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Abstract
This paper reviews the current understanding of the vitamin D-induced differentiation of neoplastic
cells, which results in the generation of cells that acquire near-normal, mature phenotype. Examples
of the criteria by which differentiation is recognized in each cell type are provided, and only those
effects of 1α,25-dihydroxyvitamin D3 (1,25D) on cell proliferation and survival that are associated
with the differentiation process are emphasized. The existing knowledge, often fragmentary, of the
signaling pathways that lead to vitamin D-induced differentiation of colon, breast, prostate, squamous
cell carcinoma, osteosarcoma, and myeloid leukemia cancer cells is outlined. The important
distinctions between the different mechanisms of 1,25D-induced differentiation that are cell-type
and cell-context specific are pointed out where known. There is a considerable body of evidence that
the principal human cancer cells can be suitable candidates for chemoprevention or differentiation
therapy with vitamin D. However, further studies are needed to fully understand the underlying
mechanisms in order to improve the therapeutic approaches.
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Introduction
In general, differentiation is a term that signifies the structural and functional changes that lead
to maturation of cells during development of various lineages. Cancer cells are unable, to
varying degrees, to achieve such maturation, and thus malignant neoplastic cells show a lack
of, or only partial evidence of, differentiation, known as anaplasia. Since the basic underlying
cause for the failure to differentiate can be attributed to structural changes in the cell’s DNA,
i.e. mutations, which are essentially irreversible, it is remarkable that some compounds can
induce several types of malignant cells to undergo differentiation toward the more mature
phenotypes. The physiological form of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25D), is one

© 2009 Informa UK Ltd
Address for Correspondence: George P. Studzinski, MD, PhD, Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey
Medical School, 185 S. Orange Avenue, Room 543, Newark, NJ 07101–1709 USA. studzins@umdnj.edu.
Referee Dr David M. Goldberg, Department of Pathobiology and Laboratory Medicine and Pathobiology, University of Toronto, Toronto,
ON, Canada
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution,
re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
Publisher's Disclaimer: The publisher does not give any warranty express or implied or make any representation that the contents will
be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with
primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or
howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NIH Public Access
Author Manuscript
Crit Rev Clin Lab Sci. Author manuscript; available in PMC 2010 February 11.

Published in final edited form as:
Crit Rev Clin Lab Sci. 2009 ; 46(4): 190. doi:10.1080/10408360902982128.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.informaworld.com/terms-and-conditions-of-access.pdf


such compound, and the importance of this finding is that it offers the potential to be an
alternative to, or to provide an adjunctive intervention to, the therapy, as well as to act in the
prevention of neoplastic diseases.

The feasibility of differentiation therapy of cancer is supported by the early observations that
some cases of neuroblastoma, a childhood malignancy, can spontaneously differentiate into
tumors that are composed of normal-appearing neuronal cells, and the child’s life is spared
(1,2). The reasons for this conversion have not been elucidated, but it seems reasonable to
assume that, as the child matures, the endocrine and immune systems become more efficient,
and one or more of such factors are able to induce differentiation of neural precursor cells to
the more mature, non-invasive forms.

An example of an already successful interventional approach to differentiation therapy of a
neoplastic disease is the use of all-trans retinoic acid (ATRA) for the treatment of acute
promyelocytic leukemia (APL) and perhaps other leukemias (3–5). Additionally, a synthetic
analog of ATRA, Fenretinide, can potentially serve as an agent that can prevent breast cancer
in women(6), illustrating the fact that a demonstration of a clear clinical therapeutic effect of
a differentiation agent opens up the possibility that it may also serve as a cancer
chemopreventive compound.

While the role of 1,25D in cancer chemotherapy and cancer chemoprevention is only beginning
to be established, there are several reasons to believe that its promise will be fulfilled. These
reasons include the fact that 1,25D is a naturally occurring physiological substance and thus
unlikely to cause the adverse reactions that occur when xenobiotics are administered to patients,
unless it is given in very high concentrations. Second, the issue of hypercalcemia, which occurs
when the concentrations of 1,25D greatly exceed the physiological range and has previously
limited its clinical applications (7,8), can be addressed by the dual strategy of developing
analogs of 1,25D with reduced calcium-mobilizing properties (9–12),and combining these with
other compounds that enhance the differentiation-inducing actions of 1,25D or its analogs
(13–15). Also, progress is being made in understanding the mechanisms responsible for 1,25D-
induced differentiation, summarized later in this review, and although this understanding is by
no means complete, it is likely that insights will be obtained that can be translated into clinical
applications.

Differentiation of neoplastic cells induced by 1,25D and other agents rarely, if ever, results in
the generation of completely normal, functioning cells. Indeed, the appearance of cells resulting
from induced progenitors has been aptly described as resembling “caricatures” rather than
normal cells. Such cells may exhibit, and are recognized by, some features of the normal,
mature cells of the particular developmental lineage but seldom function like the mature normal
cells. However, this is not the major objective of differentiation therapy of neoplastic diseases;
the real benefits are due to the cessation of the proliferation of these cells, which is a
consequence of cell cycle arrest associated with differentiation(16–19) and in some cases to
the reduced survival of the differentiated cells. For instance, 1,25D-induced monocytic
differentiation of myeloid leukemia cells can result in the G1 phase cell cycle block, resulting
in cessation of cell proliferation(19), while 1,25D treatment of breast or prostate cancer cells
can induce cell death by apoptosis as well as by differentiation(20–22).

An important consideration in the area of 1,25D-induced differentiation is cell type and cell
context specificity. For instance, in contrast to breast and prostate cancer cells, which are
induced to undergo apoptosis, in myeloid leukemia cells, 1,25D-induced differentiation is
accompanied by increased cell survival(23,24). The pathways that are known to signal 1,25D-
induced differentiation and the associated cell cycle and survival effects also differ, though
they may overlap, in different cell types. This may be complicated further by the type of
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mutations that are responsible for the block of differentiation and the resulting uncontrolled
proliferation of the neoplastic cells. We therefore discuss separately the principal cancer cell
types known to be candidates for differentiation therapy or chemoprevention by 1,25D.

