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Abstract
Actomyosin contraction directly regulates endothelial cell (EC) permeability, but intracellular
redistribution of cytoskeletal tension associated with EC permeability is poorly understood. We used
atomic force microscopy (AFM), EC permeability assays and fluorescence microscopy to link barrier
regulation, cell remodeling and cytoskeletal mechanical properties in EC treated with barrier-
protective as well as barrier-disruptive agonists. Thrombin, VEGF and H2O2 increased EC
permeability, disrupted cell junctions and induced stress fiber formation. Oxidized 1-palmitoyl-2-
arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC), HGF and iloprost tightened EC barrier,
enhanced peripheral actin cytoskeleton and adherens junctions, and abolished thrombin-induced
permeability and EC remodeling. AFM force mapping and imaging showed differential distribution
of cell stiffness: barrier disruptive agonists increased stiffness in the central region, and barrier
protective agents decreased stiffness in the center and increased it at the periphery. Attenuation of
thrombin-induced permeability correlates well with stiffness changes from the cell center to
periphery. These results directly link for the first time the patterns of cell stiffness with specific EC
permeability responses.
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INTRODUCTION
Vascular leak resulting from endothelial barrier compromise is a cardinal feature of acute lung
injury (ALI). A complete understanding of cellular mechanisms regulating endothelial
permeability is important for development of novel therapeutic strategies for treatment of this
devastating condition. The lung endothelium forms a semiselective barrier between circulating
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blood and interstitial fluid, which is dynamically regulated by a counterbalance of barrier
protective and barrier disruptive bioactive molecules present in the circulation.

Mechanisms governing vascular permeability are under intense investigation. Models of
agonist-induced EC permeability consider the regulation of EC permeability as the net balance
of barrier-disrupting axial contractile forces produced by myosin light chain kinase (MLCK)
and Rho-GTPase driven actomyosin contraction, and barrier-promoting tethering/resistive
forces produced by cell-cell, cell-matrix interactions, rigid cytoskeletal components
(microtubules and intermediate filaments) and peripheral F-actin rim 1–5. Actomyosin
contraction and its distribution in non-muscle cells have been monitored using
immunofluorescent and biochemical labeling of actin remodeling, for example by monitoring
the levels of phosphorylated myosin light chains. However, little is known about intracellular
distribution and strength of cytoskeletal network in EC when exposed to a spectrum of barrier-
active stimuli present in blood circulation.

Previous studies have used morphometric and biochemical parameters to describe agonist-
induced cytoskeletal remodeling and changes in the EC contractility in response to barrier-
disruptive and barrier-protective agonists. Increased permeability induced by thrombin, VEGF,
hydrogen peroxide, microtubule disruptor nocodazole or other agents is associated with robust
stress fiber formation and accumulation of phosphorylated regulatory myosin light chains on
centrally positioned stress fibers leading to actomyosin contraction, cell retraction and
disruption of EC monolayer integrity 6–10. In turn, barrier-protective agonists cause
enhancement of peripheral F-actin and visible peripheral accumulation of phosphorylated
regulatory myosin light chains suggesting generation of peripheral “tethering” forces 11,12.
Activation of actomyosin contractility in cell cultures has been previously assessed by live
microscopy of contracting single cells or cell clusters grown on ultra-thin elastic silicone
membranes 13,14 or collagen lattices 15. Alternatively, traction forces generated by single cells
were registered by measurements of mechanical interactions between cells and their underlying
substrates by using cells seeded on microfabricated arrays of elastomeric, microneedle-like
posts 16. However, these approaches are limited in their applicability to regional analysis of
intracellular contractility in the cell monolayers upon treatment with barrier-protective and
barrier-disruptive agonists. Atomic force microscopy provides a suitable approach for detailed
analysis of nanomechanical properties of live cells 17, organnels 18 and drug-induced changes
in cytoarchitecture and mechanics in cultured cells 19,20.

