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Abstract

populations distributed in East Asia.

Background: Carassius auratus is a primary freshwater fish with bisexual diploid and unisexual gynogenetic triploid
lineages. It is distributed widely in Eurasia and is especially common in East Asia. Although several genetic studies
have been conducted on C auratus, they have not provided clear phylogenetic and evolutionary descriptions of
this fish, probably due to selection bias in sampling sites and the DNA regions analysed. As the first step in
clarifying the evolutionary entity of the world's Carassius fishes, we attempted to clarify the phylogeny of C. auratus

Results: We conducted a detailed analysis of a large dataset of mitochondrial gene sequences [CR, 323 bp, 672
sequences (528 sequenced + 144 downloaded); CR + ND4 + ND5 + cyt b, 4669 bp in total, 53 sequences] obtained
from C. auratus in East Asia. Our phylogeographic analysis revealed two superlineages, one distributed mainly
among the Japanese main islands and the other in various regions in and around the Eurasian continent, including
the Ryukyus and Taiwan. The two superlineages include seven lineages with high regional specificity that are
composed of endemic populations indigenous to each region. The divergence time of the seven lineages was
estimated to be 0.2 million years ago (Mya) by a fossil-based method and 1.0-1.9 Mya by the molecular clock
method. The antiquity and endemism of these lineages suggest that they are native to their respective regions,
although some seem to have been affected by the artificial introduction of C. auratus belonging to other lineages.
Triploids of C. auratus did not form a monophyletic lineage but were clustered mostly with sympatric diploids.

Conclusions: The results of the present study revealed the existence of two superlineages of C. auratus in East
Asia that include seven lineages endemic to each of the seven regions examined. The lack of substantial genetic
separation between triploids and diploids indicates that triploids are not composed of a single independent
lineage. The ancient origins and evolutionary uniqueness of the seven lineages warrant their conservation. An
overall phylogenetic framework obtained from the present study will be of use for estimating the phylogenetic
relationships of Carassius fishes on the Eurasian continent.

Background

Fish of the genus Carassius (Cypriniformes, Cyprinidae),
including goldfish, crucian carp, and Japanese crucian
carp, primarily inhabit freshwater and are distributed
widely in and around the Eurasian continent, including
Taiwan and the Japanese islands [1]. Although their
classification has not been well established due to their
great variability, they can be classified into at least three
species: C. auratus, C. carassius, and C. cuvieri. Among
them, C. auratus is so variable that its varieties are
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sometimes treated as independent species or subspecies
le.g., C. (a.) burgeri, C. (a.) gibelio, C. (a.) grandoculis,
and C. (a.) langsdorfii]. 1t should be noted that the
variability is further enhanced by the existence of gold-
fish (C. a. auratus), which are domesticated ornamental
fish that have been produced under artificial selection
and are widespread throughout the world. Recently,
goldfish were shown to have originated from one group
of Chinese C. auratus [2]. Carassius in and around
Japan are very common and variable. Although Japanese
Carassius have recently been arranged into C. cuvieri
and five subspecies of C. auratus [3], identification of
the five subspecies is controversial because of difficulties
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in distinguishing morphological and molecular charac-
ters [4-6].

In addition to the variability described above, the C.
auratus-complex includes not only bisexual diploid
lineages but also unisexual gynogenetic triploid lineages
[7-9], and the origin(s) of the triploids is controversial.
Some ichthyologists consider each subspecies of C. aur-
atus to include both bisexual diploid and gynogenetic
triploid lineages [7,10,11], whereas others regard all
gynogenetic triploids as belonging to the (sub)species of
the Japanese C. auratus langsdorfii [3,12]. In the latter
case, C. a. langsdorfii is considered to be a (sub)species
consisting only of triploids with no diploids. To resolve
the complicated situations in the natural history and
systematics of the fish, one must clarify the biological
entities of C. auratus, taking into account the existence
of triploids.

Genetic and phylogenetic analyses based on DNA
information usually are effective in clarifying details
about the biological entity of a “species.” Phylogenetic
analyses of the Japanese C. auratus-complex have been
conducted using the first third of the control region
(CR) of mitochondrial DNA (mtDNA), which is gener-
ally the most variable and is thus useful for phylogenetic
investigations of closely related organisms [13]. Some of
these analyses detected a large degree of genetic diver-
gence between C. cuvieri and C. auratus [4-6]. Hetero-
geneity was found within C. auratus in Japan, although
the five subspecies of C. auratus mentioned above could
not be discriminated by the analyses based on CR
sequences [4,6]. Moreover, it is interesting to note that
triploid C. auratus is polyphyletic in the Japanese main
islands [4-6], as gynogenetic triploid fishes in other
groups usually are monophyletic [14]. Despite such
efforts in analysing the phylogeny of the complex, well-
resolved phylogenetic and evolutionary pictures have
not be obtained because of two biases.

The first type of bias involves the selection of sam-
pling sites in island regions in East Asia. These regions
are biologically important because they harbour old
lineages of various freshwater fishes [e.g., [15-17]. We
anticipate that clarifying the biological entity of the C.
auratus-complex in this region would provide a useful
basis for future comprehensive studies of the complex.
However, in previous studies of Japanese C. auratus, the
specimens examined were only collected from the main
islands and not from the Ryukyu Archipelago. Obtaining
a complete picture of the evolutionary relationships in
East Asian C. auratus is difficult without specimens
from this biogeographically important region, where an
old island area intermittently was connected to the Eur-
asian continent during its long history [18]. Terrestrial
and freshwater fauna of the Ryukyu Archipelago are
unique in that they include many endemic species and
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subspecies that have evolved independently on these iso-
lated islands. In total, 1259 (21.4%) of 5887 known ter-
restrial and freshwater species are endemic to the
central and southern Ryukyus [19]. For example, the
Ryukyu-ayu, Plecoglossus altivelis ryukyuensis, is consid-
ered an endemic subspecies in inland waters of the cen-
tral Ryukyus [20]. In addition, not only primary
freshwater fish (e.g., the Japanese rice fish, or medaka,
Oryzias latipes) but also brackish-water fish (e.g., the
Japanese mudskipper, Periophthalmus modestus) of the
Ryukyu Archipelago are genetically distinct from adja-
cent conspecific populations [21-23]. Therefore, C. aur-
atus of the Ryukyu Archipelago is also expected to have
differentiated from other populations. Inspection of C.
auratus from the Ryukyu Archipelago is crucial in clari-
fying the phylogenetic picture of C. auratus distributed
in the island regions of East Asia.