Solid tumors
Colon cancer

It is well established that colon cancer cells in culture can undergo differentiation to a more
mature phenotype, and the inducing agents include the short-chain fatty acid butyrate and
1,25D. The evidence for differentiation has traditionally been the expression of the hydrolytic
enzyme alkaline phosphatase (Alk Pase), which can be demonstrated on the microvilli and
tubulovacuolar system of the surface “principal cells” of the colon mucosa(25,26) but is poorly
expressed in proliferating colon cancer cells(27). More recently, other markers of colonic
epithelial cell differentiation have been identified, and these include changes in “transepithelial
electrical resistance” and ubiquitin, as based on matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-TOFMS). The latter procedure generates specific
mass spectral fingerprints characteristic of cell differentiation, and it was suggested that
ubiquitin can be a marker of differentiation of the T84 human colon carcinoma cell line(28).
In another colon cancer cell line, SW80, 1,25D was shown to induce easily recognizable
morphological changes indicative of differentiated epithelial-like phenotype(29). These
morphological changes include consequences of the adherence to the culture substratum, which
make the cells look flat and polygonal, and it was demonstrated that these cells have reduced
tumorigenicity when implanted into athymic mice. Thus, the epidemiological data that indicate
that 1,25D has a negative effect on the incidence of human colorectal cancer(30,31) are well
supported by the in vitro studies of 1,25D-induced differentiation of colon carcinoma cell lines.

How 1,25D signals differentiation of colon cancer cells is not entirely clear, but several groups
of key molecules have been identified that appear to govern this process, and an outline of their
postulated interactions is integrated in Figure 1. One mechanism that can explain the reduced
cell proliferation that accompanies differentiation is the marked inhibitory effect of 1,25D on
the expression of epidermal growth factor receptor (EGFR), apparent at both mRNA and
protein levels in CaCo-2 cells(32). The accumulated data also suggest that the central role in
1,25D-induced differentiation is played by the vitamin D receptor (VDR). An early study
demonstrated that 1,25D has a protective effect on chemically induced rat colon carcinogenesis
(33), and others showed that VDR can be a marker for colon cancer cell differentiation(34,
35). This was followed up by Cross and colleagues in a series of experiments that showed that
VDR levels increased in early stages of carcinogenesis, or in human colonic mucosa during
early tumor development, but that VDR levels were low in poorly differentiated late-stage
carcinomas(36,37). This suggested that VDR levels have a restraining effect on the growth of
colon cells. A mechanism that can explain the increased levels of VDR in differentiated colon
cells was provided by the indication that, in CaCo-2 cells, 1,25D causes an increased activity
of the AP-1 transcription factor(27), which is downstream from the mitogen-activated protein
kinases (MAPK) pathways and can transactivate VDR gene expression(38). The consequent
up-regulation of VDR may further be increased in the presence of 1,25D by stabilization of
the VDR protein(39), but the nature of the initial activation of MAPK pathways in colon cancer
cells is not entirely clear. The suggested calcium-induced activation of protein kinase C alpha
(PKC α) as an upstream event in MAPK activation (27,40) appears to be feasible, as an influx
of calcium into the cells is known to occur after 1,25D exposure of many types of cells including
colon cancer(41), but this pathway remains to be further investigated. Nonetheless, the
importance of VDR in colon cancer cell differentiation is further underscored by the suggestion
that butyrate-induced differentiation of CaCo-2 cells is mediated by VDR(42) and by the recent
report that decreased recruitment of VDR to the vitamin D response elements (VDRE)
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contributes to the reduced transcriptional responsiveness of proliferating CaCo-2 cells to 1,25D
(43).

An emerging role for VDR, other than its function as a transcription factor that binds to VDRE
in the promoter regions of 1,25D-responsive genes, is exemplified by the finding that VDR
can interact with β-catenin and thereby repress its oncogenic gene-regulatory activity in colon
cells(29). The transrepression of β-catenin signaling is not limited to an interaction with VDR,
as such interactions can take place with other nuclear receptors, such as the retinoic acid
receptor (RAR) and the androgen receptor(29,44). This interaction has been shown to involve
also the co-activator p300, a histone acetyl transferase(45). The recently reported repression
of the VDR gene by the transcription factor SNAIL(46) and the repression by 1,25D of the
Wingless-related MMTV integration site (Wnt) antagonist DICKOPF-4(47) may also be
important for the inhibition of Wnt/ β-catenin signaling by 1,25D and for its induction of
differentiation in colon cancer cells.

Signaling by β-catenin can also be repressed by the 1,25D-induced up-regulation of the
expression of E-cadherin(29), a transmembrane protein that plays a major role in the
maintenance of the adhesive and polarized phenotype of epithelial cells(48). The presence of
E-cadherin can promote nuclear export of β-catenin, and this may be augmented by direct
VDR/β-catenin interaction(48). Since β-catenin/T-cell transcription factor 4 (TCF-4) complex
is the nuclear effector of the Wnt growth-signaling pathway, responsible for the expression of
c-myc and other growth promoting genes(49), the repressive effects of 1,25D on the growth
of colon cancer cells may be explained by the ability of 1,25D to regulate the expression of
VDR, E-cadherin and the activity of the β-catenin/TCF pathway, as illustrated in Figure 1.

In addition to protein-protein complex formation with β-catenin, VDR has also been reported
to interact with the transcription factor-specificity protein 1 (Sp1) in SW 620 human cancer
cells and thus to induce the expression of p27/Kip1 inhibitor of the cell cycle(50). However,
it is not clear precisely how this is achieved given the ubiquitous nature of Sp1 binding sites
in gene promoters. Nonetheless, the direct binding of VDR to other proteins, which may be
ligand independent, is an area that deserves further study and has been reported to occur in
cells types other than colon carcinoma, such as osteoblastic cells and myeloid leukemia, as
discussed later.

Breast cancer
The induction of differentiation of breast cancer cell lines by 1,25D and the role of 1,25D in
normal development of rodent mammary tissue are well established. For instance, studies of
VDR knock-out mice have shown that 1,25D participates in the growth inhibition of the normal
mammary gland(51). Further, the disruption of 1,25D/VDR signaling leads to distorted
morphology of murine mammary gland with duct abnormalities and increased numbers of
preneoplastic lesions, suggesting that 1,25D-liganded VDR serves to maintain differentiation
of normal mammary epithelium(52).

Induction of differentiation of breast cancer cells by 1,25D can be demonstrated by β-casein
production(53) or by a change in overall cell size and shape, associated with changed
cytoarchitecture of actin filaments and microtubules in MDA-MB-453 cells (54). Treatment
of these cells with 1,25D resulted in accumulation of integrins, paxillin, and focal adhesion
kinase as well as their phosphorylation. In contrast, the mesenchymal marker N-cadherin and
the myoepithelial marker P-cadherin were down-regulated, suggesting that 1,25D reverses the
myoepithelial features associated with the aggressive forms of human breast cancer. However,
it is to be noted that not all breast cancer cell lines respond to 1,25D. In many cases this can
be attributed to the lack of or low VDR expression or function(55,56), but it may also be due
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to alterations in 1,25D-metabolizing enzymes, which can reduce the levels of 1,25D below its
effective concentration(57).