In this study we have used AFM to directly examine the current working model of endothelial
barrier regulation as a balance between mechanical properties of contractile (centrally
positioned) and tethering (distributed on the cell periphery) cytoskeletal network in endothelial
permeability responses to bioactive molecules. We used two sets of agonists of different origin
among which thrombin, VEGF, hydrogen peroxide exhibited barrier-disruptive effects 6,21–
26, and OxPAPC, HGF and iloprost exhibit barrier-protective effects 6,21,27–32. We measured
patterns of agonist-induced changes in local elastic modulus and linked them with
immunofluorescence analysis of cytoskeletal remodeling and measurements of EC
permeability responses. Finally, barrier-protective effects of OxPAPC, HGF and iloprost on
thrombin-induced EC barrier dysfunction were linked to stiffness redistribution from central
to peripheral cellular compartments.

MATERIALS AND METHODS
Reagents and cell culture

Primary antibodies to VE-cadherin were purchased from BD Transduction Laboratories (San
Diego, CA). Texas Red phalloidin and Alexa Fluor 488 conjugated secondary antibodies were
purchased form Molecular Probes (Eugene, OR). VEGF and HGF were obtained from R&D
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Systems (Minneapolis, MN), thrombin, iloprost were obtained from Sigma (St. Louis, MO).
Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) was obtained
by exposure of dry lipid to air as previously described 27,28,33. The extent of oxidation was
measured by positive ion electrospray mass spectrometry (ESI-MS) described elsewhere 33.
Next, oxidized lipids dissolved in chloroform were stored at −70oC and used within 2 weeks
after mass spectrometry testing. All oxidized and non-oxidized phospholipid preparations were
analyzed by the limulus amebocyte assay (BioWhittaker, Frederick, MD) and shown negative
for endotoxin. Unless specified, all other biochemical reagents were obtained from Sigma (St.
Louis, MO). Human pulmonary artery endothelial cells (HPAEC) were obtained from Lonza
Inc (Allendale, NJ), cultured according to manufacturer’s protocol, and used at passages 5–9.

Measurement of transendothelial electrical resistance
The cellular barrier properties were analyzed by measurements of transendothelial electrical
resistance (TER) across confluent human pulmonary artery endothelial monolayers using an
electrical cell-substrate impedance sensing system (Applied Biophysics, Troy, NY). TER
values from at least six microelectrodes corresponding to each experimental condition were
pooled at discrete time points using custom designed Epool software and plotted vs. time as
the mean ± SD as previously described 28,34.

Immunofluorescent staining
Endothelial cells grown on glass coverslips were fixed after agonist treatment in 3.7%
formaldehyde solution in PBS for 10 min at 4oC, washed three times with PBS, permeabilized
with PBS containing 0.2% Tween-20 and 0.2% Triton X-100 for 30 min at room temperature,
and blocked with 2% BSA in PBST for 30 min. Incubation with VE-cadherin antibodies was
performed in PBS containing 0.2% Tween-20 and 2% BSA for 1 hr at room temperature
followed by staining with Alexa 488-conjugated secondary antibodies (Molecular Probes,
Eugene, OR). Actin filaments were stained with Texas Red-conjugated phalloidin (Molecular
Probes) for 1 hr at room temperature. After immunostaining, the glass slides were analyzed
using Nikon video-imaging system (Nikon Instech Co., Japan) consisting of a inverted
microscope Nikon Eclipse TE300 with epi-fluorescence module using 60XA/1.40 oil objective
connected to SPOT RT monochrome digital camera and image processor (Diagnostic
Instruments, Sterling Heights, MI). The images were recorded and processed using Adobe
Photoshop 7.0 (Adobe Systems, San Jose, CA) software.

In vitro endothelial permeability assay
Similar to the measurements of transendothelial albumin clearance 21, permeability to FITC-
labeled dextran was assessed across HPAEC monolayers grown on transwell inserts using an
In Vitro Vascular Permeability Assay Kit (Millipore, Billerica, MA) according to
manufacturer’s protocol, as we have previously described 31.