The second bias involves selection of the DNA region
analysed. Previous phylogenetic analyses of C. auratus
mainly used mtDNA, particularly the first third of the
CR [e.g., [4-6]. Analyses using maternally inherited
mtDNA are highly effective for estimating phylogenetic
relationships of organisms, including gynogenetic popu-
lations such as C. auratus, although they are not as
effective in detecting hybridisation conditions [24]. The
abundance of published mtDNA sequences also makes
mtDNA attractive for phylogenetic analyses of C. aura-
tus because these sequences can be used for compara-
tive analyses. However, using the CR is questionable
because a “genetic ceiling” of CR sequences has been
detected not only at the intrafamily level [25] but also at
the intraspecies level [26]. As the possibility of a genetic
ceiling of CR sequences in C. auratus cannot be
excluded, more comprehensive phylogenetic analyses
using other mtDNA regions in addition to the CR are
required. Although mtDNA may not be necessarily
effective in estimating accurate phylogenetic relation-
ship, recent research using AFLP analysis and mtDNA
analysis showed that both mitochondrial and nuclear
DNAs lead basically the same result in estimating phylo-
genetic relationships in the C. auratus-complex [6].

The present study was conducted to generate phyloge-
netic and evolutionary pictures of East Asian C. auratus
populations by eliminating selection bias in sampling
sites and mtDNA regions analysed. Specimens of C. aur-
atus were collected from the Ryukyu Archipelago in
addition to areas in and around the Japanese main
islands that have been studied previously. After ploidy
determination of the specimens, we sequenced the
NADH dehydrogenase subunits 4 (ND4) and 5 (ND5),
the cytochrome b apoenzyme (cyt b) genes, and the CR
for phylogenetic analyses using neighbour-joining (NJ),
maximum likelihood (ML), and Bayesian inference (BI)
methods. The results of these phylogenetic analyses
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were examined in relation to the geographic distribution
of the species. In addition, divergence times between
main clades were estimated based on the resulting phy-
logenetic trees.

Methods
Samples
As previously noted, systematics of the genus Carassius
have not been well established. Because no generally
acceptable global classification system for Carassius
exists, we treated all C. auratus specimens (i.e., all Car-
assius specimens excluding C. carassius and C. cuvieri)
as C. auratus without further classification.

We collected 485 C. auratus from 11 islands of the
Ryukyu Archipelago (Figure 1) using cast-, gill-, and
hand-nets between 2003 and 2006. Most specimens
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Figure 1 Map of the sampling sites of Carassius auratus. Map
showing water systems, islands, and fish markets where Carassius
auratus specimens were collected. Specimens from waters
numbered 1-16, 28, and 31 were collected previously by Yamamoto
et al. [6]. Locality numbers correspond to those in Additional file 1
and Figure 6: 1, Lake Sakasazawa; 2, Lake Fukushimagata; 3, Lake
Inawashiro; 4, Urano River; 5, Lake Kasumigaura; 6, Magame River; 7,
Kamidokan Moat; 8, Nagara River; 9, Lake Biwa; 10, Kako River; 11,
Takatsu River; 12, Shimanto River; 13, Shigenobu River; 14, Iki Island;
15, Tatara River; 16, Chikugo River; 17, Tanegashima Island; 18,
Amami-oshima Island; 19, Tokunoshima Island; 20, Iheya Island; 21,
Izena Island; 22, Okinawa lIsland; 23, Tokashiki Island; 24, Zamami
Island; 25, Kume Island; 26, Minamidaito Island; 27, Ishigaki Island; 28
Amur River; 29, Taipei fish market; 30, Donguan fish market; 31,
Yangtze River; 32, Kai Ping; 33, Fangzheng hatchery; 34, Qi hatchery;
35, Jiujiang hatchery; and 36, Wuhan hatchery. The inset shows a
map of Eurasia denoting the present sampling area.
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were released immediately at the same site after collect-
ing blood or fin samples and sexing as described below.
Blood collected from the caudal vein with a small syr-
inge was immediately preserved at -20°C in 99.5% etha-
nol. Fin clips were also fixed in 99.5% ethanol. In
addition, 43 C. auratus specimens were bought at two
fish markets in Taiwan in 2003, and the collected fin
clips were fixed in 99.5% ethanol.

The sex of all specimens collected from the Ryukyu
Archipelago was determined. Based on previous obser-
vations that all males > 60 mm standard length (SL)
from Okinawa Island had pearl organs (small pearly
dots on the operculum, fin rays, and scales) and ejected
sperm after squeezing the abdominal area throughout
the year [27], individuals > 60 mm (SL) with both pearl
organs and sperm ejection were considered to be male;
all others were considered to be female. All specimens <
60 mm SL were regarded as unknown sex.

In addition to the 528 newly collected specimens (485
from the Ryukyus and 43 from Taiwan), we used 23 fin
or muscle tissue samples collected from Honshu, Shi-
koku, and Kyushu (Japan), Russia, and China [6] depos-
ited at the Ocean Research Institute, the University of
Tokyo (ORIUT).

