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procedure of HI at postnatal day 7: unilateral ligation of the 
right common carotid artery followed by 30 min of hypoxia 
(8% oxygen). Immunofluorescent staining of brains 24 h af-
ter HI confirmed a relative lack of HIF-1 �  in the HIF-1 �   � / �   cor-
tex compared to the wild type, and that HIF-1 �  in the wild 
type is located in neurons. HIF-1 �  expression was deter-
mined in mouse cortex 24 h after HI. Histological analysis for 
the degree of injury was performed 5 days after HI. HIF-1 �  
protein expression 24 h after HI showed a large increase of 
HIF-1 �  in the hypoxic-ischemic cortex of the wild-type com-
pared to the hypoxic only cortex. Histological analysis re-
vealed that HI injury was increased in the neuronally defi-
cient HIF-1 �   � / �   mouse brain (p  !  0.05) and was more severe 
in the cortex. Genetic reduction of neuronal HIF-1 �  results in 
a worsening of injury after neonatal HI, with a region-spe-
cific role for HIF-1 �  in the setting of neonatal brain injury. 

 Copyright © 2009 S. Karger AG, Basel 

 Introduction 

 Hypoxia-inducible factor 1 �  (HIF-1 � ) is a transcrip-
tion factor that is essential for the activation of over 40 
hypoxia-inducible genes, such as erythropoietin, glucose 
transporters, glycolytic enzymes, and vascular endothe-
lial growth factor (VEGF)  [1, 2] . Thus, HIF-1 �  has a wide-
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 Abstract 
 Evidence suggests that the activation of the transcription 
factor hypoxia-inducible factor 1 �  (HIF-1 � ) may promote cell 
survival in hypoxic or ischemic brain. To help understand the 
role of HIF-1 �  in neonatal hypoxic-ischemic brain injury, 
mice with conditional neuron-specific inactivation of HIF-1 �  
underwent hypoxia-ischemia (HI). Mice heterozygous for 
Cre recombinase under the control of the calcium/calmodu-
lin-dependent kinase II promoter were bred with homozy-
gous ‘floxed’ HIF-1 �  transgenic mice. The resulting litters 
produced mice with a forebrain predominant neuronal dele-
tion of HIF-1 �  (HIF-1 �   � / �  ), as well as littermates without the 
deletion. In order to verify reduction of HIF-1 �  at postnatal 
day 7, HIF-1 �   � / �   and wild-type mice were exposed to a
hypoxic stimulus (8% oxygen) or room air for 1 h, followed 
by immediate collection of brain cortices for determination 
of HIF-1 �  expression. Results of Western blotting of mouse 
cortices exposed to hypoxia stimulus or room air confirmed 
that HIF-1 �   � / �   cortex expressed a minimal amount of HIF-1 �  
protein compared to wild-type cortex with the same hypox-
ic stimulus. Subsequently, pups underwent the Vannucci 
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ranging role in the cellular response to hypoxia, and in 
some pathological circumstances, such as tumor growth, 
its role is increasingly well established  [3, 4] . In the brain, 
however, where oxygen homoeostasis is of critical impor-
tance, the role of HIF-1 � , whether physiologic or patho-
logic, is less well understood. Hypoxia induces many of 
the genes regulated by HIF-1 �  in the brain  [5, 6] , and pre-
conditioning with hypoxia may induce HIF-1 �  and pro-
mote cell survival in the subsequently hypoxic or isch-
emic brain  [7] .

  Increased expression of HIF-1 � -dependent genes, 
such as VEGF  [8, 9] , several glycolytic enzymes  [10] , glu-
cose transporter 1  [10]  and erythropoietin  [11–14] , is 
thought to be important in recovery from hypoxia-isch-
emia (HI) and stroke in the neonatal brain. In fact, evi-
dence suggests that hypoxia preconditioning protection 
depends on gene expression induced by activation of 
HIF-1 � , since the functions of the HIF-1 �  target genes 
are to increase blood flow, promote angiogenesis, stimu-
late glucose and lactate delivery to cells, enhance metab-
olism and promote growth and repair in neurons  [4, 15–
17] . An ischemic insult can also lead to induction of HIF-
1 �  and its target gene, VEGF, as has been reported 
following neonatal focal ischemia in the rat  [18] . In addi-
tion, it has been shown in vitro that the neuroprotective 
effects of deferoxamine are mediated, at least in part, 
through induction and stabilization of HIF-1 �   [19] . Sub-
sequently, we showed that deferoxamine treatment after 
middle cerebral artery occlusion in neonatal rats is pro-
tective and prolongs the expression of HIF-1 �  compared 
to saline-treated rats. The HIF-1 �  target gene erythropoi-
etin was also upregulated in the protected brains  [9] .

