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Abstract

Coordinated spiking activity in neuronal ensembles, in local networks and across multiple cortical 

areas, is thought to provide the neural basis for cognition and adaptive behavior. Examining such 

collective dynamics at the level of single neuron spikes has remained, however, a considerable 

challenge. We found that the spiking history of small and randomly sampled ensembles (~20–200 

neurons) could predict subsequent single neuron spiking with substantial accuracy in the 

sensorimotor cortex of humans and nonhuman behaving primates. Furthermore, spiking was better 

predicted by the ensemble’s history than by the ensemble’s instantaneous state (Ising models), 

emphasizing the role of temporal dynamics leading to spiking. Notably, spiking could be predicted 

not only by local ensemble spiking histories, but also by spiking histories in different cortical 

areas. These strong collective dynamics may provide a basis for understanding cognition and 

adaptive behavior at the level of coordinated spiking in cortical networks.
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Single-neuron action potential (spiking) activity depends on intrinsic biophysical properties 

and the neuron’s interactions in neuronal ensembles. In contrast with ex vivo/in vitro 

preparations, cortical pyramidal neurons in intact brain each commonly receive thousands of 

synaptic connections arising from a combination of short- and long-range axonal projections 

in highly recurrent networks1–3. Typically, a considerable fraction of these synaptic inputs 

is simultaneously active in behaving animals, resulting in ‘high-conductance’ membrane 

states4; that is, lower membrane input resistance and more depolarized membrane potentials. 

The large number of synaptic inputs and the associated high-conductance states contribute to 

the high stochasticity of spiking activity and the typically weak correlations observed among 

randomly sampled pairs of cortical neurons. Nevertheless, previous studies5–11 have 

suggested that some of a single neuron’s spiking activity might be explained by measured 

ongoing network states. We used cortical microelectrode array recordings in humans and 

monkeys to determine the predictability of single-neuron spiking on the basis of the recent 

(<100 ms) spiking history of small, randomly sampled neuronal ensembles from the same 

(intra) or from a different (inter), but connected, cortical area. In addition, we also compared 

the predictive power of ensemble spiking histories and instantaneous collective states. 

Substantial predictability in these small and randomly sampled ensembles would imply 

strong collective dynamics, with implications for both cortical processing and the 

experimental endeavor of studying coordinated spiking in large, distributed cortical 

networks.

We studied tens to hundreds of randomly and simultaneously sampled neurons in small (4 × 

4 mm) patches in arm-related areas of primary motor (M1), parietal (5d) and ventral 

premotor (PMv) cortices while humans (M1) and monkeys (M1-PMv and M1-5d) 

performed sensorimotor tasks. Beyond their local connectivity, M1-PMv and M1-5d are 

known to be bidirectionally connected12,13 (their coordination is thought be important for 

reaching and grasping14,15), allowing us to study not only local, but also inter-areal, 

ensemble–based prediction. Point process models16–18 were fitted to express the spiking 

probability at any 1-ms time interval conditioned on the past 100 ms of the neuron’s own 

(intrinsic) spiking history and the past 100 ms of the spiking history of the neuronal 

ensemble. On the basis of this conditional spiking probability, we predicted whether or not a 

target neuron would spike in any given 1-ms time bin. When examining the predictive 

power of the ensemble’s simultaneous spiking state, we defined simultaneity at two levels of 

temporal resolution, 1 and 10 ms. These instantaneous collective states could result from 

common inputs or from synchronization patterns arising from the neuronal network’s 

intrinsic dynamics. Pair-wise maximum entropy (Ising) models7 were used to approximate 

the distributions of these instantaneous collective states. Detailed receiver operating 

characteristic (ROC) curve analyses19 allowed us to quantify and compare the predictive 

power of intrinsic and ensemble histories, intra- and inter-areal ensemble activity, and 

spiking histories and instantaneous collective states.

RESULTS

We analyzed 12 neuronal datasets recorded from two human clinical trial participants with 

tetraplegia (hS1 and hS3) and four monkeys (mLA, mCL, mCO and mAB). These included 

M1 recordings taken while human participants performed two sessions of a ‘neural cursor’ 
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center-out task (that is, a task where the participant used, via a neural interface, his or her 

own recorded M1 spiking activity to move a computer cursor to targets radially positioned 

on the computer screen), M1 recordings from two monkeys (mLA and mCL), each 

performing two sessions of a task requiring planar point-to-point reaches toward targets 

randomly placed in the workspace, simultaneous M1 and PMv recordings from a monkey 

(mCO) performing two sessions of a task that required reach and grasp toward moving 

objects in a three-dimensional workspace, and simultaneous M1 and 5d recordings from a 

monkey (mAB) performing two sessions of a pursuit tracking task that required planar hand 

movements. The 12 datasets used in the analyses included 1,187 neuronal recordings. 