Ploidy determination

We determined the ploidy of specimens by measuring
the relative DNA content of the blood samples by flow
cytometry (FCM) using a PAII type flow cytometer (Par-
tec, Minster, Germany). FCM was performed using the
manufacturer’s protocol with minor modifications.
Briefly, 2-5 pl aliquots of blood suspensions were resus-
pended in 200 pl of extraction buffer (CyStain DNA 2
step: solution A; Partec) and incubated for over 10 min
at room temperature. Subsequently, 800 pl of 4’, 6-dia-
midino-2-phenylindole (DAPI) staining solution
(CyStain DNA 2 step: solution B; Partec) was added. A
sample of blood collected from a single diploid C. aura-
tus from the Japanese main islands [6] was used as an
internal standard for each FCM profile.

DNA extraction, PCR amplification and sequencing
Nucleotide sequence data for part of the CR (323 bp) of
the mitochondrial genome were obtained from all 528
specimens collected from the Ryukyu Archipelago or
purchased at fish markets in Taiwan. These sequences
were analysed along with 144 published sequences
obtained from a total of 357 C. auratus specimens col-
lected from the Japanese main islands [number of indi-
viduals (n) = 236], Russia (n = 3), and China (n = 74),
along with goldfish (n = 44) [2,6,28]. One specimen was
then chosen from each of the different CR haplotypes
from a total of 672 sequences (528 sequenced, 144 pub-
lished), and additional sequence data were obtained
from 41 of the 528 newly collected specimens and from
23 of the deposited specimens collected by Yamamoto
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et al. [6] for the whole ND4 (1381 bp), ND5 (1824 bp),
and cyt b (1141 bp) genes.

Total genomic DNA was extracted from all specimens
using either a DNeasy Tissue Kit (Qiagen, Hilden, Ger-
many) or an Aquapure Genomic DNA Isolation Kit
(Bio-Rad, Hercules, CA, USA) in accordance with the
manufacturers’ protocols. All fragments were amplified
by polymerase chain reaction (PCR) with various combi-
nations of 32 primers (see Table 1 for primer sequences)
using a model 9700 thermal cycler (Applied Biosystems,
Foster City, CA, USA). PCR conditions were as follows:
2 min at 92°C; 30-35 cycles at 94°C for 10-40 sec; 48-
55°C for 10-60 sec; 72°C for 60 sec; and a final exten-
sion at 75°C for 7 min. For the CR and cyt b regions,
target segments were amplified directly. For the ND4
and ND5 genes, a segment of about 4000 bp from the
ND4L to ND6 genes that spans the ND4 and ND5
genes was amplified. The PCR products were diluted in
sterilized TE buffer (1:20) for subsequent use as short
PCR templates. All short PCR products were purified
using an ExoSAP-IT purification kit (USB Corporation,
Cleveland, OH, USA) and then sequenced with dye-
labelled terminators (Applied Biosystems) using the
same primers as for PCR. All reactions for DNA
sequencing were run on ABI 3100 or 3130 sequencers
(Applied Biosystems).

Neighbour-joining analysis of the control region

The 528 newly determined CR sequences were analysed
together with 100 previously published sequences of the
same CR region from 313 C. auratus specimens (among
which 236 specimens were ploidy-known but the others
were unknown) collected from Honshu, Shikoku,
Kyushu, Russia, and China [2,6,28] and with the 44
sequences from 44 goldfish specimens collected from
Japan and China [2] (see Additional file 1 for accession
numbers). In the first step of the analyses, a NJ tree was
constructed under the best fit model GTR + I" + I [29]
in MrModeltest ver. 2.2 [30] using the program PAUP*
4.0b8a [31]. Cyprinus carpio {DNA DataBank of Japan
(DDBJ)/EMBL Nucleotide Sequence Database (EMBL)/
GenBank genetic sequence databank (GenBank) acces-
sion number, AP009047; [32]} and Carassius cuvieri
(AB045144; Murakami, unpublished data) were used as
outgroups to root the tree. The reliability of tree nodes
was assessed by the bootstrap (BS) method with 1000
replications.

Maximum likelihood and Bayesian analysis

For the accurate estimation of phylogenetic relationships
and divergence time between mtDNA haplotypes, the
nucleotide sequences of three protein genes (ND4, ND5,
and cyt b) were analysed in addition to the CR
sequences. Because the rates of nucleotide sequence
evolution differ among DNA regions and among codon
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Table 1 PCR and sequencing primers used in analysis of
the Carassius auratus-complex mitochondrial genome.

Primer Sequence (5'—3')

cyt b
.14558-ND6 AGC AAC TAA CCC CAC AAC CA
L14736-Glu AAC CAC CGT TGT TAT TCA ACT A
L15339-cyt b TTT CTT TCC ACC CAT ACT TTT CA
H14909-cyt b GCG GTT GAA ATG TCT GAG GT
H15913-Thr? CCG GTS TTC GGM TTA CAA GAC CG
H15923-Thr GGA GCC AGG GGT GAG AGT TA

ND4
L10649_ND4_ca CTT TTG GCC TTC TCT GCT TG
L10681-ND4-C° GCK TTT TCT GCK TGT GAR GC
L1 O474—Arg»Cb GGT TWG AKT CCG YGG TTC CCT TAT GAC
L11417_ND4_ca GCA CAT GTA GAA GCC CCT GT
L11427-ND4-C° CCW AAG GCS CAT GTW GAR GC
L12191-His TTG TGA TTC TAA AAA TAG GGG TTA AA
H11226_ND4_ca  TAA RAG CGG GAG TGA TCC TG
H11618-ND4-C° TGG CTK ACK GAK GAG TAK GC
H11860_ND4_ca CAG TGG TGG GAG TGC TAG GT
H11875-ND4-tm AGT TCC CCT ATT AGA TTA GG
H12632-ND5 GAT CAG GTT ACG TAK AGK GC
H12632-ND5-CP TTC TAG GAT KGA TCA GGT GAC GWA KAG KGC
H14710-Glu-C° CTT GTA GTT GAA TWA CAA CGG TGG TTY TTC

