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Genome-wide Association Study
in a High-Risk Isolate for Multiple Sclerosis
Reveals Associated Variants in STAT3 Gene
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Genetic risk for multiple sclerosis (MS) is thought to involve both common and rare risk alleles. Recent GWAS and subsequent meta-anal-

ysis have established the critical role of the HLA locus and identified new common variants associated to MS. These variants have small

odds ratios (ORs) and explain only a fraction of the genetic risk. To expose potentially rare, high-impact alleles, we conducted a GWAS of

68 distantly related cases and 136 controls from a high-risk internal isolate of Finland with increased prevalence and familial occurrence

of MS. The top 27 loci with p < 10�4 were tested in 711 cases and 1029 controls from Finland, and the top two findings were validated

in 3859 cases and 9110 controls from more heterogeneous populations. SNP (rs744166) within the STAT3 gene was associated to MS

(p ¼ 2.75 3 10�10, OR 0.87, confidence interval 0.83–0.91). The protective haplotype for MS in STAT3 is a risk allele for Crohn disease,

implying that STAT3 represents a shared risk locus for at least two autoimmune diseases. This study also demonstrates the potential of

special isolated populations in search for variants contributing to complex traits.
Multiple sclerosis (MS) (MIM #126200) is a complex

inflammatory disease of the central nervous system with

presumed autoimmune etiology. Both environmental

and genetic factors are thought to contribute to the devel-

opment of MS,1–3 and the genetic risk factors likely include

both common and rare risk alleles. Recent GWAS and

subsequent meta-analysis have established the critical

role of the HLA locus4–6 and identified new MS loci:

IL2RA (MIM *147730),7 IL7R (MIM *146661),7–9 CLEC16A

(MIM *611303),7,10–13 CD58 (MIM *153420),11,12,14

TNFRSF1A (MIM *191190),15 IRF8 (MIM *601565),15 and

TYK2 (MIM *176941).12,16,17 These associated variants,

except for TYK2, are common, have small odds ratios

(ORs), and explain only a fraction of the genetic risk.

The population history of Finland and the province of

Southern Ostrobothnia (SO), an internal isolate with

increased prevalence of MS,18–22 is compatible with a

founder effect.22–24 Previous studies in Finnish MS families

originating from this high-risk subisolate have demon-
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strated linkage and association to the HLA locus (HLA-

DRB1 [MIM *142857]),25–27 17q22-24,25,28,29 and 5p14-

p12.25,30–32 Therefore, we hypothesized that some variants

predisposing to MS have either become enriched in SO or

can be more easily detected against a homogenous back-

ground with a genome-wide, high-density SNP screen.

We looked for shared alleles enriched in cases, as well as

potential extended homozygous regions and copy number

variations (CNVs) enriched in MS cases.

We included in our GWAS 72 cases with either both

parents from the high-risk isolate or one parent from the

isolate and positive family history of MS and genotyped

them with the Illumina HumanHap300 chip. Extensive

genealogical research revealed that the majority of the

cases could be traced to two large interrelated pedigrees

(see Figure S1 available online). A total of 2206 popula-

tion-based controls were genotyped with either Illumina

HumanHap300 chip or with Illumina HumanHap610-

quad chip. We excluded samples and SNPs with <95%
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success rates, leaving 72 cases and 2196 controls for the

subsequent analyses, and selected only SNPs present on

both Illumina platforms (297,343 SNPs) for analyses.

