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Mapping Allele-Specific DNA Methylation:
A New Tool for Maximizing Information from GWAS

Benjamin Tycko1,*

In this issue of The Journal, an article by Schalkwyk et al.1 shows the landscape of allele-specific DNA methylation (ASM) in the human

genome. ASM has long been studied as a hallmark of imprinted genes, and a chromosome-wide version of this phenomenon occurs, in

a random fashion, during X chromosome inactivation in female cells. But the type of ASM motivating the study by Schalkwyk et al. is

different. They used a high-resolution, methylation-sensitive SNP array (MSNP) method for genome-wide profiling of ASM in total

peripheral-blood leukocytes (PBL) and buccal cells from a series of monozygotic twin pairs. Their data bring a new level of detail to our

knowledge of a newly recognized phenomenon—nonimprinted, sequence-dependent ASM. They document the widespread occurrence

of this phenomenon among human genes and discuss its basic implications for gene regulation and genetic-epigenetic interactions. But

this paper and recent work from other laboratories2,3 raises the possibility of a more immediate and practical application for ASM

mapping, namely to help extract maximum information from genome-wide association studies.
Genome-wide association studies

(GWAS) have been tremendously

successful in localizing candidate

genes for susceptibility to common

diseases, but they are now coming up

against two technical roadblocks: First,

most (~90%) of the suprathreshold

disease-association signals are at non-

coding SNPs.4–6 Among these statis-

tical signals, which ones are due to

bona fide functional regulatory SNPs

(rSNPs), and how can these rSNPs be

identified? Nowadays, by following

GWAS to identify a SNP-tagged chro-

mosomal region of interest, investiga-

tors resequence the region to identify

all of the variants, and from there

they seek to prioritize which ones

might be functional. But when a non-

synonymous coding change is still

not found, the essential problem

remains. Second, because of multiple

comparisons, the threshold for sig-

nificance needs to be set stringently,

typically at p < 10�7 or p < 5 3 10�8,

so there are numerous subthreshold

peaks that are difficult to interpret.

Are some of these signals true positives

that should not be discarded? This

question can be partly addressed by

meta-analyses across multiple GWAS,

and in silico predictive methods are

also promising.7 But a more direct

approach would be to combine statis-

tical genetic evidence from GWAS
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with functional evidence for the pres-

ence of rSNPS. There is good reason

to think that such evidence can be

provided by the type of mapping

shown in the Schalkwyk et al. paper,

with the use of the strategy dia-

grammed here in Figure 1.

This idea has a strong precedent in

studies of a related phenomenon—

allele-specific RNA expression (ASE).

In the simplest scenario, ASE, also

called the allelic transcript ratio or

ATR, can be measured by comparing

relative levels of allelic transcripts

within a sample by using gene-specific

RT-PCR followed by conventional

sequencing, Pyrosequencing, or SNaP-

shot assays, with PCR products from

genomic DNA used as the standard

for equal biallelic representation. This

approach of cDNA-gDNA comparison

has been a workhorse tool since the

early 1990s in labs studying imprinted

genes,8 and it was adapted in 2002 by

Yan et al. to search for ASE in a set of

nonimprinted genes.9 In their brief

report, they described ASE (> 30%

expression bias between the two

alleles) in 6/13 genes examined, three

of these genes showing ASE in > 10%

of heterozygous individuals tested.

They used lymphoblastoid cell lines

from two Centre d’Étude du Polymor-

phisme Humain (CEPH) families to

show that the ASE for two genes
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(PKD2 [MIM 173910] and CAPN10

[MIM 605286]) was transmitted as a

Mendelian trait with the same allele

relatively repressed in each informa-

tive family member, suggesting a role

for cis-acting regulatory polymor-

phisms in dictating the ASE.