ND5

L10474-Arg-C°
L12328-Leu-C °
L13058-ND5-C °
113280-ND5M
L13226_ND5_ca
L13559-ND5-C°
L13686_ND5_ca
H13393-ND5-CP
H13721-ND5-CP
H13822_ND5_ca
H14225_ND6_ca

GGT TWG AKT CCG YGG TTC CCT TAT GAC
AAC TCT TGG TGC AAM TCC AAG
TCK GCT ATG GAG GGY CCK AC
CAR CTW GGC CTA ATR ATR GT
CAC AGC CAC CTG TGC TCT AA
TCK TAT CTK AAC GCC TGR GC

TCC CCA ATT AAC GAA AAY AAT CC
CCT ATT TTK CGG ATG TCT TGY TC
ATG CTT CCT CAG GCR AGK CG
AGG GTG GYT GGT ATT GTC ATA A
GTG ATT TGT GCT TGG GTG CT

H14710-Glu-C® CTT GTA GTT GAA TWA CAA CGG TGG TTY TTC
H14473-ND6-CP GCG GCW TTG GCK GAG CC
CR
15923¢ TTA AAG CAT CGG TCT TGT AA
H16500° GCC CTG AAA TAG GAA CCA GA
“Mabuchi et al. [16]
PMiya et al. [64]

“Iguchi et al. [65]
¥Nishida et al. [66]

positions, ML and BI methods that can reflect these dif-
ferences were used for the analyses. Partitioned ML ana-
lysis was conducted with RAxML ver. 7.2.1 [33]. We
prepared five datasets (CR, ND4, ND5, cyt b, and a con-
catenated sequence of all four sequences) for analyses
and set three partitions (1%, 2", and 3™ codon positions
for ND4, ND5, and cyt b) or four partitions (1%, 2",
and 3" codon positions and CR for the concatenated
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sequence) assuming that functional constraints on
sequence evolution are more similar within codon posi-
tions (or types of molecule) across genes than across
codon positions (or types of molecule) within genes.
The GTR + I" model [34] (the model recommended by
the author of the program) was used and rapid BS ana-
lysis was conducted with 1000 replications (-f a option).
This option performs BS analysis using GTRCAT, which
is the GTR approximation with optimisation of indivi-
dual per-site substitution rates, and classifies those indi-
vidual rates into a certain number of rate categories.
After implementing the BS analysis, the program uses
every 5™ BS tree as a starting point to search for the
ML tree using the GTR + I" model of sequence evolu-
tion and saves the top 10 best-scoring ML trees (fast
ML searches). Finally, RAXML calculates better likeli-
hood scores (slow ML searches) for these 10 trees and
places BS probabilities on the best-scoring ML tree.
Cyprinus carpio (AP009047; [32]) and Carassius cuvieri
(AB045144; Murakami, unpublished data) were used as
outgroups to root all ML trees.

BI analyses were performed with MrBayes ver. 3.1.2
[35]. We prepared exactly the same five datasets as
those used in ML analyses. Monte Carlo Markov chains
under the selected best fit model GTR + I ([36]; for
ND4 and ND5), GTR + I" (for cyt b), and GTR + I" +
(for CR and concatenated sequences) in MrModeltest
ver. 2.2 were run for 2,000,000 generations. Trees and
parameters were sampled every 100 generations. We
discarded the first 1,000,000 generations (10,000 trees)
on each run as “burn-in” after confirming chain statio-
narity from plots of likelihood against generation. Out-
groups were the same as those used in the ML analyses.
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Supermatrix analysis

To conduct a more comprehensive investigation of the
phylogenetic relationships among Carassius species on a
worldwide basis using the best-scoring ML tree topology
obtained from the above analysis as a backbone con-
straint, we downloaded partial mitochondrial sequences
of the genus from the databases (DDBJ, EMBL, and
GenBank) and concatenated these sequences to the pre-
aligned original dataset in FASTA format for each gene
or region. Of the 306 CR, 77 cyt b, and 8 ND5
sequences, 122, 23, and 5 were judged to be authentic
and reliable with clear locality information with refer-
ence to the original paper and preliminary alignment,
respectively (Table 2). These sequences were included in
the supermatrix analysis and the rest were excluded.
Incidentally, these excluded sequences did not change
the tree topologies of the resultant supermatrix tree
when they were included in the analysis, with an excep-
tion of one CR sequence from Kazakhstan, whose phylo-
genetic position was extremely unstable. The
concatenated sequences were subjected to multiple
alignment using MAFFT ver. 6 [37] with the default
parameters. We imported the aligned sequences into
MacClade ver. 4.08 [38] and removed the redundant
regions appearing as gaps with slight modifications by
eye to correctly reproduce the original alignment.
Finally, the aligned sequences from each gene or region
were concatenated using MacClade to generate a mito-
chondrial supermatrix consisting of 71 sequences,
including 18 sequences from the databases. The super-
matrix was subjected to partitioned ML analysis using
RAXML ver. 7.2.1 with the best-scoring ML tree topol-
ogy from the original dataset used as a backbone

Table 2 Source, origin, and accession numbers for mitochondrial DNA sequences of Carassius fishes used in the super-

matrix analysis.