Among the breast cancer cell lines that do respond to 1,25D, a range of phenotype alterations
has been reported(58), emphasizing that the mechanistic basis for the differentiating effects of
1,25D in the breast cancer cell system will be very complex. Together with the uncertainty
over whether induced differentiation of breast cancer cells, per se, has potential clinical
significance, mechanistic studies in this system have been largely directed to the
antiproliferative effects of 1,25D on breast cancer cells. These studies revealed that induction
of apoptosis and G1 cell cycle arrest result in inhibition of tumor cell growth in several types
of breast cancer cells(20,57,59), but the relationship of these biological effects to differentiation
is not obvious. Nonetheless, some hints did result from those studies, as detailed below.

An interesting set of candidate 1,25D-target proteins was identified by proteomic screening of
a breast cancer cell line sensitive to 1,25D (MCF-7) and from a subclone of these cells derived
by resistance to 1,25D (MCF-7/DRES)(60); and some of these proteins can be related to
differentiation and associated phenotypic cellular changes. Examples are Rho-GDI and Rock-
DI, known to participate in the formation of focal adhesions and stress fibers, which contribute
to the adhesive epithelial phenotype and changes in cell shape(60). Proteins previously linked
to pathways involved in 1,25D-induced differentiation, such as phospho-p38, MEK2, and
RAS-GAP, were also noted in this screen(52). In a tissue culture study, the JNK pathway, also
known to contribute to 1,25D-induced differentiation of colon and myeloid cells(61), was
shown to cooperate with the p38 pathway to transactivate VDR in breast cancer cells, but it
was proposed that this contributes to the anti-proliferative rather than the differentiation-
inducing effects of 1,25D in these cells(38). The antiproliferative effects of 1,25D can also be
explained by the reduction in EGFR mRNA and protein, but this is seen in only some breast
cancer cell lines(62,63).

Another suggested link to differentiation in 1,25D-treated breast cancer cells is that VDR and
estrogen receptor (ER) pathways converge to regulate BRCA-1, thus controlling the balance
between signaling of differentiation and proliferation(64). Since ER is important for mammary
gland differentiation, studies that pursue this concept would be very valuable, and it already
appears that the over-expression of ER and VDR is not sufficient to make ER-negative breast
cancer cells responsive to 1α,hydroxy-vitamin D5, a vitamin D analog known to mediate
differentiation in a manner similar to that of 1,25D(65,66).

Prostate cancer
Similar to breast cancer, prostate cancer originates in hormone-dependent epithelial cells, and,
as in breast cancer cell lines, 1,25D has anti-proliferative effects in some, but not all, established
prostate cancer cell lines. The anti-proliferative action of 1,25D is, to a variable degree, due to
the induction of cell death by apoptosis(67) and to cell cycle arrest(68), but to what extent these
are associated with differentiation is uncertain.

The evidence of prostate cancer cell differentiation includes the release of prostate specific
antigen (PSA) from cells treated with a differentiating agent, such as 1,25D(69–71). This can
be useful in cultured cells, but, in patients, the increasing PSA levels suggest progressive
disease, making it difficult to acquire data on the role of differentiation in clinical trials(72).
A study of the role of 1,25D in the differentiation of the normal rat prostate gland was based
on morphological characteristics, which included an increased abundance of cytoplasmic
secretory vesicles(73). This characteristic has been used as a differentiation marker, along with
the expression of keratins 8, 17, and 18, in human prostate cancer PC-3 cells(74). In other
studies(75,76), the increased expression of E-cadherin was used as a marker of differentiation.
However, although many reports on the effects of 1,25D on prostate cancer cells include the
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word “differentiation,” the documentation most often focuses on the anti-proliferative effects
of 1,25D exposure, which may or may not be associated with phenotypic differentiation.

In a recent microarray analysis of 1,25D regulation of gene expression in LNCaP cells,
Krishman et al.(77) reported several findings that appear relevant to 1,25D-induced
differentiation. In addition to the major up-regulation of the expression of the insulin-like
growth factor binding protein-3 (IGFBP-3), which functions to inhibit cell proliferation by up-
regulating p21/Cip1(78), it was noted that among about a dozen genes up-regulated by 1,25D
was the “prostate differentiation factor,” a member of the bone morphogenetic protein (BMP)
family, which is generally involved in growth and differentiation of both embryonic and adult
tissues(79). Also interesting was the finding that, in these cells, 1,25D regulates those genes
that are androgen-responsive as well as the genes that encode the enzymes involved in androgen
catabolism.

Furthermore, it has been shown that 1,25D up-regulates the expression and activity of the
androgen receptor (AR)(80,81), raising the possibility that the differentiation effects of 1,25D
on prostate cells are not direct but due to modifications in the level or activity of AR.
Interestingly, it has also been suggested that androgens up-regulate the expression of VDR
(82); thus, a positive feedback loop that includes 1,25D activation of VDR could be a factor
in inducing differentiation of cancer cells derived from the hormonally regulated tissues (Figure
2), while, in normal cells, the sex hormone (androgen or estrogen) is sufficient to promote
differentiation. Since 1,25D has an established anti-cancer activity in prostate cells, it can be
assumed that, in this scenario, VDR selectively enhances the AR-mediated androgenic pro-
differentiation but not the proliferation-enhancing activity (Figure 2). In addition, it is likely
that nuclear receptors for retinoids, glucocorticoids, and PPAR affect the signaling pathways,
directly or indirectly. Whether the demonstrated 1,25D-induced decrease in the expression of
COX-2 and increase in 15-PGDH in prostate cancer cells(77,83) has any relationship to cell
differentiation remains to be established.

Prostate cancer cells are also known to undergo “trans-differentiation”
toaneuroendocrinephenotype, and when this phenotype is found in human tumors, it may
indicate an aggressive form of the disease(84). Although, currently, 1,25D has no known role
in this form of differentiation, this may be a promising area of future research, since recent
studies point to a key role for NFκB, as well as IL-6, in this process(85,86). This suggestion
is based on the finding that, in some cells, 1,25D up-regulates the expression of C/EBP β(87),
which cooperates with NFκB in regulation of the secretion of the cytokine IL-6 in
neuroendocrine human prostate cancer cells(85).