Shortly thereafter, several labs

applied this type of analysis, or related

methods correlating net mRNA ex-

pression with genotypes, in much

larger genome-wide surveys.10–19

Recently, Verlaan et al. carried out

ASE analysis on primary RNA tran-

scripts by using both high-throughput

conventional sequencing and 454/

FLX massively parallel sequencing,

thereby gaining access to informative

intronic SNPs, which substantially

increased the number of informative

samples.20 As a tool for finding and

validating rSNPs, measuring ASE has

the major advantage of being inter-

nally controlled, comparing expres-

sion of the two alleles within one

individual rather than measuring asso-

ciations of SNP genotypes with net

expression of the gene across subjects,

which can suffer from the limited

precision of Q-PCR and microarray

assays and unpredictable effects

of environmental and trans-acting

influences. Still, both approaches are

valid, and assessing correlations of

haplotypes with net transcript levels
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Figure 1. Sequence-Dependent ASM as a Tool for Extracting Maximum Information from GWAS
(A) In genomic imprinting, the ASM is established in gametogenesis and dictated by the parental origin of the allele, with weak or absent
effects of local haplotypes. Some imprinted genes show hypermethylation on the paternal allele as shown here, whereas others show
hypermethylation of the maternal allele. In successive generations, the imprint is erased and then reset appropriately in gametogenesis,
according to the sex of the transmitting parent. Thus genomic imprinting is non-Mendelian. In contrast, SNP- or haplotype-dependent
ASM is dictated in cis by the local DNA sequence, regardless of parent of origin. This type of ASM is transmitted in a Mendelian fashion,
and its presence is an indication of nearby regulatory SNPs that function, by mechanisms still largely unknown, to confer the allelic
asymmetry. Although the number of imprinted genes is reasonably well established, the number of genes with nonimprinted,
sequence-dependent ASM is influenced both by tissue type and by the stringency of the cutoffs utilized for scoring the allelic asymmetry.
Black circles indicate methylated CpG dinucleotides; white circles, unmethylated CpGs. IC denotes imprinting center.
(B) Schema for extracting maximum information from GWAS by overlapping association signals with data from mapping ASM and ASE.
Most GWAS signals, even if they are true positives, are not likely to be the most important functional SNP, but rather serve to tag a func-
tional rSNP nearby, which can confer ASE and/or ASM. Thus, genomic regions scoring as positive by both criteria (suprathreshold or
subthreshold statistical associations in GWAS and ASE or ASM by appropriate assays) are likely to be true positives harboring bona
fide causal rSNPs. Avoiding false positives will require using stringent criteria for recurrent genotype-dependent ASE and ASM and
validating the high-throughput data from microarrays or Nextgen sequencing by independent locus-specific assays.
arguably gets more directly at the bio-

logically relevant outcome. From all

of these studies, sufficient information

is now available to allow general

conclusions as to the frequency of

ASE and the extent to which the allelic

expression bias is dictated by cis-acting

DNA polymorphisms. In all studies so

far, the vast majority of ASE can be

accounted for by cis-effects. Estimates

of the frequency of ASE vary strongly,

depending on the cutoff utilized for

the strength of the expression bias

and according to the types of cell lines

or primary tissues examined; with

moderately stringent thresholds, the

frequency in some cell types can be

up to 30% of genes surveyed.21 Find-

ing the strongest and most-specific

rSNPs will depend on examinining

the bona fide biological target tissues

of a given disease and setting the

threshold for ASE more stringently.

Using the genuine target tissue for

analysis is critically important, be-
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cause it is already clear that genotype-

dependent mRNA expression can be

highly tissue specific.19 For some

diseases, such as type 2 diabetes melli-

tus (T2D [MIM #125853]), deciding on

the critical target tissue will not be

easy.22

As an important adjunct to these

studies, Stranger et al. used transcrip-

tome profiling in lymphoblastoid

lines from individuals included in

HapMap to sort out the relative

contributions of SNPs and copy-

number variants to interindividual

differences in gene expression. They

found that, although both SNPs and

CNVs contributed, the majority of

genotype-dependent expression vari-

ation (84%) in these cells was attribut-

able to SNPs, which were not acting as

surrogates for the CNVs.23

There is an interesting technical

caveat in studying ASE, stemming

from the curious phenomenon of

random (mosaic) monoallelic expres-
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sion (RME), which can be observed at