Atomic force microscopy
Imaging was carried out with a Bioscope AFM (a prototype of Digital Instruments Bioscope)
integrated with a Zeiss Axiovert 135TV inverted light microscope 35,36, using version 5,12R3
of the NanoScope software. For some experiments, a 150 × 150 μm2 “J” scanner from a
Nanoscope III Extended Multimode AFM from Veeco (Santa Barbara, CA) was also used.
Imaging of fixed cells in air and PBS buffer was performed in contact mode. Cantilevers with
nominal spring constants of k=0.06 N/m purchased from Veeco (Santa Barbara, CA) were
utilized for imaging and elasticity measurements. A nominal radius of 30 nm was used for the
tip radius. The same cantilever was used to compare mechanical properties of all cells.
Mechanical properties were measured by acquiring point-by-point force vs. distance curves
over 32×32 arrays (force-volume). The tip velocities for these measurements varied between

Birukova et al. Page 3

Nanomedicine. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



1 μm/s and 3 μm/s. The sensitivity of the photodetector was calibrated by acquiring force vs.
distance curves on a clean glass substrate.

A home written MatLab (MathWorks, Natick, MA) code was used to obtain elasticity maps
from force volume data 37. A line of zero force was defined from the average deflection of
points in the force curve corresponding to the positions of the cantilever when it is far away
from the surface. The origin of the indentation curve was chosen as the point where the
retraction curve intersected the line of zero force. The cell’s vertical deformation (penetration
depth of the tip) was obtained by subtracting the cantilever deflection from the displacement
of the piezo element. These values were plotted along the x-axis of the indentation curve.
Indentation forces were calculated by multiplying the elastic constant of the cantilever by the
cantilever deflection. To check the consistency of these results, a manual inspection of the
force curves was performed and, when necessary, the data was reanalyzed until the computed
results and manual examinations agreed reasonably. A value of zero was assigned to the elastic
modulus in regions where cells’ features were either absent or too thin, and these were
consequently excluded from further analysis. The same procedure was followed for data points
that exceeded maximum typical values (1 MPa), regardless of the specimen’s thickness in the
region.

The cell’s periphery and nucleus were defined from AFM height images acquired in contact
mode. Data points inside a region of the map could be selected for further analysis by choosing
the start and end points of polygonal lines. If only two points were selected, the program
delivered a cross section of the selected line. Indentation curves were fitted according to the
Hertz model, from which the values of elastic modulus plotted in the maps were obtained. The
ratio of elastic moduli at the cell’s periphery (Ep) and cell’s center (En) was obtained from
cross sections traced along the elasticity map of a cell. Importantly, unknown exact values of
the cantilever’s spring constant and tip radius are not expected to contribute significantly to
the error in the Ep/En ratio.

Statistical analysis
Results were expressed as means ± SD of three to ten independent experiments. Experimental
samples were compared to controls by unpaired Student’s t-test. For multiple-group
comparisons, a one-way variance analysis (ANOVA), followed by the post hoc Fisher’s test,
were used. P<0.05 was considered statistically significant.

RESULTS
Changes in pulmonary endothelial permeability induced by thrombin, VEGF, hydrogen
peroxide, OxPAPC, HGF, and iloprost

Human pulmonary EC monolayers were treated with thrombin, VEGF, hydrogen peroxide,
OxPAPC, HGF, and iloprost followed by measurements of TER for 3 hrs in parallel
experiments. Treatment with thrombin, VEGF and hydrogen peroxide significantly increased
EC monolayer permeability 6,24,38,39 that reached maximum at different time points, as
monitored by decline in TER (Figure 1A). EC stimulation with OxPAPC, HGF and
prostacyclin analog iloprost increased TER, although in different fashion (Figure 1B).
Consistent with previous findings 27,30,32,40, pretreatment with barrier-protective agents
OxPAPC, HGF or iloprost significantly attenuated absolute values of thrombin-induced TER
decline. This finding reflects EC barrier compromise and also reduced relative TER changes
in response to thrombin in EC pretreated with barrier-protective agonists (Figure 1C, shown
by arrows). TER measurements show that OxPAPC, HGF and iloprost also attenuated EC
barrier dysfunction induced by hydrogen peroxide and VEGF (Figure 2).
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Agonist-induced permeability changes in human pulmonary EC monolayers were also
analyzed by the solute flux assay 31. EC monolayers grown on semi-permeable membranes
were pretreated with barrier-protective or barrier-disruptive agonists alone or with OxPAPC,
HGF or iloprost followed by thrombin challenge, and permeability for FITC-labeled dextran
was assessed in transwell assays. Similar to effects on TER, OxPAPC, HGF, and iloprost
markedly reduced basal EC monolayer permeability and significantly attenuated thrombin-
induced permeability for FITC-labeled dextran (Figure 3).