Keratinocytes and Squamous cell carcinoma cells
While there is extensive evidence of 1,25D-induced differentiation in normal keratinocytes,
the studies of the induction of differentiation in squamous cell carcinomas (SCC), composed
essentially of neoplastic keratinocytes, are less conclusive. Differentiation can be detected by
the presence of various components of the keratinizing cells, such as cytokeratins K1 and K10,
cornifin-beta, involucrin, and transglutaminase, considered to be a late marker of squamous
cell differentiation to normal epidermal keratinocytes(88). The expression of target genes of
1,25D and analogs can also be taken as evidence that SCC cell lines can be driven to
differentiation by these compounds(89). Such genes include N-cadherin, which, when over-
expressed, restores the epithelial phenotype also in prostate cancer cells(90), cystatin M,
protease M, type XIII collagen, and desmoglein 3(89). Bikle and colleagues have presented
persuasive models for induction of keratinocyte differentiation by increased calcium levels and
by calcium-1,25D interactions(91,92). The key features of calcium-induced human
keratinocyte differentiation appear to include the recruitment of phosphatidylinositol 3-kinase
(PI3K) to a complex at the cell plasma membrane consisting of E-cadherin, β-catenin, and
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p120-catenin. This complex is postulated to activate PI3K, leading to the accumulation of
phosphatidylinositol 3,4,5-triphosphate (PIP3), which binds to and activates phospholipase C
gamma-1 (PLC-γ1)(93,94). The activated phospholipase generates inositol triphosphate
(IP3), which stimulates the release of calcium from the intracellular stores in the endoplasmic
reticulum, and diacylglycerol, which, together with increased intracellular calcium, activates
PKC. PKC, and perhaps calcium activation of other enzymes, then initiate signaling cascades
that impinge on nuclear transcription factors such as AP-1, which lead to differentiation (95)

How much of this description applies to the 1,25D-induced differentiation is less clear, but
Bikle et al.(91) presented a plausible model in which 1,25D interacts with calcium to induce
keratinocyte differentiation. This model also includes a G-protein-coupled calcium-sensing
surface receptor (CaR), which, when activated by 1,25D leads to the activation of PKC, with
consequences described above. The associated influx of calcium, which occurs in human
keratinocytes after exposure to 1,25D, has been recently shown to be mediated, at least in part,
by the calcium-selective channel TRPV6 up-regulated at the mRNA and protein levels by
1,25D(96). A cohesive picture of 1,25D-induced keratinocyte differentiation is quite well, but
perhaps not completely, developed. For instance, regulation of AP-1 activity in cultured human
keratinocytes by 1,25D was reported to be independent of PKC(97), in contrast to the model
presented by Bikle et al.(91). Takahashi et al.(98) reported that treatment of normal human
keratinocytes with 1,25D increases the expression of cystatin A, a cysteine protease inhibitor,
that is a component of the cornified envelope, and that it is the suppression of the Raf-1/MEK-1/
ERK signaling pathway that is responsible for this effect. However, cystatin A expression is
stimulated by the Ras/MEKK-1MKK7/JNK pathway(99), consistent with the schematic model
of Bikle et al.(91), explaining why PKC activation may not be essential for AP-1 activation in
this cell system.

An enigmatic role of caspase-14 in keratinocyte differentiation induced by 1,25D has been
reported(100), and it was suggested that the absence of caspase-14 contributes to the psoriatic
phenotype. Since caspase-14 is a nonapoptotic protein, it is unclear if this is related to the report
that 1,25D protects keratinocytes from apoptosis(101). On the other hand, the identification of
Kruppel-like factor 4 (KLF-4) and c-fos as 1,25D-responsive genes in gene expression
profiling of 1,25D-treated keratinocytes(102) fits in well with the existing knowledge of
differentiation signaling, as c-fos is a component of the AP-1 transcription factor, and KLF-4
is a transcription factor with a major role in cell fate decisions(103–105). Recently, it was
reported that yet another transcription factor, PPAR-gamma, also has a major role in 1,25D-
induced differentiation of keratinocytes(106). In these studies, dominant negative (dn) PPAR-
gamma inhibited the expression of involucrin (a differentiation marker), suppressed AP-1
binding to DNA, and prevented the 1,25D-induced phosphorylation of p38. Thus, the
keratinocyte system provided a wealth of interesting information on 1,25D as a differentiation-
promoting and survival-regulating agent.

Transformed keratinocytes, which give rise to SCC, tend to be resistant to the differentiation-
inducing action of 1,25D(107,108), even though apoptosis and cell cycle arrest induced by
1,25D have been demonstrated in models of SCC(109,110). While VDR expression is required
for 1,25D-induced differentiation, the resistance of SCCs to 1,25D is not due to the lack of
functional VDR(111). The possible explanations for the 1,25D resistance include the finding
that the VDRE in the human PLCγ-1 gene is not functional(111). Another explanation for this
resistance is that increased serine phosphorylation of retinoid X receptor alpha (RXRα) by the
Ras/MAPK pathway leads to its degradation, and thus VDR loses its heterodimeric partner for
gene transactivation(112). Yet another possibility is that VDR co-activators in SCCs are not
appropriate for transactivation of differentiation-inducing genes(95). Specifically, it was
suggested that the expression of differentiation markers required a complex of VDR with the
Src family of co-activators(113), but in SCC the DRIP co-activator complex is over-expressed,
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and there is a failure of SCCs to switch from DRIP to Src, resulting in inability to express genes
required for differentiation. It would be interesting to learn if this model has a wider
applicability.

Osteosarcoma and osteoblasts
Differentiation as well as growth inhibition have been documented in 1,25D-treated human
and rat osteosarcoma cells(114,115). The differentiation was recognized by a morphological
change to the chondrocyte phenotype and by increased Alk Pase staining. The presence of Alk
Pase or osteocalcin could also be detected at the mRNA level(115). In a human fetal
osteoblastic cell line responsive to 1,25D, mineralized nodules were detected(116),
demonstrating that an advanced degree of differentiation can be achieved in this cell system.
Interestingly, 1,25D-induced differentiation in osteoblasts and osteocytes is accompanied by
an increase in the potential for cell survival through enhanced anti-apoptotic signaling(117).
It is possible that this is mediated by EGFR-relayed signals, as in contrast to other cell types
(32,62,118), 1,25D-treated osteoblastic cells show increased levels of EGFR mRNA(119).

Recent studies suggest that the anti-apoptotic effects of 1,25D on osteoblasts and osteocytes
are mediated by Src, PI3K, and JNK kinases(117). The suggested mechanisms include an
association of Src with VDR, though transcriptional mechanisms were required, as shown by
an inhibition of the biological effect by exposure to actinomycin D or cycloheximide. The
association of VDR with other proteins may be particularly important in osteoblasts induced
to differentiate by 1,25D, as another group reported that IGF-binding protein-5 (IBP-5)
interacts with VDR and blocks the RXR/VDR heterodimerization in the nuclei of MG-63 and
U2-OS cells, thus attenuating the expression of bone differentiation markers(120). Also, in
ROS 17/28 cells the NFκB p65 subunit integrates into the VDR transcription complex and
disrupts VDR binding to its co-activator Src-1(121). Although protein-protein binding between
VDR and p65 subunit has not been demonstrated, this remains a possibility, further highlighting
the importance of this mode of control of VDR activity.