certain loci on autosomes24–28 and

can sometimes correlate with ASM.27

As pointed out by a recent study using

X chromosome inactivation as a

marker for clonality, a substantial

percentage of human lymphoblastoid

lines (from 1% to 25%, depending on

the source) are nearly monoclonal.29

This clonal predominance can artifac-

tually eliminate the randomness of

RME, which can then be mistaken for

ASE. Methods to monitor and correct

for this problem have been developed

and successfully applied,21 but now

that the necessary methodologies for

genome-wide profiling have been

established with the use of lympho-

blastoid lines as a renewable source of

RNA, it is likely that future studies

will be able to use mostly primary cells

and tissues.

Beyond providing evidence for

rSNPs being near a gene of interest,

can mapping ASE help to close in on



the precise positions of these func-

tional SNPs? Proof of principle is start-

ing to appear, and several examples

(not intended to be a complete list)

are useful to consider here. Forton

et al. found recurrent ASE of the IL13

(MIM 147683) gene in lymphoblas-

toid cells and then used DNA from

CEPH families to map the most

strongly correlated SNPs, which

turned out to be clustered 250 kb

upstream of this gene.30 Another

example was reported by Schadt

et al., who surveyed the genotype

dependence of mRNA expression in

human livers and aligned their data

on putative cis-acting rSNPs with

statistically significant signals from

multiple GWAS for type 1 diabetes

mellitus (T1D [MIM %222100]),

thereby arriving at the conclusion

that RPS26 (MIM 603701), SORT1

(MIM 602458), and CELSR2 (MIM

604265) are strong candidates for

influencing T1D susceptibility.18 Sub-

sequently, Ge et al. generated a

genome-wide map of ASE-associated

SNPs by using cDNA-gDNA com-

parisons on high-density Illumina

Human1M BeadChips. They tested

for associations of haplotypes with

the strength of the allelic expression

imbalance and zeroed in on a 16 kb

regulatory haplotype causing relative

overexpression of FAM167A (MIM

610085; also known as C8orf13) and

relative underexpression of its neigh-

boring, autoimmune-disease-associ-

ated gene, BLK (MIM 191605).21 In

an even more recent study, Heap

et al. used Nextgen RNA sequencing

(RNA-Seq) for genome-wide character-

ization of ASE in human T cells from

four healthy individuals.15 They gen-

erated 20 million uniquely mapping

45 bp reads per sample and arrived at

an estimate of about 4.6% of heterozy-

gous SNPs showing an allelic repre-

sentation bias in T cell RNA. They

confirmed their conclusions for three

loci by using gene-specific assays of

PCR/cloning and direct sequencing

comparing cDNA versus genomic

DNA. Although not among the genes

chosen for independent validations,

an interesting locus with ASE via the

primary sequencing data was CD6
(MIM 186720)—a candidate suscepti-

bility gene for multiple sclerosis (MS

[MIM #126200]) from prior GWAS.