Agonist-induced remodeling of actin cytoskeleton and adherens junctions
In order to link agonist-induced EC permeability with morphological changes, we analyzed
redistribution of actin cytoskeleton and adherens junctions by imaging of agonist-stimulated
EC monolayers subjected to immunofluorescent staining with Texas Red phalloidin and
antibodies to VE-cadherin. Thrombin and iloprost were chosen as representative barrier-
disruptive and barrier-protective agonist, respectively. Consistent with previous observations,
thrombin caused robust stress fiber formation (Figure 4A) and disruption of continuous pattern
of VE-cadherin peripheral staining (Figure 4B). In contrast, iloprost induced accumulation of
F-actin at the cell periphery (Figure 4A, shown by arrows) and enhancement of continuous
VE-cadherin-positive peripheral staining of EC in monolayer (Figure 4B). Significantly,
inhibition of thrombin-induced permeability by iloprost (Figures 1, 2) was associated with
marked attenuation of thrombin-induced stress fiber formation and partial preservation of
peripheral F-actin structure in the iloprost-pretreated EC (Figure 4A) that partially preserved
the continuity of adherens junctions (Figure 4B). We also linked actin cytoskeletal
redistribution induced by barrier-protective and barrier-disruptive agents with changes in local
elasticity.

Force mapping of agonist-stimulated human pulmonary endothelial cells
The cell periphery and nucleus in the elasticity map were defined from AFM height images of
control and agonist-stimulated cells acquired in contact mode (Figure 5A). Large scale AFM
deflection images of EC monolayers as well as imaging and elasticity measurements of single
cells within EC monolayers provided high resolution details of cell morphology and allowed
analysis of cell shape changes in control and agonist-stimulated EC. AFM images are consistent
with the images obtained using conventional optical microscopy. High resolution AFM images
of EC cytoskeleton in the iloprost-stimulated EC show increased peripheral cytoskeletal
redistribution (Figure 5B, white arrows). In contrast, thrombin stimulation caused assembly of
cytoskeletal fibers in the central part of the cell and created intercellular gaps with areas of up
to tens of μm2 in thrombin-stimulated EC (Figure 5B, filled arrows). Pretreatment with iloprost
attenuated gap formation caused by thrombin and restored peripheral cytoskeletal structure
(Figure 5B, lower panels). Gap areas decreased in this case to only a few μm2. These data are
highly consistent with changes in actin cytoskeletal arrangement monitored by
immunofluorescent staining of agonist-stimulated EC monolayers (Figure 4).

In agreement with previous works, elasticity maps in our study revealed elastic moduli in the
order of 0.1–1 MPa (Figure 6A) 41,42. For the maximum loads used in our measurements
(typically ~ 5 nN), the cells deformation as a result of the pressure applied by the AFM tip was
~ 200 nm. Since this depth corresponds primarily to the cytoskeletal region, and the plasma
membrane stiffness is negligible in comparison to the stiffness of the underlying actomyosin
cytoskeleton, these measurements depict regional changes in cytoskeletal stiffness induced by
barrier-protective and barrier-disruptive agonists. We further depicted the distribution of elastic
modulus in control and agonist-stimulated cells as a histogram (Figure 6A). Although the
maximum of the elastic modulus distribution was ~ 0.1 MPa for both vehicle- and iloprost-
treated cells, the full width at half maximum (FWHM) was significantly decreased in the
iloprost-treated cells (FWHM values of 0.2 MPa for vehicle and 0.1 MPa for iloprost-treated
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cells respectively). These results suggest certain decrease in the basal cellular stiffness as result
of iloprost treatment. Thrombin challenge increased the maximum of the elastic modulus
distribution to ~ 0.25 MPa. In addition, thrombin -treated cells displayed a wider (FWHM value
of 0.3 MPa) distribution of elastic modulus than vehicle cells. The results shown in Figure 6
are highly consistent with thrombin-induced generalized endothelial contraction leading to
disruption of EC monolayer integrity, and iloprost-mediated relaxation of central cytoskeletal
compartment with still preserved or even enhanced peripheral stiffness, which is associated
with increased EC barrier properties. More detailed analysis of regional stiffness distribution
was performed in the next experiments.