Leukemias
Hematological malignancies are a diverse group of diseases but can be divided into two major
groups, lymphocytic and myeloid leukemias. Although normal activated B and T lymphocytes
express VDR, and 1,25D has antiproliferative effects on these cell types(122,123), this does
not appear to alter their differentiation state, and lymphocytic leukemia cells do not respond
to 1,25D. In contrast, 1,25D has been known since 1981 to induce maturation of mouse myeloid
leukemia cells(124), and this can also take place in a wide variety of human myeloid leukemia
cell lines, with the exception of the lines derived from the most immature acute myeloid
leukemia (AML) blast cells (125–127).

Differentiation induced by 1,25D usually results in a monocyte-like phenotype, but prolonged
exposure to 1,25D confers cell surface changes that result in adherence to the substratum,
making the differentiated cells macrophage-like(124,128). The monocyte characteristics are
recognized by changes related to phagocytosis, such as the ability to break down esters, assayed
by the “non-specific esterase” (NSE) cytochemical reaction, also known as “monocytespecific
esterase” (MSE) since, in hematopoietic cells, this esterase is specific for monocytes and
macrophages(129). Also related to phagocytosis is the ability to generate reactive oxygen
species (ROS), including superoxide, usually recognized by nitro bluetetrazolium (NBT)
orcytochromereduction(130,131). The availability of flow cytometry (FC) for the recognition
of surface proteins has made the study of the differentiating effects of 1,25D on myeloid
leukemia cells quite simple, using CD14, a receptor for complexes of lipopolysaccarides (LPS)
and LPS-binding protein(132), a near-definitive marker of the monocytic phenotype. This is
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usually supplemented by the FC determination of CD11b or another subunit of the human
neutrophil surface protein that mediates cellular adherence(133).

In contrast to myeloid cells induced to differentiate by the phorbol ester TPA, in 1,25D-treated
cells, the ability to adhere develops more slowly than the ability to phagocytose. Consequently,
1,25D treatment results in an earlier appearance of the CD14 antigen, usually accompanied in
parallel by MSE positivity, than the appearance of CD11b and NBT positivity(134,135).
Generally, at least two of the above parameters are measured to demonstrate monocytic
differentiation, and FC methods require the use of paired isotypic IgG controls for each test
sample to avoid obtaining false-positive data. Exposure of AML cells to 1,25D also results in
G1 phase cell cycle arrest, which follows, rather than precedes, the phenotypic differentiation
(134) and is often taken as the confirmatory evidence that differentiation has taken place.
However, in contrast to cells from most solid tumors, monocytic differentiation of AML cells
is accompanied by increased expression of anti-apoptotic proteins, and, consequently, 1,25D-
treated myeloid cells have an increased cell survival potential(136–140).

The topic of 1,25D-induced leukemia cell differentiation has been extensively studied in many
laboratories. These include several groups in Japan(141–145) and a group in Birmingham,
England(146,147), who made many valuable contributions to the field. Notably, combined
basic and clinical studies of 1,25D-induced leukemia cell differentiation were very
comprehensively developed by Koeffler and his various collaborators(148–151). What follows
in the remainder of this section is an outline of the signaling mechanisms of AML cells that
have occupied the attention of the corresponding author’s laboratory.

In these studies, we have focused on HL60 cells, a widely available cell line derived from a
patient with promyeloblastic leukemia, with the objective of achieving with the currently
available tools as clear a picture as possible of the signaling of monocytic differentiation. In
this model, outlined in Figure 3(A and B), a plausible sequence of events is presented, but it
is likely that other pathways are also operative but remain to be convincingly demonstrated.
The details of the scheme are described below.

Signaling of monocytic differentiation by MAPK and parallel pathways
Early in our investigations, we recognized that 1,25D-induced monocytic differentiation is not
a single continuous process but a series of events that can be divided into at least two
overlapping phases. In the first phase, which lasts 24–48 h, the cells continue in the normal
cell cycle while expressing markers of monocytic phenotype, such as CD14 and NSE. In the
next phase, the G1 to S phase cell cycle block becomes apparent, and the expression of CD11b
is also prominent, indicating a beginning of the transition to the macrophage phenotype. The
first phase is characterized by high levels of ERKs activated by phosphorylation, and these
levels decrease as the cells enter the second phase, while the levels of the cell cycle inhibitor
p27KIp1 increase at that time. Serum-starved HL60 cells or cells treated with the MAPK
inhibitor PD 98059 have a reduced growth rate and a slower rate of differentiation, but the G1
block under these conditions also coincides with decreased levels of activated ERK1/2(152).
Our data suggested that the MEK/ERK pathway maintains cell proliferation during the early
stages of differentiation and that the consequent G1 block leads to “terminal” differentiation.
Using a different experimental design, similar results were obtained by Marcinkowska (153).

We also demonstrated that the JNK pathway, as shown by the increased phosphorylation of c-
jun, plays a role in the induction of differentiation of HL60 cells by 1,25D. The data showed
that 1,25D-induced differentiation of a stable clone of U937 cells transfected with a dominant
negative construct of JNK-1 was reduced, as compared to cells transfected with a control
construct(154), and potentiation of 1,25D-induced differentiation by the plant anti-oxidants
curcumin and silibinin increased the phosphorylation of c-jun(155). This suggested that the
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JNK-jun pathway is involved in 1,25D-induced differentiation, which was further established
in experiments that showed that the AP-1 transcription factor complex is required for this
process since c-jun, together with ATF-2, is the principal component of this complex (140).
This appears to be of wider significance, as c-jun expression was also reported to enhance
macrophage differentiation of U937 cells(156).