Given these already successful

outcomes of using ASE to find rSNPs,

can mapping ASM make a useful

contribution? DNA is a more stable

molecule than RNA, and DNA methyl-

ation is easily and unambiguously

scored by bisulfite sequencing. More-

over, measurements made on genomic

DNA average evenly over the entire

cell population and cannot be domi-

nated by rare cells or cell types, as can

happen with RNA expression. Last

but not least, labs studying human

genetics simply have more freezers

full of DNA than of RNA. Therefore,

mapping ASM and overlapping the

data with genome-wide association

signals is an attractive concept. The

new study by Schalkwyk et al. has

much to say about this possibility.1

As background to their paper, an

important initial proof-of-principle

study was done by Kerkel et al., who

used MSNP on Affymetrix 250K StyI

SNP arrays to examine several human

tissues, including PBL, hematopoietic

stem cells, and placenta . Their study

identified recurrent ASM on various

human chromosomes outside of im-

printed loci and uncovered a strong

correlation of this phenomenon with

local SNP genotypes.2 That paper was

quickly followed by several other

reports, including a study by Zhang

et al., who used extensive bisulfite

sequencing of PBL DNA to document

SNP-dependent ASM in CpG-rich

sequences in or near four genes on

human chromosome 21.3 In both of

these studies, when sequence-depen-

dent ASM was present at a given locus,

its dependence on the genotype at

closely adjacent SNP(s) was close to

absolute. Extending this phenom-

enon to the well-controlled mouse

model system, Schilling et al. did a

genome-wide analysis in macrophages

from two common laboratory strains

(C57BL/6 and BALB/c). They found

that ASM was frequent and widely

distributed across the genome and

that the allelic asymmetry in DNA

methylation was largely attributable

to cis-acting polymorphisms.31 The
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availability of dense SNP arrays for

analyzing genetic variation in mice

should facilitate more studies along

these lines with even higher sample

throughput.32

Enter the Schalkwyk et al. study,

which presents the landscape of ASM

in human PBL at sufficiently high reso-

lution to warrant overlapping their

gene lists with statistical peaks from

GWAS. As noted above, they used

MSNP on higher-density Affymetrix

6.0 SNP arrays for genome-wide

profiling of ASM in blood leukocytes

and buccal cells. They independently

validated each of ten examples among

the ‘‘hits’’ with ASM by using bisulfite

conversion followed by SNaPshot

assays. Not surprisingly, they con-

firmed ASM at several of the loci re-

ported in the earlier study by Kerkel

et al., but with the higher-resolution

method they were able to compile a

much larger list of candidate loci,

which their validations strongly

suggest are mostly true positives. As is

often the case in genomics papers,

one of their most useful tables is in the

online data, namely Table S3, which

shows that more than 150 ASM-associ-

ated SNPs, distributed across each of

the human chromosomes, are signifi-

cantly associated with the expression

of nearby genes. It will also be useful

to follow the convergence of data

from independent studies of ASE and

ASM; encouragingly, in the Schalkwyk

et al. paper, a number of loci with ASM

are also represented among the genes

found to show ASE in the survey by

Ge et al.21 So, from this and each of

the other recent studies, ASM seems

to be frequently, though not always,

linked to ASE.

How can this field move forward?

There are still clear limitations to all

the available data sets: MSNP relies

on methylation-sensitive restriction

sites and does not survey all CpG

dinucleotides. Also, microarray-based

methods are limited by the annoying

fact that only a subset of all SNPs is

‘‘chipable.’’ Microarrays, particularly

those with custom designs, will still

be very useful for high sample

throughput, but Nextgen bisulfite

sequencing will inevitably become
etics 86, 109–112, February 12, 2010 111



the way to go for analyzing fewer

samples at definitive single-base-pair

resolution, ultimately eliminating

false negatives from incomplete

genomic coverage.33

Lastly, a good part of what we know

about DNA methylation comes from

work in cancer epigenetics, from

which we know that most cancers

have an altered epigenome, with

gains of promoter methylation acting

as an alternative to somatic mutation

in inactivating tumor suppressor

genes.34 In this context, another

possibility with potentially broad

applications will be opened up by

studies combining GWAS and ASM

mapping, namely that certain alleles,

defined by SNPs, indels, and CNVs,

may be more susceptible to becoming

hypermethylated in the initiation and

progression of human neoplasia. Spe-

cific evidence to this effect has already

been produced by several labs, in-

cluding those of Kang et al., who

reported an association of p14ARF

(CDKN2A [MIM 600160]) polymor-

phisms with the tendency of this gene

to become methylated in colorectal

cancers,35 Murrell et al., who found

an association of IGF2 (MIM 147470)

SNPs or haplotypes with Beckwith-

Wiedemann syndrome (BWS [MIM

#130650]),36 and Boumber et al., who

showed that an indel polymorphism

in the PDLIM4 gene (MIM 603422,

also known as RIL) affects the propen-

sity of this gene to become methylated

in leukemia and colon cancer.37

Web Resources

The URL for data presented herein is as

follows:

Online Mendelian Inheritance in Man

(OMIM), http://www.ncbi.nlm.nih.gov/

Omim/
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