Minimum inter-electrode distance in the 10 × 10 microelectrode array was 400 µm. 

Maximum inter-electrode distance, including electrodes in two arrays, was ~2 cm 

(Supplementary Fig. 1).

To assess the predictive power of spiking histories, we first computed the probability that 

any given ith neuron xi,t was going to spike at time t, conditioned on spiking histories ℋt 

from the past 100 ms up to (but not including) time t. Without further constraints, direct 

estimation of conditional probability distributions for high-dimensional systems is typically 

an intractable problem, leading to combinatorial explosion and requiring amounts of data 

that grow exponentially with the number of neurons in the ensemble. Instead, we took 

advantage of the fact that this conditional probability can be computed as16

equation (1)

where λi(t| ℋt) is the instantaneous spiking rate (conditional intensity function) of the neuron 

and Δ = 1 ms in our discrete time representation, and used a simplified model to capture the 

relationship between the instantaneous rate and spiking histories

equation (2)

The term µi relates to a background level of spiking activity, xi is the spiking history in the 

specified time interval for the ith neuron, i = 1, 2,…, n recorded neurons, and K1,i and K2,i,j 

denote temporal filters related to intrinsic and ensemble history effects, respectively. These 

temporal filters were approximated via basis functions9,16,18 (see Online Methods). Once 

an instantaneous spiking rate model was fitted, the estimated probability of a spike at any 

given time bin, conditioned on intrinsic and ensemble spiking histories, was easily computed 

using equation (1) (the spike prediction approach is shown using cell 34a (hS3) as the 

example target neuron; Fig. 1).

Predictive power of ensemble spiking histories in M1

On the basis of the estimated conditional spiking probabilities, we used a standard tool, the 

ROC curve analysis19, to assess the predictive power of spiking history models (see Online 

Methods). Spike prediction in 1-ms time bins based on spiking histories was substantial. 

Intra-areal ensemble history–based predictions in M1 resulted in high true-positive rates 

while maintaining low numbers of false positives. For example, it was possible to correctly 
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predict 80% of spikes in neuron 34a (participant hS3) with a false-positive rate of less than 

5% (Fig. 2a). Similarly, an 80% true-positive rate was obtained for neuron 16a (monkey 

mLA) with a less than 10% false-positive rate (Fig. 2b). This predictability was substantial 

despite the weak pair-wise correlations that we observed among all neuronal pairs in the 

recorded datasets for hS3 and mLA (Fig. 2c,d). We confirmed this observation in our 

datasets for all subjects, areas and tasks.

We obtained a more comprehensive assessment of predictive performance by computing the 

area under the ROC curve. The area under the curve (AUC) is a global summary statistic; 

that is, it depends on both the true- and false-positive rates and on all of the possible 

thresholds on the spiking probability. The AUC gives the probability that, when two samples 

are randomly drawn from the data (one containing a spike, the other not), the conditional 

intensity model will assign a higher probability (i.e. a higher instantaneous spiking rate) to 

the sample with a spike20. It therefore provides an assessment of the discriminatory power 

for predictive variables under a given model. It approaches 0.5 for a chance level predictor, 

that is, a predictor having false- and true-positive rates along the diagonal, and it equals 1 for 

a perfect predictor. For example, the AUC for neuron 34a was 0.95 (Fig. 2a). We further 

corrected the AUC by subtracting chance-level predictions estimated from the actual data 

and scaled it to obtain a quantity that ranged from 0 (no predictive power) to 1 (perfect 

prediction). We refer to this corrected and normalized AUC measure as the predictive power 

(see Online Methods). More than 50% of examined neurons in monkey mLA showed a 

predictive power higher than 0.5 (median = 0.55, range = 0.1–0.89) (Fig. 3). Prediction in 

subjects mCL and hS3 showed similar performances, with medians of 0.45 and 0.49 and 

ranges of 0.18–0.91 and 0.23–0.97, respectively. Predictive power was lower for participant 

hS1 (median = 0.30, range = 014–0.69). We conjectured that this was probably a result of 

the smaller number of neurons (n = 21, n = 22) that were recorded and used for prediction in 

this participant. To test this conjecture, we computed the predictive power on the basis of 

several smaller ensemble subsets (n = 22 neurons) randomly chosen out of the 110 neurons 

from hS3’s dataset (session 2). Data from hS3 provided a good reference, as neurons were 

recorded from M1 under the same task condition as for hS1. The distribution of predictive 

power values, based on this collection of smaller ensemble subsets, was similar to the one 

obtained for hS1, supporting our hypothesis (Supplementary Fig. 2 and Supplementary 

Note).