However, it seems clear that the ERK and JNK MAPK pathways are not the only ones involved
in signaling of 1,25D-induced differentiation. For instance, compounds SB203580 and
SB2902190, reported to be specific inhibitors of the alpha and beta isoforms of signaling
protein p38 MAP kinase(157), were found to markedly accelerate monocytic differentiation
of HL60 cells induced by low concentrations of 1,25D(158). Paradoxically, these compounds
also induced a sustained enhancement of p38 phosphorylation and of its activity in cell extracts
in the absence of added inhibitor, which raised the possibility of a lack of specificity of SB
compounds in this cell system or of an up-regulation of the upstream components of the p38
pathway. In addition, SB 203580 or SB 202190 treatment of HL60 cells resulted in prolonged
activation of the JNK and ERK MAPK pathways(158). SB203580 treatment of HL60, HT93,
and ML-1 human myeloid leukemia cell lines also increased cellular ERK activity(159). These
data are consistent with the hypothesis that in HL60 cells an interruption of a negative feedback
loop from a p38 target activates a common regulator of multiple MAPK pathways, but it is
also possible that SB203580 has an additional unknown action.

Another signaling cascade known to be activated by 1,25D in human AML cells is the PI3K-
AKT pathway, which is often envisaged to signal from the cell membrane to the intracellular
regulators in parallel with the MAPK pathways (160). Further, monocytic leukemia cells
THP-1 exposed to 1,25D in serum-free medium show a rapid and transient increase in PI3K
activity, which was attributed to the formation of a VDR-PI3K protein complex (161).
However, it is not clear if the lack of growth factors normally provided by the serum contributes
to the observed effects. The role of the PI3K pathway in 1,25D induced differentiation was
also studied by Marcinkowska and colleagues(162–164), who showed that the activation of
PI3K by 1,25D can also be demonstrated in HL60 cells and that the signal is transmitted to
AKT. This function of AKT may contribute to the differentiation-related increase in 1,25D-
induced cell survival(139). An additional role of the PI3K, as well as of the Ras/Raf/ERK,
pathway in human leukemia cells is the stimulation of steroid sulfatase, an enzyme that converts
inactive estrogen and androgen precursors to the active sex hormones(147). If this is also
operative in breast and/or prostate tissues, it could offer an explanation for the mutual activation
of VDR and the estrogen and androgen nuclear receptors, as shown in Figure 2.

The mechanisms of the up-regulation of MAPK pathways in the initial phase of 1,25D action
on leukemia cells are still unclear. The very rapid effects of 1,25D on the MAPK pathway in
intestinal cells that result in rapid calcium transport (“transcaltachia”) have been attributed to
a cell membrane receptor (“mVDR”)(165–167), but whether direct, non-genomic action of
such mVDR can initiate or enhance the activity of MAPK pathways in leukemia cells has not
been well documented. In non-starved leukemia cells, 1,25D elicits less rapid (hours rather
than minutes) activation of the MAPKs. One possibility is that this is achieved by the
transcriptional up-regulation of Kinase Suppressor of Ras-1 (KSR-1), a membrane-associated
kinase/molecular scaffold also known as ceramide-activated protein kinase (168,169).
Although a kinase activity associated with KSR-1 has been reported(170–172), the best
established function of KSR-1 is to provide a platform for Raf-1 kinase to phosphorylate and
thus activate its downstream targets in the MAPK pathways(173,174). Thus, since KSR-1 has
been shown to have a functional DNA element regulated by VDR (VDRE)(175), the activation
of the MAPKs may be a direct “genomic” action of 1,25D, as depicted in Figure 3A, rather
than signaling initiation at the membrane and “non-genomic.”
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Our studies(169,176), combined with those of Marcinkowska and colleagues(164,177),
suggest that leukemia cell differentiation is initiated when 1,25D promotes nuclear
translocation of liganded VDR, which dimerizes with RXR and transactivates several VDRE-
regulated genes, including KSR-1 and KSR-2. The latter appears to play a role in increasing
the survival potential of differentiating monocytic cells(24), while KSR-1 acts as a scaffold
that, by simultaneously binding to Ras and Raf-1 (and perhaps to other proteins) facilitates or
redirects the signaling cascade, at least initially, to MEK/ERK and thus amplifies the signal
that initiates monocytic differentiation (Figure 3A).

Raf-1 participation has been shown to be required for the later stages of differentiation, when
an impairment in cell cycle progression becomes apparent, and at this more advanced point in
the differentiation process, MEK/ERK signaling does not appear to be involved(178,179).
While this requires further study, the current model, also supported by observations in other
differentiation signaling systems(180–182), suggests that Raf-1 can signal p90RSK activation
independently of MEK and ERK, as outlined in Figure 3B.

A rather speculative mechanism describing how MEK/ERK signaling is diminished in the later
stages of differentiation, when cell proliferation becomes arrested, is presented below.

p35/Cdk5, a protein kinase system that may interface differentiation processes with cell cycle
arrest

After 24–48 h of exposure of myeloid leukemia cells to moderate concentrations of 1,25D (1–
10 nM), cell cycle progression becomes progressively arrested, principally due to a G1 to S
phase block, although a G2 phase block can also be observed(183). Several mechanisms could
explain these cell cycle effects, including activation of cyclin-dependent kinase 5 (Cdk5).

Cdk5 is a proline-directed serine-threonine kinase with sequence homology to the cyclin-
activated kinases that regulate cell cycle progression, but its best-known function is
participation in differentiation of neuronal cells(184). When combined with a “cyclin-like”
neuronal Cdk5 activator (Nck5a) 35 kDa protein (p35/Nck5a, or p35), the p35/Cdk5 complex
functions in monocytic cells and plays an important role in normal, and possibly abnormal,
development of this hematopoietic lineage. Our initial observations were that, in HL60 cells
treated with 1,25D, the monocytic phenotype and expression of Cdk5 appear in parallel. Both
active and inactive Cdk5 were associated with cyclin D1 protein, and the inhibition of Cdk5
expression by an antisense oligonucleotide construct reduced the intensity of 1,25D -induced
expression of the monocytic marker CD14(185). This finding demonstrated a novel (other than
neuronal) cellular type for Cdk5 activity and a concomitant enhancement of monocytic
differentiation.

The above study showed that protein levels and kinase activity of Cdk5 increase in HL60 cells
induced to monocytic differentiation by 1,25D, but did not establish the specificity of the
association of Cdk5 with the monocytic phenotype. Therefore, we showed in a subsequent
study that the up-regulation of Cdk5 does not occur in granulocytic differentiation, whereas
an inhibition of Cdk5 activity by the pharmacological inhibitor olomoucine, or of its expression
by a plasmid construct expressing antisense Cdk5, switches the 1,25D–induced monocytic
phenotype (a combination of the positive NSE reaction, the expression of the CD14 marker,
and morphology) to a general myeloid phenotype (a positive NBT reaction, the CD11b marker,
and morphology)(186). These findings showed that, in human myeloid cells, the up-regulation
of Cdk5 is specifically associated with the monocytic phenotype.