Gender check was performed with X chromosomal SNPs,

and no discrepancies between the observed and expected

gender were noted. Identity-by-descent (IBD) analysis

was performed to study possible close cryptic relatedness

between individuals and to identify possible samples

with excess relatedness, suggestive of sample contamina-

tion. We then performed identity-by-state (IBS) and multi-

dimensional scaling analyses: four cases were initially

considered as isolate samples clustered outside the isolate

sample set and were excluded from subsequent analyses

(Figure S2). We selected the two closest IBS-matched

controls for each case, and the final GWAS set (isolate

GWAS) consisted of 68 cases and 136 controls. The

genomic inflation factor suggested no major inflation

(l 1.078) and a fairly well-matched case-control set, which

was also confirmed by quantile-quantile plot analysis of

single SNP association results (Figure S3). Because we had

parental birthplace data for both the cases and the

majority of controls (n ¼ 2174), we could further verify

that all cases and 125 of the 136 selected controls had at

least one parent born in Southern Ostrobothnia, and of

these, 64 cases and 90 controls had both parents born in

Southern Ostrobothnia. We have recently shown a correla-

tion between geographical origin of samples (based on

parental birthplace information) and genome-wide SNP

data in the Finnish population.23 Thus, IBS matching of

cases and controls combined with genealogical informa-

tion should minimize the risk of population substructure

in our study set. All patient samples were collected with

informed consent, and the study design and the Finnish

sample collection have been approved by the Helsinki

University Hospital Ethical Committee of Ophthalmology,

Otorhinolaryngology, Neurology and Neurosurgery

(permit 192/E9/02).

Taking advantage of the distant relatedness in the subi-

solate, we conducted homozygosity analyses with

PLINK.33 First we searched for extended regions of homo-

zygosity (ROHs), the signature features of isolated popula-

tions, enriched in MS cases to identify loci that could influ-

ence MS susceptibility in a recessive manner. ROHs with at

least 50 consecutive SNPs and a minimum length of 500 kb

were identified in each individual. On average, we identi-

fied 149 (standard deviation: 12 in cases, 10 in controls)

ROHs per individual with an average length of 1030 kb

(500 kb–31.3 Mb) in cases and 1018 kb (500 kb–49.6 Mb)

in controls. We then evaluated which overlapping homo-

zygous regions were enriched in cases by permuting the

group (case-control) labels 10,000 times. The analysis

revealed three putative regions with empirical p < 10�3:

1q42.12 (242 kb, 24 SNPs, p ¼ 3 3 10�4), 2q24.3 (512

kb, 39 SNPs, p ¼ 8 3 10�5), and 12q24.33 (573 kb, 48

SNPs, p ¼ 3 3 10�4) (Table S1 and Figure S4). Although

the cases and controls are matched on the basis of their

genome-wide IBS sharing and are augmented by parental
286 The American Journal of Human Genetics 86, 285–291, February
birthplace information, the permutation-based approach

is susceptible to population substructure, and obtained

p values should be interpreted with caution. Excess homo-

zygous sharing was observed with the same haplotype for

13% (9 of MS cases) and 7% (10 of controls) for 1q42.12

and 37% (25 of MS cases) and 20% (27 of controls) for

2q24.3. For the 12q24 region, we observed multiple

different haplotypes (Table S1). These regions have not

been previously implicated in MS except for suggestive

linkage in 12q23-24,34 and their putative role in MS

susceptibility requires further validation. Haplotype

sharing outside of the isolate in the population control

samples (n ¼ 2194) was similar to the GWAS internal

isolate control population (frequencies 5.8% for 1q42.12

and 20% for 2q24.3 haplotypes). This indicates that the

homozygous haplotypes have been enriched in the subiso-

late MS cases, but not in the isolate controls, although the

IBD analysis showed the isolate controls to be as related to

each other as the isolate MS cases (Table S2).

The Illumina HumanHap300 platform has relatively

sparse coverage and is void of probes in the most common

CNV regions but could be suitable for detecting rare, large

CNVs, potentially enriched in the internal isolate popula-

tion. We used the QuantiSNP software35 for CNV detection

(GC content correction option, restricted to CNVs with log

Bayesian factor > 10 and length R 3 SNPs) and verified

these results visually with Bead Studio 3.3. All CNVs in

centromeric regions were excluded. We identified alto-

gether 106 CNV regions in 68 cases (Table S3); all but 6

of the 106 CNVs have been previously reported. Further-

more, all novel CNVs were found in only one case each.