Reference Scientific name used in the Country Accession number (sequence
original paper region)
Gilles et al. [67] Carassius auratus France AJ388413 (CR)
Kalous et al. [49] C. carassius Czech Republic DQ399938 (cyt b)
Germany DQ399917- 19 (cyt b)
C. gibelio Czech Republic DQ399926- 29, 31, 33- 37, 39, 40
(cyt b)
C. langsdorfii Czech Republic DQ399930, 32 (cyt b)

Li and Gui [28]
Haynes et al. [68]

C. auratus gibelio
C. auratus

Komiyama et al. [2] C. auratus auratus

C. gibelio
Sakai et al. [69] C. gibelio gibelio
Tsipas et al. [70] C. gibelio

China
Australia
Japan

China
China
Kazakhstan
Greece

EF633617-39, 41- 80 (CR)
EU754018- 20 (CR)

AB379916, 19, 23- 54 (CR)
AB378293, 95, 96, 98, 99 (ND5)
AB379955- 59 (CR)

AB377293- 99, AB379922 (CR)
AB274414- 16 (CR)

EU186831- 35 (CR)

EU186830, DQ868876- 79 (cyt b)
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constraint (-r option in RAxML). The evolution model
used and the BS analysis performed in this analysis were
the same as those described in the above ML analyses.
Outgroups were also the same as those in the previous
ML and BI analyses.

Divergence time estimation

To obtain a rough estimate of the divergence times of
major cladogenic events in C. auratus, we used two dif-
ferent procedures. The first method uses the molecular
clock. Divergence times were calculated per clade
according to the evolutionary rate of 1.52% (pairwise
distance) per million year (My) estimated for cyt b
sequences of cyprinid fish by Zardoya and Doardio [39].
The second method uses the fossil record. The concate-
nated ML tree obtained was transformed into an ultra-
metric tree using a non-parametric rate smoothing
(NPRS) algorithm [40] in TreeEdit ver. 1.0 [41]. The
branches of the NPRS tree were scaled using a diver-
gence time of approximately 0.5 million years ago (Mya)
for the C. cuvieri lineage based on the oldest fossil
record from the Sakawa clay stratum [42].

Results

Ploidy and sex of specimens from the Ryukyu
Archipelago

The sex of 338 of the 485 specimens collected from the
Ryukyus was determined successfully (267 females, 71
males). Ploidy of 436 specimens was also determined
(273 diploids, 150 triploids, and 13 tetraploids). Both sex
and ploidy of a total of 311 specimens were determined
(124 diploid females, 66 diploid males, and 121 triploid
females; Table 2). No triploid males were found, and all
13 tetraploids were too small to determine their sex.
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Diploids were observed from 10 of 11 islands studied,
triploids from six islands, and tetraploids from two
islands (Table 3).

CR haplotype phylogenies

DNA segments of 323 bp of the CR were newly
sequenced and aligned for the 528 C. auratus specimens
(485 from the Ryukyus, 43 from Taiwan). A total of 66
nucleotide positions (20.6% in 323 bp) varied, and these
variations defined 35 haplotypes. Of these haplotypes,
four were identical to previously reported haplotypes
[2,6], and the other 31 were newly detected (see Addi-
tional file 1 for accession numbers). In addition to the
35 haplotypes, 29 sequences previously obtained in our
laboratory [6], six sequences of C. auratus collected
from China [2,28], and one goldfish sequence [2] were
added, providing a total of 71 CR haplotypes for phylo-
genetic analyses.

The NJ tree based on the GTR + I" + I model demon-
strated that the 71 CR haplotypes were divided into
seven major clades (I -VII) based average GTR + " + I
distances of 0.034-0.098 (Figure 2; Additional file 2).
Both diploids and triploids were observed in all major
clades, with the exception of clade V, which was com-
posed only of specimens of unknown ploidy. Further-
more, of the 71 haplotypes, 21 were shared by both
diploids and triploids in five major clades (see Figure 2
for details), although 14 and 11 haplotypes consisted of
only diploids and triploids, respectively.

ML and BI trees based on the CR data showed an essen-
tially similar haplotype grouping as that of the NJ tree
(Figure 3a, only the ML tree is shown). However, the
ML and BI tree topologies differed somewhat from that

Table 3 List of studied islands in the Ryukyus, collection dates, and numbers of diploid, triploid, tetraploid, and ploidy

not determined Carassius auratus specimens.

Name of islands Collection dates Number of individuals (female/male/not determined)
Total Diploid Triploid Tetraploid Not determined
Tanegashima Is. Sep. 2005 50 8/6/23 0/0/13
Amami-oshima Is. July 2004, Dec. 21 8/2/0 11/0/0
2005
Tokunoshima Is. Nov. 2005 4 2/2/0
lheya Is. Sep. 2003 32 16/3/13
Izena Is. Oct. 2003 34 26/6/2
Okinawa Is. Apr. 2003 - Sep. 271 54/38/32 91/0/6 0/0/1 22/5/22
2004
Kume Is. Oct. 2004 27 8/6/0 13/0/0
Zamami Is. Oct. 2005 27 0/0/8 0/0/7 0/0/12
Tokashiki Is. Aug. 2003 1 0/1/0
Minamidaito Is. Oct. 2003 6/0/3
Ishigaki Is. Aug. 2003 2/2/5

Total 485 124/66/83 121/0/29 0/0/13 22/5/22
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Figure 2 Neighbour-joining (NJ) tree based on the control region (CR) sequences. NJ tree of haplotypes detected in Carassius auratus
based on the CR sequences of mtDNA. Numbers above the internal branches are bootstrap values (< 50% support). Haplotype numbers are
followed by the names of islands or rivers where specimens were collected; the number of diploids, triploids + tetraploids (shaded), and
individuals for which ploidy was not determined are shown in parentheses. Roman numerals on the right side of the tree denote clade code
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of the NJ tree; clade III detected in the NJ tree was not
detected in the ML and BI trees.