The Nck5a 35 kDa protein has hitherto been considered to be exclusively expressed in neuronal
cells, as its name implies(187). However, since we had clear evidence that Cdk5 is an active
kinase in human leukemia cells HL60 and U937 induced to differentiate with 1,25D, and since
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the “classical” cyclins (e.g. cyclin D1, cyclin E) are not known to activate Cdk5, we investigated
whether p35 can be detected in cells with active Cdk5. Indeed, we demonstrated that p35 is
expressed in normal human monocytes and in leukemic cells induced to differentiate toward
the monocytic lineage but not in lymphocytes, or cells induced to granulocytic differentiation
by retinoic acid. The activator p35 is present in a complex with Cdk5 that has protein kinase
activity, and when ectopically expressed together with Cdk5 in undifferentiated HL60 cells it
induces the expression of CD14 and NSE markers of the monocytic phenotype(188). These
observations not only indicate a functional relationship between Cdk5 and p35 but also support
a role for this complex in monocytic differentiation.

A likely link to the diminution of ERK MAPK pathway activity at the onset of phase 2 of
1,25D-induced differentiation is provided by the EGR-1→ p35/Cdk5 ---| MEK 1/2 pathway,
which was elucidated in leukemia cells by this laboratory (189). The schematic representation
is shown in Figure 3B, and the supporting data can be summarized as follows.

Control of p35 expression by the EGR-1 transcription factor
The evidence in support of a role for EGR-1 in regulating the expression of p35 includes the
co-ordinate expression of EGR-1 along with Cdk5, and the co-inhibition of the 1,25D –induced
up-regulation of these proteins by PD 98059, an inhibitor of the MEK/ERK1/2 pathway
(171,190). Further, the promoter region of human p35 has an EGR-1 binding site that overlaps
with an Sp1 site, and a gel shift assay showed that a double-stranded oligonucleotide that
contained this sequence bound proteins in nuclear extracts from 1,25D-treated HL60 cells. The
EGR-1-site binding proteins were competed with most efficiently by an anti-EGR-1 antibody,
though some competition was also observed with an anti-Sp1 antibody, but no competition
was observed with an irrelevant antibody, e.g. anti-VDR. The data suggested that EGR-1, and
perhaps Sp1 proteins, regulate the expression of p35 and contribute to induction of the
monocytic phenotype. A “decoy” EGR-1 response element oligonucleotide inhibited both
1,25D-induced p35 expression and monocytic differentiation (189).

The Cdk5/p35 complex phosphorylates MEK
We also found that the Cdk5/p35 can phosphorylate MEK in cell extracts (189). If this can be
demonstrated to occur in leukemia cells, it will provide a potential mechanism for the inhibition
of the MAPK/ERK pathway seen in the later stages of differentiation (48 h after the addition
of 1,25D to the cultures) since phosphorylation of MEK by p35/Cdk5 inhibits its kinase
activity. Intriguingly, up-regulation of p35 (which activates Cdk5) is observed pari passu as
ERK 1/2 phosphorylation is waning, consistent with a cause-effect relationship. We have thus
proposed a mechanism that can shut down cell proliferation, possibly by allowing p27Kip1 to
accumulate in the cell nucleus due to a decline in ERK 1/2 activity, since it has been reported
that the ERK pathway can increase nuclear export of p27Kip1(191).

C/EBP β transcription factor as an effector of monocytic differentiation
One of the downstream targets of the MAPK-RSK pathway is a nuclear transcription factor,
the CAAT and Enhancer Binding Protein β (C/EBP β). This transcription factor has been
reported to be activated by phosphorylation both by ERK(192) and by RSK(193) and can
interact directly with the promoter of CD14, one of the principal markers of monocytic
differentiation(194), as illustrated in Figure 3B. We showed that the expression of C/EBP β is
increased by 1,25D in parallel with markers of differentiation; conversely, the knockdown of
its expression by antisense oligonucleotides, or of its transcriptional activity by “decoy”
promoter competition, inhibited 1,25D-induced differentiation(195). In an additional study,
the data suggested that 1,25D induced phosphorylation of C/EBP β isoforms on Thr235, and
that the C/EBP β-2 isoform is one of the principal differentiation-related transcription factors
in this system(87).
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These findings suggest that 1,25D can induce leukemic progenitor cells, which have the
potential to differentiate into several hematopoietic lineages, to become non-proliferating
monocyte-like cells by changing the ratio of nuclear transcription factors in a manner that
permits this form of differentiation(196). In this scenario, the event that initiates leukemic
transformation, such as a mutation, alters the proper balance of transcription factor activity
necessary for normal granulocytic cell differentiation. However, 1,25D-induced expression of
C/EBP β then allows the cells to bypass this block to granulocytic differentiation by becoming
monocyte-like cells instead (Figure 4).

Interestingly, 1,25D has also been reported to have a negative effect on differentiation, as it
inhibits IL-4/GM-CSF-induced differentiation of human monocytes into dendritic cells, and
this contributes to 1,25D immunosuppressive activity(197,198). The data also suggested that
1,25D specifically down-regulates the expression of CSF-1 and promotes spontaneous
apoptosis of mature dendritic cells, further demonstrating the pleiotropic effects of 1,25D and
the cell-type specificity of the outcomes.

Conclusions
The signaling pathways presented here are shown to control the activity of several transcription
factors, such as the ubiquitous AP-1 complex, the nuclear receptor VDR, and the lineage-
determining C/EBP family of transcription factors. While these clearly play a role in 1,25D-
induced differentiation of HL60 cells, there may be redundancy of important cellular
regulators, and other pathways and transcription factors are likely to be involved. The initial
steps that activate the differentiation-inducing actions of 1,25D are not entirely clear, and while
cell membrane-associated events have a role, these events are not necessarily rapid, but they
are sustained. It is likely that micro-RNAs will be found to further control or modulate 1,25D
signaling, as retinoic acid-induced differentiation of NB4 AML cells has been shown to be
associated with the up-regulation of a number of micro-RNAs, and the down-regulation of
micro-RNA 181b(199). Thus, extensive additional investigations are warranted to provide a
basis for the design of improved therapies of leukemia and solid tumors.