Hypothesizing that genes mapping next to the 106 CNVs

identified in cases could belong to a common pathway

involved in MS etiology, we used Ingenuity Pathway Anal-

ysis to search for connecting pathways. One pathway

potentially regulating oligodendrocyte differentiation

and myelin sheet formation36–41 involving NRG3 (MIM

*605533), ERBB4 (MIM *600543), DLG2 (MIM *603583),

UTRN (MIM *128240), and LARGE (MIM *603590) (all

CNVs previously reported) was identified (Figure S5), but

CNV deletions in these genes were observed to have

similar frequency in MS cases compared to controls with

Fisher’s exact test (ERBB4: 11% of cases and 12% of

controls, p ¼ 0.388; NRG3: 4% of cases and 4% of controls,

p ¼ 0.90; and DLG2: 1% of cases and 0% of controls, p ¼
0.404) when genotyped in an independent set of 703 cases

and 1051 controls with an in-house-developed PCR-based

fragment analysis method.42

Southern Ostrobothnia is an old isolate, and thus the

expected shared haplotypes are of modest length. We

therefore performed single SNP standard c2 allelic associa-

tion analysis with PLINK.33 Because of the limited power,

we analyzed all 27 loci (28 of the 37 initial SNPs) showing

nominal association in the GWAS analysis (p< 10�4; Table

S4) in a larger independent Finnish sample set of 711 cases

and 1029 controls, of which 83 MS cases and 365 controls

were from the isolate (Table 1). Population-stratified
12, 2010



Table 1. Description of Sample Sets in GWAS and Replication Studies

Study Population Number of MS Cases Number of Controls Genotyping Platform

Southern Ostrobothnia (SO) isolate GWASa 68 136 Illumina HumanHap300 or
Illumina Human610-quad

Finland SO replicationb 83 365 Sequenom iPlex Gold

Finlandc 628 668 Sequenom iPlex Gold

Norwayd 607 816 Sequenom iPlex Gold

Denmarke 628 1074 Sequenom iPlex Gold

Gene MSA Switzerlandf 253 208 Illumina HumanHap300

Gene MSA Netherlandsf 230 232 Illumina HumanHap300

Gene MSA USf 486 431 Illumina HumanHap300

IMSGC UKg 453 2950 Affymetrix 500K

IMSGC USg 342 1679 Affymetrix 500K

BWHg 860 1720 Affymetrix 6.0

Total 4638 10,279

All samples have been diagnosed with clinically definite MS according to either Poser’s or McDonald’s criteria.
a MS samples included in the genome-wide analysis originated from the MS high-risk isolate located on the western coast of Finland (Southern Ostrobothnia, SO)
with ~2-fold prevalence and higher familial clustering of MS compared to other regions of Finland. Most of the cases were distantly related, and no closer than
second-degree relatives were included (Table S2). The cases were genotyped with Illumina HumanHap300 at The Broad Institute of MIT and Harvard. Control
samples (n ¼ 136) were selected by utilizing identical-by-state (IBS)-sharing and parental birthplace information from a pool of population-based controls (total
n ¼ 2206) genotyped either with Illumina HumanHap300-duo chips at the Institute for Molecular Medicine Finland (FIMM) Technology Centre or with Illumina
Human610-quad chips at the Sanger Institute.
b The MS cases have at least one parent born within SO, and anonymous population controls were collected from the Central Hospital of Seinajoki in Southern
Ostrobothnia. The samples were genotyped in the FIMM Technology Centre.
c Finnish MS patients (excluding samples from the SO region) from various regions (Tampere, Helsinki, Kuopio, Oulu) and anonymous population controls
collected from Kuopio and Helsinki University Hospitals. The samples were genotyped in the FIMM Technology Centre.
d Norwegian samples have been described in more detail in Lorentzen et al.54 The samples were genotyped in the FIMM Technology Centre.
e The Danish nationwide study set cases have been diagnosed with clinically definite MS according to the McDonald criteria. The controls are healthy blood
donors and hospital workers residing in the same region as patients. Experimental protocols (KF 01314 009) were approved by the local ethics board, and
informed consent was obtained from all participants. The samples were genotyped in the FIMM Technology Centre.
f Study sample from the Gene MSA consortium is also a part of the recently published meta-analysis15 and is described in detail elsewhere by De Jager et al.15 and
Baranzini et al.46

g Study sample from a recently published meta-analysis is described in detail elsewhere15 and was kindly provided by De Jager et al.15
Cochran-Mantel-Haenszel (CMH) association analysis

provided evidence for three SNPs: rs3135338 in the HLA

region (p ¼ 1.6 3 10�25), rs744166 in first intron of

STAT3 (MIM *102582) in chromosome 17q21.1 (p ¼
0.0012), and rs1364194 in chromosome 16 (p ¼ 0.0047)