ND4, ND5 and cyt b haplotype phylogenies

DNA samples were available for further sequencing for
64 out of 71 CR haplotypes. Complete ND4, ND5, and
cyt b genes (1381 bp, 1824 bp, and 1141 bp, respec-
tively) were successfully sequenced for 53 of 64 speci-
mens chosen from each of the 64 CR haplotypes. One
hundred and sixty three (ND4, 11.8%), 224 (ND5,
12.3%), and 146 (cyt b, 12.8%) variable sites without
insertions or deletions were found, which defined 37,
37, and 34 haplotypes, respectively, from each of the 53
sequences.

NJ, ML, and BI trees based on each of the three pro-
tein-coding regions showed the same seven major clades
as those detected in the CR-based NJ tree (Figure 3b-d,
only ML trees are shown). These seven clades were
grouped into two superclades: A (clades I- III) and B
(clades IV-VII). As expected from the results of CR-
based NJ analysis, sharing of a haplotype by diploids and
triploids was observed in all three protein-coding
regions (three haplotypes for ND4, three for ND5, and
four for cyt b).

Because mtDNA comprises a single circular molecule,
it is preferable to use the 4669 bp concatenated
sequence of all four regions (CR, ND4, ND5, and cyt b)
to estimate the complete mtDNA phylogeny. NJ and
best-scoring ML and BI trees based on the concatenated
sequence corroborated the existence of the seven major
clades and the two superclades revealed in the analyses
described above, with higher BS values (100%) and BI
posterior probabilities (100%; Figure 4, only the ML tree
is shown). These seven major clades were separated by
average GTR + I + I distances of 0.019-0.103 (Addi-
tional file 3).

Supermatrix analysis

The results of supermatrix analysis performed using the
best-scoring ML tree topology as a backbone constraint
are shown in Figure 5. All newly downloaded sequences
of C. auratus from around the world were nested in
either of the seven major clades detected in our ana-
lyses; these sequences did not form a new major clade.
Carassius carassius was placed as a sister group of the
C. auratus-complex.

Distribution pattern analysis of CR haplotypes

To clarify the relationships between the phylogenetic
and geographical structures of C. auratus populations,
we analysed the distribution pattern of haplotypes
within each of the seven major clades. For this analysis,
we focused on CR haplotypes because these contained
the greatest number of specimens (528 + 357 = 885)
and examined their geographical distribution in seven
regional areas: Honshu, Shikoku, Kyushu, the Ryukyus,
Russia, Taiwan, and China, defined based on relative
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isolation. As a result, in many major clades the distribu-
tion of the haplotypes was restricted to specific area(s)
(Figure 5). In particular, haplotypes of clades I, IV, and
V were found only in Honshu, the Ryukyus, and the
continental region including Russia and China, respec-
tively. Similarly, haplotypes in clades II, III, and VI were
distributed mainly in Kyushu, Honshu + Shikoku, and
Taiwan, respectively, although some haplotypes of the
three clades were found in the Ryukyus (i.e., outside of
their main distribution areas). Although haplotypes in
clade VII were distributed over a wide geographical
range, more than half (7/12) the haplotypes observed in
China (CR-56, 58, 59, 62, and 69 - 71) belonged to this
clade.

Note that most haplotypes found outside of their main
distribution areas were observed in distinctive water sys-
tems (i.e., systems with artificial reservoir(s)). For exam-
ple, three haplotypes (CR-49, 53, and 54) in clade VI
that are typical of Taiwan (see Discussion) were found
in 5 of the 38 water systems sampled in the Ryukyus,
and 4 of these systems have artificial reservoirs (Figure
6). In addition, seven haplotypes (CR-55, 57, 58, 60, 61,
63, and 64) in clade VII that seemed to be indigenous
to China (see Discussion) were observed in Honshu
(from 1 of 11 water systems), Shikoku (1/2), Kyushu (1/
3), the Ryukyus (14/38), and Taiwan (2/2). Many of
these water systems inhabited by clade VII haplotypes
were also distinctive (1 in Honshu, 12 in the Ryukyus,
and 2 in fish markets in Taiwan); the one in Honshu
was Lake Kasumigaura, which is well known for the sur-
feit of artificially introduced alien fish. In addition, the
12 water systems of the Ryukyus have artificial reser-
voirs (Figure 6).

Divergence time estimation

Based on a cyt b calibration using the molecular clock
value of 1.52%/My, divergence time between superclades
A and B was estimated to be about 4.0 Mya and
between the seven major clades about 1.0-1.9 Mya
(Table 4). When we applied the divergence time of
approximately 0.5 Mya for the C. cuvieri lineage to the
NPRS ultrametric tree based on the best ML tree
derived from the concatenated sequence data set, the
divergence time between superclades A and B was esti-
mated to be about 0.4 Mya (Table 4). The divergence
time among the seven major clades within superclades
A and B was around 0.2 Mya, ranging from only 0.17 to
0.21 Mya.

Discussion

MtDNA trees of East Asian C. auratus

In this study, we examined mtDNA to study the phylo-
geny of the island region-centred East Asian C. auratus-
complex. We analysed three protein-coding genes in
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Table 4 Estimated date of separation of the major clades of the Carassius auratus-complex.

Cladogenetic event

Based on cyt b sequences (1141 bp)

Based on NPRS tree of the
concatenated sequences of all
four regions (4669 bp)

Average P distances

Branching date (Mya) estimated Branching date (Mya) estimated
from the molecular clock (1.52%/

from the fossil record of

My) obtained by Zardoya and Carassius cuvieri

Doardio [39]
Between superclades A and B 0.061 4.01 0.39
Within superclade A
Between clade | and clades I+l 0.029 191 0.20
Between clades Il and Il 0.027 1.78 0.17
Within superclade B
Between clade VI and clades IV+V+VII 0.020 1.32 0.21
Between clade V and clades IV+VII 0017 1.12 0.19
Between clade IV and VII 0.015 0.99 0.17

addition to the CR, the latter of which has been used in
previous phylogenetic analyses of these fish [e.g., [4-6].
NJ, ML, and BI analyses based on the concatenated
sequence (4669 bp) all produced essentially the same
tree topology. Most nodes were supported by high NJ
and ML BS values and BI posterior probabilities. Con-
sidering the robust tree topology obtained from all ana-
lyses, we considered these mtDNA trees to adequately
reflect the phylogeny of East Asian C. auratus.

