template
that is preferred most often is the twin seven-bladed propeller,
over 40% of the time, with the next most preferred template
the seven-bladed followed by the six-bladed propeller, over
25% of the time. Importantly, on a structure-by-structure basis,
typically, even when the 7–7-bladed template is not preferred, it
scores nearly as well as the most preferred template (SI Text). In
cross-validation, the seven-bladed propellers scored well on both
six- and seven-bladed templates, whereas the true six-bladed pro-
pellers scored poorly on seven-bladed templates. This is strong
evidence for the presence of a seventh blade.

It is possible that some of the YYY structures fold into two
seven-bladed propellers and some fold into a seven-bladed fol-
lowed by a six-bladed propeller, etc. On the other hand, they
might all fold into twin seven-bladed propeller structures, but
the difficulty in locating the last blade of the seven-bladed pro-
peller arises from the known issues of irregular “closures” in
known propeller motifs. In particular, different instances of β-
propeller motifs have different topologies by which they “close”
the propeller between the N and C terminal ends of the structure
(25, 26). For example, although most sequences in our dataset get
very comparable scores on the four templates, the protein
A7GIL1 and its close homologs from Clostridium botulinum all
strongly prefer the 6–6 template to any of the templates with
a seven-bladed propeller. Perhaps this structure has an atypical
seventh blade or has lost the seventh blade entirely.

SMURF is a purely statistical method that is more powerful
than an HMM in predicting β-structural motifs. To improve dis-
crimination between six- and seven-bladed propeller templates,
we will likely have to move beyond statistical modeling of the se-
quence to geometric modeling using, for example, sidechain
packing (27, 31).

Methods
Fig. 4 shows how a profile HMM is typically designed for protein motif
recognition. In addition to start and end states, there are match states cor-

responding to each sequence position, insertion states, and deletion states.
In SMURF, the main difference is that we do not allow insertions or deletions
in positions corresponding to match states along a β-strand: that is, once we
match a residue in sequence with the first residue in a β-strand, subsequent
residuesmust match to the following β-strand positions until the end of the β-
strand without insert or delete states. To run SMURF, it is first necessary to
parse thematch states of the HMM to indicate which match states participate
in β-strands, andwhich tuples of β-strand residues are to be paired. Below, we
show how to generate such a parse automatically from a protein multiple-
structure alignment.

The dependency diagram for SMURF for a pair of adjacent antiparallel β-
strands appears in Fig. 5. An edge between two states indicates that the
probabilities for those states are dependent on one another. The way we
approximate the scores of the MRF is to decompose our log-likelihood score
into a linear combination of two components. The first component is an
HMM component, and the second component is a β-strand pair component.
The HMM component is calculated as if the long-range dependency edges
were not there; that is, it is just the score that the profile HMM would give
for placing a residue in that match state. The β-strand pair component is cal-
culated using pairwise probability frequency tables similar to our previous
program Betawrap (8, 15); the only difference is that true propeller structures
are removed from the training set to avoid overtraining for the cross-
validation experiment. Here the pairs indicate the likelihood that two
residues prefer to be hydrogen-bonded in a β-sheet. The formal transition
probabilities are described in the next section.

Template Construction. For each of the known 3D structures from the fold
class [according to Structural Classification of Proteins (SCOP) version 1.73]
in the training set, it is marked which residue positions participate in a β-
strand (using the Rasmol algorithm to decide if a position participates in a
beta strand; see ref. 28). Each residue in a β-strand also determines which
residues in which other β-strand it is paired with using the same program.
The training structures are then aligned using the Matt multiple-structure
alignment program (29), and we call a position in the alignment β-conserved
if more than half the structures in the alignment mark that position as par-
ticipating in a β-sheet. A pair of positions in the alignment is a β-conserved
pair if more than half the structures in the alignment mark both positions as
being hydrogen bonded with each other in the β-sheet. Two beta-conserved
pairs AB and CD are said to be adjacent if in more than half the structures of
the alignment, A is adjacent to C and B is adjacent to D, and AB and CD hy-
drogen bond to each other in the same β-sheet. Template β-conserved strands
consist of the maximal contiguous sets of adjacent β-conserved strand pairs,
together with the information of which residue positions are hydrogen
bonded. Note that, because these template positions may only be occupied
by positions that are identified as beta-strands in a majority of the structures,
there could be residues in other structures between these positions in the
Matt alignment, creating gap positions in the structural alignment in the
middle of the template β-conserved strands. This is undesirable, so we will

Fig. 4. States of a profile HMM.

Table 3. Percentage of predicted double-bladed propellers

Blade number 6 7

6 18.8 14.4
7 25.7 41.0

Each row represents the number of blades in the first propeller and each
column the number of blades in the second propeller for each of the four
double-propeller templates. The entry for each template is the percent of
the time that template has the lowest SMURF score (over the 478 proteins
in which SMURF predicts a double-propeller with p value at most 0.01).