(Table S4). The non-HLA SNPs were then analyzed in an

international sample of 3859 MS cases and 9110 controls

from six different populations (Table 1). The combined

evidence for association to STAT3 (rs744166) was signifi-

cant (p ¼ 2.75 3 10�10 and OR 0.87 [95% confidence

interval (CI) 0.83–0.91]) (Figure 1; Table S5). The Breslow-

Day analysis of heterogeneity of odds ratios revealed no

significant heterogeneity (p ¼ 0.34). When the combined

replication data set was analyzed by logistic regression for

additive, dominant, and recessive models with study set

as a covariate in the analyses, the statistically most signifi-

cant p value was obtained for the additive model (Table

S6). We obtained no additional support for the chromo-

some 16q region.

Evaluation of the STAT3 linkage disequilibrium (LD)

block that contains the associated SNP rs744166 in Hap-

map2 (build 23a) samples43 with Haploview 4.044 showed

that rs744166 non-risk-associated A allele completely tags
The America
the most common haplotype in Southern Utah residents

of European descent (CEU) (56%), Han Chinese from Bei-

jing (CHB 65%), and Tokyo Japanese (JPT 57%), but the

G allele is present on four different haplotypes (Table S7).

In the Yoruban population from Nigeria (YRI), the A allele

is present on four different haplotype backgrounds, and

the most common A haplotype in CEU, CHB, and JPT pop-

ulations has the frequency of 7% in the YRI population.

We speculate that this notable enrichment of a single

haplotype in non-African populations might suggest posi-

tive selection of the putative MS protective haplotype

outside Africa, although this locus did not reach genome-

wide significance in an analysis of signs of recent positive

selection.45 The rs744166 A allele also shows changes in

frequency distribution in the Human Genome Diversity

Panel (Figure S6).45 The LD block carrying the haplotype

is 54 kb in length in the CEU population and contains

the beginning of STAT3 and its immediate promoter region

(Figure 2).

We tagged the haplotypes with three SNPs (rs744166,

rs6503695, and rs957970) with Haploview 4.0 tagging

option. These SNPs were genotyped in the Finnish sample

set, and the data for the same SNPs were available from
n Journal of Human Genetics 86, 285–291, February 12, 2010 287



Figure 1. Population-Specific Associa-
tion for the STAT3 rs744166 A Allele
The rs744166 A allele that tags a putative
MS protective haplotype associated to MS
and shows consistent reduced risk in all
studied populations with available geno-
types. The results are presented here by
study set. Each line represents one study
set showing the name of the set, A allele
frequencies for cases and controls, ORs,
p value for association, and graphic illustra-
tion of the odds ratio (square, size relative
to study set size) with the 95% confidence
intervals for the odds ratio (thin lines).
four other populations from a recent meta-analysis.7,15,46

We phased the haplotypes with PLINK and performed

a CMH analysis with populations as clusters. We could

define both a putative predisposing haplotype (30.9% in

MS, 27.1% in controls, OR 1.18, 95% CI 1.11–1.27) with

CMH p¼ 1.29 3 10�6 and a tentative protective haplotype

(55.0% MS, 58.7% controls, OR 0.86, 95% CI 0.81–0.91)

(Figure 1) with CMH combined p ¼ 1.19 3 10�6 (Table 2;