CR tree topologies differed from that of the concate-
nated tree in that the two superclades (A and B) were
not well separated; this discrepancy might have been
caused by a genetic ceiling, probably due to saturation,
as in the Chaetodontidae and Plecoglossus altivelis
[25,26]. In addition, whereas the first third of the CR
was more variable than the three protein-coding genes
(20.6% vs. 11.8%, 12.3%, and 12.8%, respectively), the
total number of variable sites was considerably smaller
in the former than in the latter genes (66 vs. 163, 224,
and 146, respectively). It seems that the first third of the
CR was effective in detecting each lineage in our NJ
analysis but was less effective in resolving branching
order. Longer sequences of protein-coding gene(s) must
be used for an accurate analysis of C. auratus phylo-
geny, although the first third of the CR is effective and
useful for identifying mtDNA haplotypes.

Evolutionary relationships of East Asian C. auratus

The resultant mtDNA tree obtained from the 4669 bp
concatenated sequence has important implications for
the evolutionary relationships of East Asian C. auratus
(Figure 4). One important implication is the existence of
two old superclades with high regional specificity.
Superclade A consists of clades I-III, which are distribu-
ted mainly in the Japanese main islands, and superclade
B consists of clades IV-VII, which are distributed in var-
ious regions in and around the Eurasian continent.
Divergence time estimation between superclades A and

B using the NPRS tree calibrated with the fossil record
of C. cuvieri (0.4 Mya) and cyt b calibration using the
molecular clock value of 1.52% per My (4.0 Mya) sug-
gests that the two superclades evolved independently for
a considerable period of time in the Japanese main
islands and the Eurasian continent, respectively (Table
4). Difference in divergence times estimated by both
procedures may be partially explained by the fact that
the fossil-based divergence time is the minimum estima-
tion. The Japanese main islands are known to have been
inhabited by old lineages of various freshwater fishes [e.
g.,[15-17]. Superclade A of C. auratus represents one
such example of old lineages that is harbored in this
island region.

Another important implication is the existence of
seven clades: three clades (I -1II) within superclade A
and four clades (IV-VII) within superclade B. The seven
clades diverged greatly from one another, and their ori-
gins were estimated to be old (0.2 Mya by the fossil-
based method and 1.0-1.9 Mya by molecular clock
method; Table 4). These clades showed rather high
regional specificities (Figure 6). Such high regional spe-
cificities and ancient origins suggest that each of the
seven clades represents the natural population of each
region. Considering the possibilities of artificial intro-
duction of C. auratus noted below, we concluded that
C. auratus with mtDNA of each of the clade I-VII hap-
lotypes represents the natural population of Honshu (I),
Kyushu (II), Honshu + Shikoku (III), the Ryukyus (IV),
Russia + China (V), Taiwan (VI), and China (VII),
respectively.

Derivation of regional populations

The results of the present study indicate the existence of
seven regional endemic populations distributed in Hon-
shu, Kyushu, Honshu + Shikoku, the Ryukyus, Russia +
China, Taiwan, and China. Some individuals belonging
to clades II, III, VI, and VII, however, were collected
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from outside the regions specific to these lineages.
These individuals could be regarded as offspring of arti-
ficially introduced C. auratus for the following reasons:
(i) the occurrence of such individuals was mostly spora-
dic; (ii) despite the ancient origin of the lineages and
their geographic isolation, some individuals shared the
same haplotype (CR-11, 49, and 54) with fish from
inside their original region; and (iii) in the Ryukyus, 128
of 134 (95%) individuals with haplotypes specific to Tai-
wan and China were collected from water systems with
artificial reservoir(s) where freshwater fishes tend to be
released. Assuming that the individuals collected from
outside of the region specific to the lineages were
derived from artificial introduction, five introduction
routes can be identified: from the Eurasian continent to
the Japanese main islands (route 1); from the Eurasian
continent to the Ryukyus (route 2); from the Eurasian
continent to Taiwan (route 3); from the Japanese main
islands to the Ryukyus (route 4); and from Taiwan to
the Ryukyus (route 5). Four of the five routes (routes 1,
3, 4, and 5) are supported by the presence of records for
past introductions of freshwater fish [43-45].

A biogeographic perspective of Eurasian C. auratus

In the present study, the phylogenetic picture of C. aur-
atus distributed in the Eurasian continent was obtained
by supertmatrix analysis using the best-scoring ML tree
topology as a backbone constraint. This analysis is very
useful for estimating phylogenetic relationships among
specimens by adding any portion of the DNA sequences
used in the analysis generating the backbone constraint
with a reliable phylogenetic tree topology. Based on the
results of the analysis, our mtDNA tree was judged to
be a good reflection of the overall framework of the
phylogenetic entity for the Carassius fishes around the
world because all of the newly downloaded sequences
collected from various geographical regions were
included in either of the seven major clades detected in
our phylogenetic analyses and no other new major line-
age was detected (Figure 5, see also Methods). Our sam-
pling in East Asian regions may sufficiently cover most
lineages of C. auratus.