Fig. 5. SMURF states with pairwise dependencies (dotted lines) for two
hydrogen-bonded antiparallel β-strands, each four residues long, with two
intervening match states. Note there would also be three insertion and
two deletion states between the β-strands.
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remove these positions, which includes possibly deleting residues from se-
quences when we remove the corresponding position from the template
structural alignment. In the resulting alignment, the beta-conserved tem-
plate strands are always contiguous (see Fig. 6).

The output of this phase is a sequence alignment derived from the Matt
structural alignment with annotated β-strand residue positions and the resi-
due positions to which they are paired. This multiple sequence alignment,
together with the locations of the template β-strands is the input to the next
(training) phase.

The training phase trains both an HMM on the multiple sequence align-
ment, and also pairwise probabilities on the paired residue positions in the
template beta strands. The HMMportion of the training is exactly the default
HMM training from HMMER version 3, except that every template β-strand
position is included in the output model. For the pairwise probabilities in the
template β-strands, the “in” and “out” pairwise probability tables similar to
the program Betawrap (8) are considered, but updated to reflect probabil-
ities in the current nonredundant PDB (nrpdb.120707) version, and with all
β-propeller protein structures (according to SCOP 1.73) removed. It is deter-
mined for each residue position, whether the sum of the pairwise probabil-
ities of seeing the pairs in the training alignment, summed over all structures
in the alignment, was more probable from the “buried” or the “exposed”
probability table. The position is then labeled buried or exposed accordingly.
Note that, although the names buried and exposed come from the solvent
accessibility of residue positions in the original Betawrap algorithm, no claim
about solvent accessibility or consistency of solvent accessibility is made in our
context. In a structurally oblivious way, we are simply determining based on
the training data which of the two models best predicts the set of residue
pairs we see. The output is an HMM where certain states are marked as
β-strand states, and pairings of hydrogen-bonded β-strand states are also
given. Because the score includes a component from these pairs, and not just
the linear score of the HMM component, it is no longer a simple HMM, but
rather an MRF, because of the nonlinear dependencies between the paired
states in constructing the score.

For a given test sequence, we seek the parse of the sequence to the states
of the training HMM that optimizes the particular score. The score we seek
to optimize, over all ways to map the sequence to the states of the MRF
model, is

α × logðHMM scoreÞ þ γ × logðpairwise scoreÞ

where the HMM score represents the conditional probability of seeing the
sequence given the HMM portion of the model. Experimentally, using a value
of one for both α and γ provided the best results on cross-validation.

We now specify the exact form of the transition probabilities for the MRF.
Let the sequence have residues r1;…; rn, and the MRF have match states
m1;…;ml , deletion states d1;…; dl , and insertion states i1;…; il−1. And sup-
pose that r1…rk and match states m1…ms have been assigned. Then, for the
probability of assigning rk to the next match state mj ¼ msþ1 is

Pr½mj∣rk; uj−1� ¼ HMM½mj; rk� · transition½uj−1; mj�
· β-strand½rj; rk; mj; mk�;

where uj−1 can be either dj−1, ij−1, ormj−1, depending on whether the current
state is a deletion, insertion, or match state. When the current state is a
match state, the SMURF template replaces the transition½uj−1;mj � term with
a one. The β-strand component is only calculated when the particular match
state mj participates in a β-strand that is matched with a state mk earlier in
the sequence template. In fact, this component is the main difference be-
tween our MRF and an ordinary HMM. The only other difference is that we
have modified the typical profile HMM to not allow insertion states along β-
strands. So the transition probabilities above come directly from HMM train-
ing, except

transition½mj∣mj−1� ¼ 1 if mj−1; mj in the same β-strand

transition½mj∣dj−1� ¼ 1 if mj is in a β-strand

We also can write down the probabilities of entering the jth deletion or
insertion state; they are the same as for an ordinary HMM, except, again
recall that we have modified the typical profile HMM not to allow insertion
states along β-strands (as noted below):

Pr½dj∣mj−1� ¼ transition ½dj; mj−1�

where transition ½dj;mj−1� ¼ 0 if mj is in a β-strand, and from the HMM
transition probabilities otherwise:

Pr½dj∣dj−1� ¼ transition ½dj; dj−1�

Pr½dj∣ij−1� ¼ 0

Pr½ij∣mj� ¼ transition ½ij; mj� · HMM½ij; rk�

Pr½ij∣ij� ¼ transition ½ij; ij� · HMM½ij; rk�

Pr½ij∣dj� ¼ 0

Finally, the probability of the start state is calculated similar to the prob-
ability of assigning mj to rk , except the score is multiplied by a constant
dependent on mj . The probability of the end state is simply a constant de-
pendent on mj . Just like HMMER, we divide all probabilities by the probabil-
ity of the “null model” when calculating the actual score. The null model is
the probability of seeing the sequence by chance, based on the background
residue frequency in proteins in general. Note that when actually calculating
these scores, we instead calculate the logs, so that all products become sum-
mations. The score of the sequence is the maximum score obtained over all
possible ways to parse the sequence onto the states of theMRF. It is converted
to a p value by fitting a Gaussian to the scores of the nonpropeller containing
sequences of length at least 150. For the double-propeller templates, formed
by chaining together two SMURF single-propeller templates, it is difficult
to calculate p values directly because the set of solved structures is biased
toward shorter protein chains, and the YYY proteins are very long. Thus
we calculate p values as follows: We add the means and standard deviations
used to calculate the component single-propeller Gaussians to create a new
Gaussian.