These predictive power levels were obtained using the full history models, that is, the 

instantaneous spiking rate of each neuron conditioned on both intrinsic and ensemble 

histories. We further compared the predictive power of each of these two components 

separately (Fig. 3). For the majority of neurons in all of the subjects, the predictive power 

obtained exclusively from the ensemble histories was larger than the predictive power from 

intrinsic histories. In addition, it is possible that some of the intrinsic history effects, beyond 

refractory and recovery period effects, could also reflect network dynamics. Thus, these 

results indicate that the collective ensemble activity, rather than refractory and recovery 

dynamics, was the main source of the observed predictive power of spiking histories.

The predictive power of these M1 spiking history models in monkeys mLA and mCL was 

also higher than the predictive power of relevant kinematic covariates, such as hand position 
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and velocity (Supplementary Fig. 3 and Supplementary Note). We used pathlet models21 to 

estimate spiking probabilities conditioned on kinematics; that is, the instantaneous spiking 

rate was expressed as function of hand position and velocity trajectory in the time interval 

(−200 ms, 300 ms) with respect to spiking time. Furthermore, the predictive power values of 

spiking history and pathlet models were not strictly additive (Supplementary Fig. 4). This 

result indicates that there was some level of redundancy between the information conveyed 

by these two models about single-neuron spiking: some of the spiking activity that was 

predicted by the spiking history models could also be predicted by the examined kinematics.

Predictive power of M1 instantaneous collective states

Beyond examining the predictive power of ensemble spiking histories, we were also 

interested in the predictive power of instantaneous collective states in the recorded 

ensemble, that is, simultaneous states at either 1- or 10-ms temporal resolution. 

Instantaneously correlated states could result from common inputs and/or from 

synchronization patterns arising from the neuronal network’s own dynamics. Strong 

instantaneous collective states7 could still be consistent with the weak pair-wise 

instantaneous interactions that we observed in our datasets (Fig. 2c,d). We estimated the 

joint probability distribution of these instantaneous collective states by fitting maximum 

entropy22,23 point process models constrained by empirical mean spiking rates and zero 

time-lag pair-wise correlations. That is, these maximum entropy distribution models were 

consistent with the observed mean spiking rates and zero time-lag pair-wise correlations, but 

made no additional assumptions (see Online Methods). This pair-wise maximum entropy 

probability model, also known as the Ising model in statistical mechanics24,25, has been 

shown to capture most of the instantaneous interdependency structure in ex vivo/in vitro 

neuronal ensemble preparations7,8,10.

Besides satisfying the pair-wise correlation structure in the examined datasets, the estimated 

models also accounted well for the distribution of multiple-neuron spike coincidences, as 

seen in the comparison of the empirical distribution and the distribution generated from the 

model via Gibbs sampling26 (Fig. 4). Nevertheless, the predictive power of this pair-wise 

correlation structure was considerably poorer than the predictive power of intrinsic and 

ensemble spiking histories, as captured by the models (Fig. 4). Across the four subjects, the 

predictive power values of pair-wise maximum entropy models corresponded to 0.10 ± 0.17, 

while the spiking history models yielded values of 0.50 ± 0.40 (mean ± s.d.). The predictive 

power of spiking history models were still higher when we considered instantaneous states 

at a coarser 10-ms temporal resolution (Fig. 4), which resulted in predictive power values of 

0.26 ± 0.27 (mean ± s.d.).

Intra and inter-areal spike prediction: M1↔PMv and M1↔5d

We performed the same predictive power analysis for areas PMv and 5d and compared 

predictions based on ensemble histories recorded from the same or a different cortical area 

in the connected pairs M1↔PMv and M1↔5d (Fig. 5). Predictive power, based on both 

local and inter-areal spiking histories, corresponding to target neurons in PMv (mCO; Fig. 