The present supermatrix analysis provided important
insights into the origin of European C. auratus. The
major haplotypes observed in Europe were those of
clade V. Although a haplotype observed in France might
be derived from artificial introduction in that this haplo-
type was shared by specimens collected from Russia,
China, and Kazakhstan (haplotype #10 of the superma-
trix tree; Figure 5), those observed in the Czech Repub-
lic are considered to be native to Europe because these
cyt b sequences form a monophyletic lineage (Figure 5),
with an estimated divergence time of 0.2 Mya (0.004 in
P distance) based on cyt b calibration. Clade V is major
in Eastern Eurasia as well, indicating that this clade

Page 14 of 18

must have an extensive distribution on the Eurasian
continent.

All haplotypes other than those of clade V in Eur-
opean C. auratus were nested in Japanese native
lineages (clades I and II). These clade I and II haplo-
types were found only from the Czech Republic and
Greece on the Eurasian continent, whereas clade I and
II haplotypes were predominant in the Japanese main
islands (Figure 7). This distributional disjunction leads
to the hypothesis that European fish with these haplo-
types originated via artificial introduction(s) from Japan.
Artificial introduction of Carassius fishes has been a
problem in the European region [46-50], and release of
ornamental goldfish into natural waters is considered to
be one of the primary causes of dispersion of non-native
C. auratus. However, European C. auratus included in
the present study may not have been derived from the
release of ornamental goldfish because the goldfish is
clearly a member of the Chinese C. auratus (clade VII)
and has diverged greatly from specimens of clade I, II,
and V haplotypes (Figures 2 and 6, and also see
Komiyama et al. [2]). Much more sequence data for C.
auratus collected throughout Eurasia is needed for more
detailed phylogenetic and evolutionary pictures of the C.
auratus-complex.

Phylogeny of triploid C. auratus

Our study also has significant implications for the phy-
logenetic entity of triploid C. auratus. All triploids
examined in the present study were female, which is
consistent with the idea that triploids reproduce gyno-
genetically [51-53]. Gynogenetic polyploid lineages in
fish generally are considered to have arisen by hybridisa-
tion between two related bisexual species, and these
polyploid lineages usually can be traced to a single or a
few maternal founders [14]. In fact, most known gyno-
genetic polyploid fish are confirmed to have originated
via hybridisation [54]. For triploid C. auratus, some
authors have considered the possibility of a hybrid ori-
gin, although paternal species were unknown [55,56]. In
the present study, however, most triploid C. auratus
were sympatric with diploids; they shared the same hap-
lotype with sympatric diploids more frequently than
with allopatric triploids (Figure 2). In addition, triploids
were not monophyletic, and no substantial genetic
separation between triploids and diploids was observed.
These results strongly imply multiple origins of triploid
C. auratus, as suggested previously [4,56]. Our results
can be explained if triploids sometimes arise or have
arisen recently from sympatric diploids and vice versa.

Such interconversion of diploid and triploid forms
may be very rare in fish, and only one example is
known for cyprinids: the Leuciscus alburnoides complex.
In this complex, ploidy forms differ from each other in
genome constitution, and ploidy interconversion occurs
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through hybridogenesis [57,58]. Whether similar
mechanisms also exist in C. auratus is not clear. Our
preliminary analysis of the nuclear genome of C. aura-
tus suggested that no characteristic exists that distin-
guishes triploids from diploids [6], whereas other studies
have suggested the existence of markers mostly specific
to triploids [56,59,60]. Comprehensive investigation of
nuclear and mitochondrial genomes should be con-
ducted to clarify the origin of triploids and the process
and mechanisms of possible ploidy interconversion in C.
auratus.

Conservation of endemic lineages of Japanese
Archipelago

As discussed above, at least seven lineages of C. auratus
are indigenous to various regions of East Asia. The
populations of the four endemic lineages (Honshu,
Kyushu, Honshu + Shikoku, and the Ryukyus) of the
Japanese Archipelago can be regarded as evolutionarily
significant units (ESU; [61]) due to their high phyloge-
netic independence and evolutionary distinctiveness.

Therefore, conservation of these lineages is necessary.
Moreover, note that distribution areas and population
sizes of the Ryukyuan C. auratus lineage in particular
are decreasing rapidly, and some island populations are
becoming endangered [62]. These reductions appear to
be caused mainly by habitat degradation due to simplifi-
cation of stream morphology through development. To
conserve C. auratus populations in the Ryukyus, the
main stream habitats must be preserved.

Artificial introduction of non-native C. auratus may
cause another problem: genetic disturbance of native
populations. Carassius fishes have been artificially intro-
duced both intentionally and unintentionally in several
ways [46-50]. In Japan, many C. auratus have been
imported alive to the Ryukyus from Taiwan for food (O.
Kuniyoshi, pers. comm.). In addition, as suggested by
Ohara [63], the possibility of accidental introduction of
C. auratus exists during seed release of aquacultured
fish, such as the Japanese crucian carp, C. cuvieri. Once
C. auratus is introduced into natural waters, either
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intentionally or unintentionally, genetic disturbance of
endemic populations may occur immediately by hybridi-
sation between indigenous and introduced individuals.
Careless transplantation of C. auratus should be pre-
vented to conserve the genetic uniqueness of the ende-
mic populations.

Conclusions

Phylogenetic analyses based on large data sets of mito-
chondrial gene sequences (4669 bp) obtained from the
East Asian Carassius auratus-complex revealed the exis-
tence of two superlineages, one distributed mainly in
the Japanese main islands and the other in various
regions in and around the Eurasian continent. The two
superlineages include seven old (0.2 Mya) lineages ende-
mic to different regions, although some have been
affected by artificial introduction of C. auratus from
other regions. The present analyses provided an overall
phylogenetic framework for C. auratus that can be used
in to estimate the phylogenetic relationships of C. aura-
tus on the Eurasian continent. Triploids of C. auratus
did not form a monophyletic lineage but instead clus-
tered mostly with sympatric diploids, indicating that
they are not composed of a single independent lineage.
The ancient origins and evolutionary uniqueness of
these lineages warrant their conservation.
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