  We explored the effect of neuron-specific reduction of 
HIF-1 �  (HIF-1 �   � / �  ) on neonatal hypoxic-ischemic brain 
injury. We employed a well-characterized model of neo-
natal HI in HIF-1 �  � / �    compared to wild-type (Wt) litter-
mates, and found increased cortical injury.

  Materials and Methods 

 Animals 
 All animal research was approved by the University of Cali-

fornia San Francisco Institutional Animal Care and Use Com-
mittee and was performed with the highest standards of care un-
der the National Institutes of Health guidelines. Mice with con-
ditional neuron-specific inactivation of HIF-1 �  were generated 
using Cre/Lox technology. These mice have previously been well 
characterized  [20, 21] . Briefly, the deletion was attained by breed-
ing mice that have loxP-containing ‘floxed’ HIF-1 �  alleles with 
mice expressing Cre recombinase under the control of the calci-
um/calmodulin-dependent kinase II promoter  [22] . The mice 

containing the Cre transgene used were of the ‘R1ag#5’ line  [23] . 
The resulting litters produced mice with a forebrain predomi-
nant, neuron-specific deletion of HIF-1 �  (HIF-1 �   � / �  ), as well as 
littermates without the deletion. All mice negative by PCR for the 
Cre gene were considered ‘wild-type (Wt)’. Genotyping was car-
ried out by PCR on tail DNA samples using standard methods.

  Hypoxic Stimulus Alone 
 At postnatal day 7 (P7), mice were placed in chambers main-

tained at 37   °   C and subjected to 1 h of 8% oxygen, or room air. 
Brain cortices were collected immediately after the hypoxia pe-
riod, snap frozen and stored at –80   °   C for HIF-1 �  protein deter-
mination by Western blot.

  Hypoxia-Ischemia 
 At P7, mice underwent the Vannucci procedure of neonatal HI 

 [24, 25] . Briefly, under isoflurane anesthesia, the right common 
carotid artery was permanently ligated. Following a 90-min re-
covery period, mice were exposed to hypoxia for 30 min (8% oxy-
gen, balance nitrogen) while being maintained at 37   °   C. We have 
previously shown that the background mouse strain, C57Bl/6, 
while somewhat resistant to injury from HI, has high mortality 
 [26] . By using 30 min of hypoxia, we had a minimal amount of 
mortality, with moderate injury. At either 24 h (for immunofluo-
rescence) or 5 days after HI (for scoring of the degree of injury), 
mice were perfused with 4% paraformaldehyde in 0.1  M  phos-
phate buffer, brains were removed, and processed histologically. 
The 5-day post-HI brains were analyzed for the degree of injury 
using a scoring system as previously described  [26] . In addition, 
some mice were perfused with saline and a piece of contralateral 
cortex was obtained for Western blot to confirm the tail DNA 
PCR results. These brains were then immersion-fixed in para-
formaldehyde prior to histological preparation as above.

  Immunofluorescence 
 Flash-frozen mouse brains were cut on a cryostat and 12- � m 

sections collected on glass slides. Brain sections were treated with 
2  N  HCl for 10 min at 37   °   C and then with 0.5  M  boric acid (pH 8.4) 
for 10 min at room temperature. After a 2-min rinse with PBS, a 
blocking solution composed of PBS, 10% goat serum and 0.3% 
Triton X-100 was applied for 1 h. The primary antibodies against 
HIF-1 �  (1:   100, Santa Cruz Biotechnology) and NeuN (1:   100, Mil-
lipore) in a similar blocking solution (2.5% goat serum) were
applied overnight at 4   °   C. After washing, secondary antibodies
(1:   1,000, Alexa Fluor 488 and 568, Invitrogen) in a blocking solu-
tion were applied for 1 h at room temperature. After rinsing in 
PBS, DAPI staining was applied for 5 min and thereafter the sec-
tions were coverslipped with ProLong Gold (Invitrogen). Images 
were taken with a Nikon spectral confocal microscope at the 
Nikon Imaging Center, University of California San Francisco.