5a) and 5d (mAB; Fig. 5c) had medians of 0.27 and 0.32 and ranges of 0.11–0.86 and 0.13–

0.62, respectively. Predictive power corresponding to target neurons in M1, based on both 
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local and inter-areal spiking histories, had medians of 0.50 and 0.40 and ranges of 0.15–0.93 

and 0.11–0.83 for monkeys mCO and mAB, respectively (Fig. 5b,d). The inter-areal 

predictive power could also be substantial in both directions, M1–PMv and M1–5d (Fig. 5). 

Medians were 0.15, 0.13, 0.13 and 0.09 and ranges were 0.05–0.73, 0.06–0.75, 0.06–0.37 

and 0.05–0.37 for M1→PMv, PMv→M1, M1→5d and 5d→M1, respectively.

Furthermore, the predictive power from one area to target neurons in the other, especially 

from M1→PMv, could be larger than the predictive power of local ensembles (Fig. 5a,c). 

We speculated that the higher predictive power of M1→PMv in some of these cases could 

simply reflect the larger number of recorded neurons in M1, rather than the relative strength 

of feedforward and feedback connections between these two areas. A supplementary 

analysis using ensembles of equal size suggested that this was the case (Supplementary Fig. 

5 and Supplementary Note). This analysis also indicated that intra-areal predictive power 

was slightly higher than inter-areal predictive power when ensembles of equal size were 

considered.

As shown before for subjects mLA and mCL, the predictive power of spiking history models 

for areas M1, 5d and PMv also tended to be higher than the predictive power of pathlet 

models (Supplementary Fig. 3). The medians and ranges of predictive power values for 

pathlet models corresponded to 0.25 and 0.21, and 0.01–0.77 and 0.01–0.75 for mCO and 

mAB, respectively.

Predictability, spiking irregularity and information rates

The predictive power of spiking history models varied broadly across the 1,187 neurons in 

the 12 datasets. We examined whether this variation could be easily explained by simple 

features of the predicted spiking activity. The predictive power of history models did not 

appear to depend, at least in a simple manner, on the mean spiking rate or on the level of 

irregularity of the predicted spiking activity (Fig. 6a–c). Assessments of spike train 

irregularity were based on the coefficient of variation3 of the interspike time intervals. We 

also assessed how much information was involved in the prediction of single neuron 

spiking.

In principle, the same level of prediction accuracy could be achieved for two different target 

neurons while involving different amounts of information. We examined this possibility by 

asking how much information about a neuron spiking or not at any given time was gained by 

modeling the intrinsic and ensemble history effects compared with knowing only the mean 

spiking rate of the process. This information gain can be estimated as the normalized 

difference between the log-likelihood under the estimated history model and the log-

likelihood under a homogenous Poisson process with given mean spiking rate (see Online 

Methods). Our analysis confirmed that similar predictive power values (in the prediction of 

different target neurons) could involve a wide range of information rates (Fig. 6d).

DISCUSSION

Our findings reveal that single-neuron spiking in the cortex of humans and monkeys 

performing sensorimotor tasks can be substantially predicted by the spiking history of small, 
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randomly sampled neuronal ensembles. The fact that this predictability was based on small 

neuronal ensembles, randomly sampled out of millions of neurons in the cortex, suggests 

that strongly coordinated activity underlies the generation of single-neuron spikes. This 

finding is notable if one considers the properties of cortical neuronal networks. Cortical 

neurons are embedded in large, sparsely connected recurrent networks in which the high 

number of synaptic inputs and high-conductance states typically induce weak coupling 

between randomly sampled neuron pairs. Not surprisingly, revealing and understanding 

these large scale and dynamic interactions has been challenging. On the basis of only the 

weak pair-wise correlations observed amongst cortical neurons in our datasets, one would 

have underestimated the strength of the statistical interdependencies induced by the 

collective dynamics. Furthermore, we believe our estimates of predictive power for these 

small neuronal ensembles should be taken as lower-bound values. There are at least a few 

factors that could have diminished predictive performance. For example, even though we 

were careful to include only trials or time segments in which the hand was moving or when 

the human participants were controlling a computer cursor, it is possible that the network’s 

functional connectivity was nonstationary within and across trials. Also, we avoided more 

complex, and thus potentially more predictive, point process history models for 

computational tractability.