The maximum score of a sequence is computed by multidimensional
dynamic programming. The dynamic programming takes place on the
MRF described above— it has the same start states, end states, match states,
insertion states, and deletion states as does HMMER HMMs, except some of
the states are special β-strand states. Recall that the β-strand states consist of
sets of contiguous states with no insertion or deletion states allowed be-
tween them (the β-strands), and furthermore, β-strands are paired with other
β-strands. In particular, the pairwise probabilities for paired β-strands can only
be calculated for the second paired β-strand, once it has been fixed what re-
sidue will be occupying the first position of the pair. Thus, each time we reach
a state in the HMM that corresponds to the first residue of the first β-strand in
a set of paired β-strands, we need to keep track of multiple cases, depending

Fig. 6. Example of the template construction phase modifying a pair of
hydrogen-bonded antiparallel β-strands in a Matt alignment containing five
structures. The positions labeled with the same number are hydrogen-
bonded to each other, in all sequences with a residue in corresponding num-
bered positions. Intervening residues are removed from the four-residue con-
sensus β-strand pair. Fewer than half the structures have a residue in position
five in the first strand, so both position fives are removed from the β-strand.
Residues outside all consensus β-strand pairs are never removed.
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on what sequence position is mapped to that state in the dynamic program.
We keep track of this using a multidimensional array. For arbitrary gap
lengths, this quickly becomes computationally infeasible, so a maximum
gap length is defined (and for our purposes is set to the longest gap seen
in the training alignment plus 20). When paired β-strands follow each other
in sequence with no interleaving β-strands between them (which is usually
the case for the β-propellers) the number of dimensions in the table for
the portion of the dynamic program that parses the parts of the HMM be-
tween the two β-strands is directly proportional to the maximum gap length.

We now introduce some notation that will help describe the algorithm
and analyze its complexity for interleaving pairs of β-strands. When we look,
in order of sequence, at the states in the template MRF, mark the first of a
pair of β-strands with consecutive numbers 1, 2, 3, and so on, and mark its
corresponding paired β-strand with the same number. Thus, if we have n pairs
of β-strands, we get a sequence that contains precisely two occurrences of
each of the numbers from one to n. Now replace the first occurrence of each
number with a left parenthesis and the second occurrence with a right
parenthesis. Starting with the number zero, walk along the sequence, adding
one for every left parenthesis, and subtracting one for every right paren-
thesis. The maximum size of this total at any intermediate point we call
the interleaving number of this sequence. We call the last MRF state for
the first of each pair of β-strands the “split” state and the first MRF state
for the second of that pair of β-strands the “join” state.

At every split state, the number of dimensions of the dynamic program
will be multiplied by the maximum gap length, because the dynamic pro-
gram has to keep track of scores for each possible sequence position (up
to maximum gap length) that could be mapped to that state. At the cor-
responding join state, the number of dimensions will be reduced by the maxi-

mum gap length, because the scoring function can calculate all the pairwise
probabilities (and hence the score) of placing that residue into the join state,
and then simply take the maximum of all ways to have placed its paired
residue into the split state. Thus the number of elements in the multi-
dimensional table is never more than sequence length times the maximum
gap length raised to the interleaving number power. As noted above, when
there are few or no interleaving β-strand pairs, as is the case with the strand
topology of the β-propellers, this is very computationally feasible. On the
other hand, the algorithm may become computationally infeasible for struc-
tures with multiple interleaving β-strands, such as the parallel β-helix
structures.

HMMER implementation. Our program was tested against HMMER version
3.0a2 (22) with the “−seqZ 1” and “−seqE 10; 000” options, and otherwise
all default settings [including the sequence entropy weighting (30) which
is the default in this version of HMMER; we also tried HMMER without se-
quence entropy, and performance was worse]. The −seqZ 1 option makes re-
turned E-values comparable between runs on different sized sequence
databases, and the −seqE 10; 000 option causes HMMER to return results
for all input sequences. Note that running HMMER is not exactly the same
as running SMURF and weighting the pairwise score zero and the HMM score
one, because SMURF needs to constrain the HMM to have contiguous match
states (with no insertions or deletions) between adjacent residues in each in-
dividual β-strand to also compute a pairwise score.
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