  Western Blot Analysis 
 We first determined HIF-1 �  expression with and without a 

hypoxic stimulus, in which P7 HIF-1 �   � / �   (n = 8) and Wt (n = 6) 
mice were exposed to hypoxia (8% oxygen) or room air for 1 h. 
Brain cortices were collected immediately after the hypoxia pe-
riod, snap frozen and stored at –80° C until use. Another group 
of mice underwent HI at P7 and cortices were collected, as above, 
24 h later. Western blots were subsequently performed for HIF-
1 � : in brief, cortices were homogenized in ice-cold lysis buffer 
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containing sodium chloride (150 m M ), Tris-HCl (50 m M , pH 8.0), 
NP-40 (1%), DOC (0.5%), SDS (0.1%), PMSF (0.5 m M ), and the 
protease inhibitors aprotinin and leupeptin. The homogenates 
were centrifuged at 14,000 rpm for 30 min at 4   °   C, and the protein 
concentration of the supernatants determined by BCA (Pierce, 
Rockwell, Md., USA). Protein samples were diluted in SDS-PAGE 
sample buffer, boiled for 5 min and separated by SDS-PAGE. Pro-
teins were transferred to polyvinylidene fluoride membranes, 
which were blocked in 5% non-fat dry milk in TBS, with 0.05% 
Tween 20 for 1 h at room temperature. After blocking, mem-
branes were incubated with mouse anti-HIF-1 �  monoclonal an-
tibody (Santa Cruz Biotechnology, Santa Cruz, Calif., USA, 1:   200) 
for 1 h at room temperature, then overnight at 4   °   C. Rabbit anti-
 � -actin polyclonal antibody (Sigma, St. Louis, Mo., USA, 1:   200) 
was detected on the immunoblots to ensure equal protein loading. 
Following washes, the membranes were incubated with HRP-
conjugated goat anti-mouse IgG (Santa Cruz, 1:   3,000) in blocking 
solution for 1 h. After further washes, the signal of bound anti-
body was captured on X-ray film with enhanced chemilumines-
cence (Pierce, Rockford, Ill., USA). NIH Image was used to mea-
sure the densities of the protein signals after being scanned. Opti-
cal density of the protein bands was measured following 

subtraction of the film background and protein levels were nor-
malized to  � -actin. All experiments were repeated at least three 
times to ensure reproducibility of results.

  Statistical Analysis 
 For the histological scoring of brain injury, significance was 

determined by the Mann-Whitney test. For the Western blots, 
ANOVA with the Bonferroni test for multiple comparisons was 
used. Significance was set at p  !  0.05. Analysis was done with 
Prism 4.0 (Graphpad Software Inc.). 

 Results 

 HIF-1 �  Protein Expression 
 We confirmed that HIF-1 �  is upregulated in the cor-

tex immediately after a hypoxic insult. Specifically, HIF-
1 �  protein expression is increased in Wt cortex after a 
hypoxic stimulus compared to Wt naïve control (p  !  0.05) 
and to HIF-1 �   � / �   naïve control (p  !  0.01). There is also an 
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  Fig. 1.  HIF-1 �  protein expression.  a  HIF-1 �  protein expression in 
P7 mouse cortices, with or without 1 h of 8% oxygen exposure, by 
Western blot analysis. Optical densities are normalized to  � -actin 
and values are expressed as mean  8  SD of optical densities nor-
malized to Wt control (Ctrl). HIF-1 �  protein expression is higher 
in hypoxic Wt ( * ) compared to all other groups: Wt naïve control 
(p  !  0.05), HIF-1 �   � / �   naïve control (p  !  0.01), and HIF-1 �   � / �   hy-
poxia (p  !  0.04). In addition, HIF-1 �   � / �   with hypoxia has higher 
HIF-1 �  protein levels than HIF-1 �   � / �   control (̂  p  !  0.05). For Wt 
control, Wt hypoxia and HIF-1 �   � / �  , n = 3; for HIF-1 �   � / �   hypoxia, 
n = 5. Analysis by ANOVA with the Bonferroni multiple com-
parison test.  b  HIF-1 �  protein expression in mouse cortices 24 h 
after HI at P7. The Wt cortex ipsilateral (ipsi) to HI injury ( *  n = 