The fact that spiking was better predicted by the ensemble’s history than by the ensemble’s 

simultaneous collective state, estimated via pair-wise maximum entropy models, emphasizes 

the temporal dynamics leading to spiking. This finding, however, should not be taken as a 

limitation of pair-wise maximum entropy models. It is possible that multiple time-lag pair-

wise correlation maximum entropy models11,27 might capture most of the history effects 

detected in our data and therefore provide a simpler, minimal model. Our goal here was not, 

however, to provide such a minimal model for the temporal and instantaneous collective 

dynamics, but to determine the existence and strength of such dynamics in the cortex of 

humans and behaving monkeys. This is, nevertheless, an important issue that should be 

addressed.

In previous studies, we and others have shown that the spiking activity of small, 

simultaneously and randomly sampled neuronal ensembles in motor cortex can be used to 

predict (decode) subsequent complex behavioral variables such as arm kinematics28–32. 

Here, we found that the activity of these same neuronal ensembles can also be used to 

predict subsequent single-neuron spiking with substantial accuracy, implying the presence of 

strong collective dynamics in sensorimotor cortex. One may then ask how these collective 

dynamics relate to behavior. Although a comprehensive analysis of this problem is beyond 

the scope of this study, our results indicate that these collective dynamics do not simply 

reflect background coherent states that are completely unrelated to behavior and, conversely, 

do not simply reflect ‘trivial common inputs’, such as those usually considered in studies 

involving stimulus-driven activities of early sensory neurons. Regarding the background 

coherent states, our data indicate that the predictive power of models based only on 

ensemble history and of models based only on kinematics are not strictly additive 

(Supplementary Fig. 4). In other words, there is some level of redundancy between the 

information (about single-neuron spiking) conveyed by ensemble spiking histories and 

information conveyed by kinematics variables. Therefore, the detected collective dynamics 

Truccolo et al. Page 7

Nat Neurosci. Author manuscript; available in PMC 2010 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cannot simply reflect background coherent states that are entirely unrelated to behavior. 

Nonetheless, it is still possible, if not likely, that part of the detected collective dynamics 

may reflect ongoing internal processes that are not related to behavioral variables. Regarding 

common inputs, we note that kinematics and other features of voluntary movements are 

controlled in large part (either directly, or indirectly via spinal and muscle activations) by 

the coordinated activity of sensorimotor cortical neurons. It is, therefore, not surprising that 

these behavioral variables can also achieve substantial explanatory power for spiking 

activity. Even so, the fact that kinematics (pathlet) models were less predictive than 

ensemble history models suggests that the latter carried extra information about single-

neuron spiking (Supplementary Fig. 3). Given these considerations, the detected collective 

dynamics are unlikely to be explained as the simple reflection of trivial common inputs. In 

sum, we believe that these strong collective dynamics reflect the intra and inter-areal 

coordinated activity of neuronal ensembles distributed in the many different cortical and 

subcortical areas that participate in voluntary control of movement.

We hypothesize that the detected collective dynamics and ensemble influences on spiking 

activity reflect information transfer and computation in cortical networks. Collective 

dynamics and functional connectivity, as captured by connectivity matrices derived from 

ensemble history models, as well as predictive power levels, should vary as information 

transfer and computation change during behaviors that engage cortical areas. On the basis of 

current computational theories of motor control14,15, one could predict, for example, that 

M1↔5d spiking predictability will manifest primarily during the initial phase of reaching 

movements, whereas M1↔PMv spiking predictability will peak during the hand-shaping 

phase of object grasping. A related and more general inquiry will be to examine the 

relationship of collective dynamics at this ‘microscopic’ spatial scale to neural activities 

reflected in meso- and macroscopic scale signals, such as local field potentials and 

electrocorticograms.

Our results also have implications for neural decoding theory and intracortical neural 

interfaces for motor prostheses. Collective dynamics add redundancy and, therefore, error-

correcting properties to neural codes7. In addition, these dynamics might also account for 

variability of neural responses5, which is otherwise usually attributed to noise. Therefore, it 

seems that ensemble history effects should be taken into consideration when decoding 

kinematics (or other variables) from the spiking activity of neuronal ensembles. One would 

predict that decoding algorithms that take into account ensemble spiking histories will 

outperform algorithms that treat spiking activity of different neurons as, conditioned on 

decoded variables, independent processes.