Abbreviations and Glossary

1,25D 1a,25-dihydroxyvitamin D3

24OHase 24-hydroxylase

A androgen

AKT serine/threonine-specific, protein kinase B

Alk-Pase alkaline phosphatase

AML acute myeloid leukemia

AP-1 activating protein-1

APC adenomatous polyposis coli

APL acute promyelocytic leukemia

AR androgen receptor

ATRA all-trans retinoic acid

BMP bone morphogenetic protein

BRCA-1 (Breast Cancer-1)-breast cancer tumor suppressor gene

CaCo-2 human epithelial colorectal adenocarcinoma cell line
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CaR calcium-sensing surface receptor

Cdk5 cyclin-dependent kinase 5

C/EBP CCAAT/enhancer binding protein

CoA co-activator

COX Cyclooxygenase

DRIP Vitamin D Receptor-Interacting Protein

E2 estrogen

EGFR epidermal growth factor receptor

EGR-1 early growth response protein-1

EP early progenitor

ER estrogen receptor

ERK extracellular-signal regulated kinase

FC flow cytometry

GF growth factor

GFR growth factor receptor

GM-CSF granulocyte macrophage-colony stimulating factor

hOC human osteocalcin

hOP human osteopontin

IBP-5 IGF binding protein-5

IGF Insulin-like Growth Factor

IGFBP-3 insulin-like growth factor binding protein-3

IL-4 Interleukin-4

IP3 inositol triphosphate

JNK Jun N-terminal kinase

KLF-4 Kruppel-like factor 4

KSR-1 kinase suppressor of Ras-1

LPS lipopolysaccharides

MALDI-TOFMS matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry

MAPK mitogen-activated protein kinase

MG-63 Human osteosarcoma cell line

MSE monocyte-specific esterase (“non-specific” esterase)

NBT nitroblue tetrazolium

Nck5a “cyclin-like” neuronal Cdk5 activator

NFkappaB Nuclear factor kappa-light-chain-enhancer of activated B cells

NR nuclear receptor

NSE non-specific esterase
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P progenitor

PGDH Prostaglandin Dehydrogenase

p90RSK ribosomal S6 kinase (MAPK-activated protein kinase-1)

PI3K phosphatidylinositol 3-kinase

PIP3 phosphatidylinositol 3, 4, 5-triphosphate

PKC protein kinase C

PLC-g1 phospholipase C gamma-1

PPAR Peroxisome Proliferator-Activated Receptors

Rb retinoblastoma protein

PSA prostate-specific antigen

RAR retinoic acid receptor

ROS reactive oxygen species

RXRa retinoid X receptor alpha

SCC squamous cell carcinoma

Sp-1 specificity protein-1

Src Non-Receptor Protein Tyrosine Kinase

TCF4 T-cell transcription factor-4

Wnt Wingless-related MMTV integration site

TPA 12-O-tetradecanoylphorbol-13-acetate

U2-OS Human osteosarcoma cell line expressing wild type p53 and Rb, but
lacking p16

VDR vitamin D receptor

VDRE vitamin D3 response element
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Figure 1.
The suggested pathways of 1,25D-induced differentiation in colon cancer. In proliferating
colon epithelial cells the β-catenin complexed with TCF-4 drives the expression of growth
promoting genes such as c-myc. This is under the control of Wnt and its surface receptor
Frizzled, which inactivate GSK-3β (not shown) and allow the accumulation of β-catenin and
thus growth promotion. Binding of β-catenin by VDR, or by other proteins, including E-
cadherin, the expression of which is induced by 1,25D (formula shown) leads to the loss of β-
catenin from the transcriptional complex in the nucleus, and, as a consequence, to decreased
cell proliferation. Also shown is the activation of PKCα by 1,25D-induced influx of calcium
(Ca2+), which can activate by phosphorylation the transcriptional activity of VDR and
repression of EGFR by 1,25D in colon-derived cells.
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Figure 2.
Signaling of differentiation by 1,25D in hormone-dependent cancer cells. This schematic
illustrates the hypothesis that in normal breast or prostate cells, estrogen (E2) or androgen (A)
is sufficient to induce differentiation, respectively. In cancer cells the differentiation signal
provided by the hormone-liganded nuclear receptor (NR) may need to be amplified by the
cooperation with 1,25D-activated VDR to induce differentiation. Since cells also receive
signals from growth factors (GF), several of which activate Ras, the presence of a Ras-activated
signaling pathways is exemplified by the AKT and ERK cascades, though the role of these
pathways in the differentiation of hormone-dependent cells is uncertain.
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Figure 3.
(A) Suggested signaling of the early stages of 1,25D-induced monocytic differentiation.
Binding of 1,25D to VDR stimulates its translocation to the cell nucleus where it
heterodimerizes with RXR, and in myeloid precursor cells, it transactivates genes containing
VDREs in their promoter regions. These include genes that encode proteins involved in calcium
homeostasis and bone integrity, such as osteocalcin (hOC), osteopontin (hOP), and the 1,25D-
catabolic enzyme 24-hydroxylase (24OHase). It is postulated that the regulators of signaling
pathways, e.g. KSR-1, are also up-regulated in myeloid cells and alter Ras signaling from the
cell membrane so that signaling by MAPKs (MEKs, ERKs, and JNKs) increases the AP-1
activity. This can have a positive feedback effect on differentiation by increasing VDR

Gocek and Studzinski Page 29

Crit Rev Clin Lab Sci. Author manuscript; available in PMC 2010 February 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



abundance. It is also suggested that a potential negative feedback mechanism is provided by
p38 MAPK, as inhibition of its signaling by SB203580 enhances 1,25D-induced monocytic
differentiation. (B) Later stages of 1,25D-induced differentiation. This figure illustrates that
the transcription factor EGR-1, known to be up-regulated by 1,25D (189), can increase the
expression of p35/Nck5a (p35) activator of Cdk5. Cdk5 activated by p35 then can
phosphorylate MEK on Thr286, a site that inactivates it (200), as shown by the Θ symbol. This
diminishes ERK1/2 activity downstream from MEK (not shown here), but Raf-1 can activate
p90RSK directly, which, in turn, activates the transcription factor C/EBP β, perhaps bound to
pRb, and increases the expression of CD14, as part of monocytic differentiation. The activation
of p90RSK may also be increased by the JNK pathway, which also activates AP-1, and may
lead to VDR expression. The interplay between the signaling by 1,25D, growth factor, and
stress add to the overall complexity of the induction of the monocytic phenotype.
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Figure 4.
The suggested role of CAAT/Enhancer Binding Protein β in 1,25D-induced bypass of the
differentiation block in leukemia cells. In this scenario, C/EBP α is indispensable for normal
granulopoiesis, while C/EBP β regulates monocytic differentiation. When C/EBP α is mutated
or inactivated and granulopoiesis is blocked, immature myeloid cells accumulate in the bone
marrow and appear in the peripheral blood, resulting in AML. 1,25D-induced expression of
C/EBP β may allow the cells to bypass this block to granulocytic differentiation by switching
the lineage of cell differentiation from granulocytes to monocytes.
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