5) has increased HIF-1 �  protein expression compared to all other 
groups: Wt contralateral (ctra) to HI (p  !  0.01, n = 5) Wt sham
(p  !  0.01, n = 7), HIF-1 �   � / �   sham (p  !  0.01), HIF-1 �   � / �   ipsilateral 
to HI injury (p  !  0.01) and HIF-1 �   � / �   contralateral to HI injury
(p  !  0.001). There are no significant differences among the three 
HIF-1 �   � / �   groups. However, there is a trend for higher HIF-1 �  
protein expression in the HIF-1 �   � / �   cortex ipsilateral to HI injury 
(n = 9) compared to HIF-1 �   � / �   sham (p  !  0.06, n = 4) and contra-
lateral to HI (p = 0.10, n = 9). Optical densities are normalized to 
 � -actin and values are expressed as optical densities normalized 
to Wt sham (mean  8  SD). Analysis by ANOVA with the Bonfer-
roni multiple comparison test. 
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increase in protein expression in the HIF-1 �   � / �   cortex 
with hypoxic stimulus compared to HIF-1 �   � / �   naïve con-
trol (p  !  0.05) ( fig. 1 a), indicating the presence of some 
cells that produce HIF-1 � .

  Western blot analysis of brain cortices collected 24 h 
after HI ( fig. 1 b) shows that the Wt cortex (n = 5) has a 
level of HIF-1 �  protein more than twice as high as the Wt 
sham cortex (n = 7; p  !  0.05) and the Wt cortex contra-
lateral to HI (hypoxic, n = 5; p  !  0.01). The Wt HI cortex 
also had higher HIF-1 �  protein levels than all HIF-1 �   � / �   
groups: sham (p  !  0.01), ipsilateral to HI (p  !  0.01) and 
contralateral (p  !  0.001). In the HIF-1 �   � / �   groups, there 
is a trend toward increased HIF-1 �  levels in the HI cortex 
(n = 9) compared to sham (n = 4) (p  !  0.06) and contra-
lateral cortices (p = 0.10).

  Histological Analysis for Degree of Injury 
 Histological analysis of brains 5 days after HI demon-

strates an increase in injury in the HIF-1 �   � / �   mouse brain 
compared to Wt brain ( fig. 2 a: median scores, Wt = 11, 
HIF-1 �   � / �   = 14, p  !  0.05). This injury is more severe in 
the cortex of the HIF-1 �   � / �   brain compared to Wt brain 
( fig. 2 b: median Wt = 4, HIF-1 �   � / �   = 6, p  !  0.01), than in 
the hippocampus, where there was no difference in de-
gree of injury ( fig. 2 c: median Wt = 7, HIF-1 �   � / �   = 7, p  1  
0.75). The total number of Wt mice was 27 (13 male, 14 
female); the total number of HIF-1 �   � / �   mice was 11 (8 
male, 3 female). There is no effect on injury score associ-
ated with sex, although the number of females in the HIF-
1 �   � / �   group, while adequate, is small compared to males 
and thus may limit this analysis.

  Immunofluorescence 
 Immunofluorescent staining of Wt ( fig. 3 a–d) and 

HIF-1 �   � / �   ( fig. 3 e–h) brain 24 h after HI indicates a rela-
tive lack of HIF-1 �  in the HIF-1 �   � / �   cortex ( fig. 3 f) com-
pared to Wt ( fig. 3 b). Double-labelling with NeuN dem-
onstrates that HIF-1 �  is localized primarily in neurons in 
the Wt cortex ( fig. 3 c). Double-labelling is virtually ab-
sent in the HIF-1 �   � / �   brain ( fig. 3 g). A small amount of 
nonneuronal HIF-1 �  appears to be present in Wt, and 
possibly to an even lesser extent in HIF-1 �   � / �   brains 
(small red dots). The addition of DAPI shows the nucleus 
in relation to HIF-1 �  and NeuN ( fig. 3 d, h).