Our findings suggest the presence of strong collective dynamics that are fundamental to the 

experimental endeavor of determining coordinated spiking in cortical networks. Networks 

responsible for specialized cortical function are likely to be contained in the spiking patterns 

of millions of neurons distributed across multiple cortical areas. Current and developing 

recording technologies measure the spiking activity of hundreds to thousands of neurons, a 

very small fraction of these networks. Without strong collective dynamics (that is, if neurons 

in small randomly sampled ensembles behaved seemingly independently), there would be 

little hope of determining how the coordinated propagation of action potentials in large-scale 
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recurrent networks leads to computation and information processing. We believe, therefore, 

that the existence of these collective dynamics offers a basis for understanding cognition and 

adaptive behavior at the level of coordinated spiking in cortical networks.

METHODS

Methods and any associated references are available in the online version of the paper at 

http://www.nature.com/natureneuroscience/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
History point process models, intrinsic and ensemble history effects, and conditional spiking 

probabilities. Neuron 34a (hS3, session 2) was chosen as the example target neuron. (a) 

Waveforms corresponding to all sorted spikes for neuron 34a used in these analyses are 

shown. (b) Intrinsic spiking history. The curve represents the estimated temporal filter for 

the intrinsic history. Values below or above 1 correspond to a decrease or increase, 

respectively, in spiking probability contributed by a spike at a previous time specified in the 

horizontal coordinate. Refractory and recovery period effects after a spike, followed by an 
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increase in spiking probability at longer time lags (40–100 ms), can be seen. This late 

intrinsic history effect might also reflect network dynamics. (c) Ensemble spiking history 

effects. Each curve represents the temporal filter corresponding to a particular input neuron 

to cell 34a. Many input neurons contributed biphasic effects: for example, an increase in 

spiking probability followed by a decrease, or vice-versa. All of the examined target neurons 

in our datasets showed qualitatively similar temporal filters. (d) Spike raster for all of the 

110 neurons recorded in hS3 over a short, continuous time period. (e) Predicted spiking 

probabilities for the target neuron 34a were computed from the estimated intrinsic and 

ensemble temporal filters and the spike trains shown in b, c and d, respectively. (f) 
Observed spike train for neuron 34a in the same period.
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Figure 2. 
Prediction of single-neuron spiking and weak pair-wise correlations. (a) ROC curves for 

neuron 34a (human participant hS3, n = 110 neurons, session 2, 240,000 samples). FP and 

TP denote false- and true-positive prediction rates, respectively. The diagonal line 

corresponds to the expected chance prediction. The black, red and blue ROC curves 

correspond to the prediction based on full history models, only the ensemble histories, or 

only the neuron’s own spiking history, respectively. The inset shows the AUC 

corresponding to the ROC curve for the ensemble history model. (b) ROC curves for neuron 

16a (monkey mLA, n = 45, session 2, 1,230,857 samples). 95% confidence intervals for the 

AUC chance level resulted in 0.51 ± 0.004 and 0.51 ± 0.017 for target neurons 16a and 34a, 

respectively. These narrow confidence intervals (data not shown) were typical for the 
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recorded neurons. (c) Distribution of Pearson correlation coefficients computed over all of 

the neuron pairs for hS3 (1-ms time bins). N corresponds to the number of neuron pairs. 

Each of these correlation coefficients corresponds to the extremum value of the cross-

correlation function computed for time lags in the interval ± 500 ms. Inset, normalized 

absolute (extremum) correlation coefficients for all of the neuronal pairs in the ensemble 

from hS3 computed for spike counts in 50-ms time bins; about 90% of the pairs had a 

correlation value smaller than 0.06 (vertical line). (d) Distribution of correlation coefficients 

computed over all of the neuron pairs for mLA (1-ms time bins).
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Figure 3. 
Predictive power of intra-areal (M1) ensemble histories. (a–d) Prediction was substantial, as 

shown by the distributions of predictive power corresponding to target neurons from 

subjects mLA (a), mCL (b), hS1 (c) and hS3 (d). Each distribution includes target neurons 

recorded in two different sessions (mLA: n = 45, n = 45; mCL: n = 47, n = 44; hS1: n = 22, 

n = 21; hS3: n = 108, n = 110). The left column shows the distribution of predictive power 

based on the full history model and the right column compares the predictive power of the 

two (intrinsic and ensemble) history components separately. The predictive power measure 
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is based on the AUC scaled and corrected for chance level prediction. It ranges from 0 (no 

predictive power) to 1 (perfect prediction). For many neurons, the predictive power of 

separate components (intrinsic and ensemble) could add to a value larger than 1 or result in a 

larger predictive power than that obtained by the full history model. This indicates that there 

was some redundancy in the information conveyed by these two components. The numbers 

of predicted samples (1-ms time bins) were 864,657 and 1,230,857 for mLA, 1,220,921 and 