Tables S7 and S8). The Breslow-Day test revealed no signif-

icant heterogeneity of odds ratios (p ¼ 0.271 and p ¼
0.301, respectively). Further studies, including resequenc-
Figure 2. Description of the Associated LD Region in STAT3
The associated SNP and haplotypes are in a 54 kb LD block covering the beginning and
The associated rs744166 SNP is marked with a red arrow, and the other two SNPs, rs6503
analysis are marked with yellow arrows. The SNP marked with the blue arrow (rs22931
suggestively associated to MS in a previous meta-analysis.15
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ing, will be needed to identify the

true affecting variants segregating in

one or both of these haplotypes.
STAT3 codes for a transcription factor that is involved in

multiple pathways and functions, including the Jak-STAT

pathway, neuron axonal guidance, apoptosis, activation

of immune responses, and Th17 cell differentiation.47

Interestingly, the A allele of rs744166 tagging the MS-

protective haplotype is associated with Crohn disease,48

and mutations in STAT3 are known to cause hyperimmu-

noglobulin E recurrent infection syndrome (HIES [MIM

#147060]),49,50 a rare autosomal-dominant disorder char-

acterized by elevated immunoglobulin E levels and inflam-

mation. Additionally, mouse studies have shown that
immediate 50 region of the STAT3 gene.
695 and rs957970, used in the haplotype
52) was listed among the 100 top SNPs



Table 2. Summary of the 54 kb STAT3 Haplotype Data Showing
One Putative Predisposing and One Putative Protective Haplotype

Haplotype

Frequency
MS
(n ¼ 3255)

Frequency
Control
(n ¼ 8133) P Value OR 95% CI

CGGa 0.309 0.271 1.29 3 10�6 1.18 (1.11–1.27)

TAAb 0.550 0.587 1.19 3 10�6 0.86 (0.81–0.91)

TGG 0.082 0.080 0.439 1.06 (0.94–1.17)

CGA 0.057 0.059 0.591 0.98 (0.85–1.10)

The haplotypes were constructed with SNPs rs6503695, rs744166, and
rs957970 and phased with PLINK. Only phased haplotypes with posterior
probability of 1 were included in the analysis. Each haplotype was analyzed
separately and showed no evidence for heterogeneity of odds ratios between
populations in the Breslow-Day test, which allowed us to combine the haplo-
type results with CMH. The analysis included a total of 3255 MS cases and
8133 controls from Finnish, BWH, IMSGC UK, IMSGC US, Gene MSA US,
Gene MSA CH, and Gene MSA NL sample sets. The results for individual
populations are provided in Table S5.
a The predisposing haplotype CGG is significantly overrepresented in the
MS cases.
b The protective haplotype TAA is significantly underrepresented in the
MS cases.
targeted deletion of Stat3 in CD4þ T cells prevents the

development of experimental autoimmune encephalomy-

elitis (EAE), the rodent model of MS,51 and that Treg-

specific ablation of Stat3 resulted in the development of a

fatal intestinal inflammation due to unstrained TH17

response.52 Recent meta-analysis of GWAS in MS listed

STAT3 as one of the genes with a suggestive role in at least

two autoimmune disorders15 but failed to replicate the

initial STAT3 association. The failure to replicate the initial

association was probably due to selecting the most signifi-

cantly associated regional SNP (rs2293152), which resides

just outside of the rs744166 containing LD region and

has only limited LD with the rs744166 (r2 0.35 in

HapMap2 CEU population), for the replication analysis

(Figure 2). These observations support a wider role for

STAT3 in autoimmunity and adds this gene to the growing

list of MS-susceptibility genes with validated or substantial

evidence for association in at least two inflammatory

diseases.48–50 All of these together suggest a significant

role of this locus in immune system and autoimmune

disease pathogenesis.

Most of the currently validated (IL2RA, IL7R, CD58,

CLEC16A, IRF8, TNFRSF1A, TYK2)7,9,12–17,53 and suggested

(C7 [MIM *217070], CD6 [MIM *186720], IL12A [MIM

*161560], OLIG3 [MIM *609323]–TNFAIP3 [MIM

*191163], PTGER4 [MIM *601586], RGS1 [MIM

*600323])15,30 non-HLA MS susceptibility loci have known

functions in the immune system and particularly in T cells.

Although their independent ORs are modest, their

combined effect might be larger, and a large-scale interna-

tional study would be required to estimate their combined

effect toward disease predisposition. The present study

demonstrates the power of the founder population study

design to complement large-scale GWAS in identifying

genes and pathways of general significance, not only rare

high-impact alleles.
The America
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