  Discussion 

 We hypothesized that HIF-1 �  serves to protect the 
neonatal brain from injury due to HI, and this study sup-
ports this hypothesis, since genetic reduction of HIF-1 �  
in the mouse forebrain leads to a greater degree of injury. 
While it is well established that HIF-1 �  is the primary 
regulator of oxygen homeostasis  [15] , its role in injury 
and disease has yet to be fully understood. However, HIF-
1 �  may be especially important in the developing brain. 
The developing brain is particularly vulnerable to oxida-
tive stress, with its high rate of oxygen consumption, low 
concentrations of antioxidants and availability of redox-
active iron  [27, 28] . The fact that HIF-1 �  and its target 
gene, VEGF, have an important role in angiogenesis in-
dicates potential for repair after brain injury. It has re-
cently been shown in the adult ischemic brain, for exam-
ple, that neural stem/progenitor cells have a role in vas-
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  Fig. 2.  HI brain injury 5 days after HI.  a  Total brain injury score 
(scale 0–24). HIF-1 �   � / �   mice (median 14, n = 11) are more injured 
than Wt (median 11, n = 27) ( *  p  !  0.05).  b  Cortical injury (scale 
0–9). HIF-1 �   � / �   cortices (Ctx) (median = 6) are more injured than 
Wt cortices (median = 4) ( *  p  !  0.01).  c  Hippocampal injury (scale 

0–12). There is no difference in hippocampal injury between 
groups (median = 7 for both, p  1  0.75). The horizontal line within 
the box represents the median injury score for each group. Analy-
sis by the Mann-Whitney test. HC = Hippocampus. 
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cular stabilization, which is mediated via HIF-1 � -VEGF 
signaling pathways  [29] . In neonatal HI in the rat, exog-
enously applied VEGF (via intracerebroventricular injec-
tion) is neuroprotective  [30] . Increased expression and 
stabilization of HIF-1 �  after neonatal brain injury may 
also be associated with neurogenesis and repair  [9, 31] .

  While we hypothesized that a lack of HIF-1 �  would 
exacerbate neonatal HI injury (but have confirmed that 
here in the developing mouse brain), there is conflicting 
evidence on whether HIF-1 �  is beneficial or detrimental. 
In a different line of neural cell-specific HIF-1 � -deficient 
mice than we used, defective brain development was seen 
embryonically, leading to defects including hydrocepha-
lus in the adult  [32] . The mice we used do not express the 
deletion of HIF-1 �  embryonically; the deleted HIF-1 �  al-
lele is detectable by Southern blot beginning at P5  [20] . In 
addition, all mice we used appeared normal both as neo-
nates and adults. Reports from studies in adult ischemia 
have shown conflicting evidence in regard to the role of 
HIF-1 �  in this same line of transgenic mice. In a model 
of global ischemia, which produces a distinct pattern of 
injury, HIF-1 �   � / �   brains had less injury than Wt counter-
parts  [21] . On the other hand, with transient focal cere-

bral ischemia, HIF-1 �   � / �   brains had increased injury and 
reduced survival compared to Wt counterparts  [20] . Re-
cently, in a rat model of neonatal HI, acute, but not de-
layed, pharmacological inhibition of HIF-1 �  resulted in 
reduced injury  [33] . In this study, we chose to produce a 
moderate degree of HI injury for two reasons: to keep 
mortality low, and to avoid differential effects of severe 
injury on the induction of death mechanisms  [34, 35] . 
With our model, genetic reduction of neuronal HIF-1 �  
resulted in a worsening of injury after neonatal HI, espe-
cially to the cortex. We did not measure HIF-1 �  in the 
hippocampi collected from these same brains because 
HIF-1 �  was measured in the nuclear fraction of the ho-
mogenate and the small size of the hippocampi prohibits 
this measurement without pooling samples. It has also 
been shown that calcium/calmodulin-dependent kinase 
II is absent in the hippocampal synapse at P2 and remains 
very low at P10, increasing dramatically at P35  [36] . 
Therefore, the lack of effect in the hippocampus may be 
due to the lack of expression of the promoter needed for 
deletion of the HIF-1 �  gene. In addition, the hippocam-
pus may express other isoforms or have differential sus-
ceptibility to the injury.

a b c d

e f g h

  Fig. 3.  Localization of HIF-1   �  by immunofluorescent staining. 
Immunofluorescently labeled cells in the cortex of representa-
tive Wt (           a – d ) and HIF-1 �   � / �   (     e – h ) brains 24 h after HI at P7.

 a ,  e  NeuN.  b ,  f  HIF-1 � .  c ,  g  Merged NeuN and HIF-1 � . Yellow 
cells indicate localization of HIF-1 � , where present, to neurons. 
 d ,  h  NeuN, HIF-1 �  and DAPI for visualization of nuclei.   
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