1,361,811 for mCL, 240,000 in both sessions for hS1 and 240,000 in both sessions for hS3.
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Figure 4. 
Predictive power of instantaneous collective states (Ising models). (a–d) The distributions of 

instantaneous collective states were approximated via maximum entropy distributions 

constrained on empirical mean spiking rates and zero time-lag pair-wise correlations. The 

left column shows the empirical distribution of the observed number of multi-neuron spike 

coincidences in the ensemble (Δ = 1 ms) and the distribution generated from the maximum 

entropy model via Gibbs sampling (∇). The middle column shows the distribution of 

predictive power values. Predictive power was computed for each target neuron separately, 
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with the instantaneous or simultaneous collective state defined at a temporal resolution of 1 

ms. For each given neuron, predictions were determined by a conditional spiking probability 

derived from the maximum entropy joint distribution model and knowledge of all of the (n – 

1) neurons’ simultaneous states. The right column shows the distribution of predictive power 

when the instantaneous state was defined at a coarser temporal resolution of 10 ms. In that 

case, time bins containing more than one spike were set to 1. For each monkey and human 

participant, data from two sessions were used in these analyses. The rows correspond to 

mLA (n = 45, n = 45, a), mCL (n = 47, n = 44, b), hS1 (n = 22, n = 21, c) and hS3 (n = 108, 

n = 110, d).
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Figure 5. 
Predictive power of intra- and inter-areal neuronal ensemble histories. Predictive power of 

inter-areal ensemble history was also substantial. (a) Left, distribution of predictive power 

values for target neurons in area PMv (subject mCO), which were recorded during free 

reach-grasp movements. Predictive power was computed from full history models that also 

included spiking histories in M1. Right, comparison of the power of intra (PMv, n = 77, n = 

109) and inter-areal (M1, n = 148, n = 109) ensemble histories to predict spiking in PMv. 

The predictive power M1→PMv tended to be higher than the local PMv→PMv in this case, 
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where the number of neurons recorded in M1 was larger than in PMv. In contrast, additional 

analyses using balanced-size ensembles indicated that intra-areal predictive power was 

actually slightly higher (Supplementary Fig. 5). (b) Left, distribution of predictive power for 

target neurons in M1. Predictive power was computed from full history models that also 

included spiking histories in PMv. Right, comparison of the power of the intra (M1) and 

inter-areal (PMv) ensemble histories to predict spiking in M1. (c,d) Data are presented as in 

a and b, but were computed for parietal 5d (n = 41, n = 47) and M1 (n = 104, n = 110), 

recorded from monkey mAB during a planar pursuit tracking task. The numbers of predicted 

samples were 212,028 and 99,008 for mCO (sessions 1 and 2, respectively) and 416,162 and 

472,484 for mAB (sessions 1 and 2, respectively).
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Figure 6. 
Predictive power, mean spiking rates, spike train irregularity and information rates. Each dot 

corresponds to one of the 1,187 target neurons recorded from two human participants and 

four monkeys, three different cortical areas and four different tasks. Each color relates to 

one of the different tasks. (a) The predictive power of full history models versus the mean 

spiking rate (in spikes per s) of the target neurons is shown. (b) Coefficient of variation 

(CV) of the inter-spike time intervals versus spiking rates. (c) Predictive power of full 

history models versus coefficients of variation of the predicted spiking activity. Lower 

coefficients indicate more regular spike trains. Coefficients around 1 and below tended to 

correspond to a broad range of predictive power, whereas higher coefficients tended to 

cluster around intermediate predictive power values. In summary, the predictive power of 

history models did not seem to depend, in a simple manner, on mean spiking rates or on the 

level of irregularity of the spiking activity. (d) Predictive power versus the information rate 

(in bits per s) involved in the prediction. Approximately equal predictive power could relate 

to a broad range of information rates. Blue: point-to-point reaching, monkeys mLA and 
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mCL, area M1; purple: neural cursor control, participants hS1 and hS3, area M1; black: free 

reach and grasp task, monkey mCO, areas M1 and PMv; red: pursuit tracking task, monkey 

mAB, areas M1 and 5d.
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