The analysis of the overall elastic modulus as a result of agonist action is complicated by several
effects, including cell fixation and the AFM technique itself 36,41,43. On the other hand,
experiments with live cells are complicated by relatively low cell-substrate adhesive forces
and the rapid action of agonists in timescales difficult to follow with the AFM. Therefore, for
these preliminary experiments, relative variations in the elastic modulus of the peripheral
cytoplasm to the elastic modulus in the cell nucleus (Ep/Ec values) were studied. Differences
in the Ep/Ec ratio were small, but still discernable. The elastic moduli measured in our
experiments are directly associated with subcellular mechanical properties 36, In addition, they
provide an indirect connection to intracellular forces via relationships between the elastic
modulus, bulk modulus and Gibbs free energy 44. While these relationships have been
examined in detail for ionic crystals 45, they are discussed here only qualitatively. Generally,
larger cohesion forces in the cytoskeleton are expected to be reflected by larger values of elastic
moduli.

Elasticity maps of agonist-stimulated EC monolayers suggest that barrier-disruptive agonists
thrombin, H202 and VEGF increased elastic modulus in the central part of the cell (Ec) as
compared to the cell periphery (Ep) (Figure 6B). Calculated Ep/Ec ratios were typically less
than one (within 0.53 – 0.65 range) for characteristic directions along the cells that correlated
with the redistribution of actin in fluorescence images. In comparison to barrier-disruptive
agents, agonists with barrier protective properties (OxPAPC, HGF and iloprost) decreased
overall stiffness (mean value across the entire cell, Figure 6), but preserved or even increased
the elastic modulus at the cell periphery with respect to the central part of the cell resulting to
the increased Ep/Ec ratios (Figure 6C). Due to inherent differences in the elastic modulus
distribution in different cells, selection of the direction for regional stiffness scanning in each
cell may cause fluctuations of Ep/Ec values. However, even with these variations, EC
stimulated with all three barrier protective agents (OxPAPC, HGF and iloprost) showed higher
Ep/Ec ratios with respect to control cells and EC stimulated with barrier-disruptive agonists.
These results are highly consistent with the model of the maintenance of EC barrier properties
via increased tethering forces generated during enhancement of peripheral actomyosin
cytoskeleton and cell-cell junctions 3. Significantly, cell pretreatment with barrier-protective
agonists HGF and iloprost, which attenuate thrombin-induced EC barrier dysfunction, reversed
the intracellular distribution of elastic modulus and increased Ep/Ec ratios to 0.95 –1.07 (Figure
7).

DISCUSSION
Here we described specific patterns of local intracellular elasticity in human pulmonary EC
monolayers and linked them with actin cytoskeletal remodeling, rearrangement of cell-cell
adherens junctions, and barrier response to agonist stimulation. These results support the model
of EC barrier regulation as a balance between central contractile and circumferential tethering
forces imposed by actomyosin cytoskeleton. In addition, our studies show that protective
effects of OxPAPC, HGF and iloprost against EC hyper-permeability induced by barrier-
disruptive agents of different origin are associated with redistribution of intracellular elastic
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modulus. Protective agonists caused increases in peripheral and decreases in central
contractility reflected by changes in the Ep/Ec ratios. It is also important to note that dramatic
redistribution of VE-cadherin to the cell junctions caused by iloprost and other barrier
protective agonists and resulting increases in cell-cell adhesiveness may serve as
complementary mechanism enhancing endothelial monolayer barrier properties without
affecting cellular elastic modulus.

Previous studies utilized biochemical and morphological markers, such as MLC
phosphorylation, protein translocation from cytosolic to membrane/cytoskeletal fractions,
electron microscopy analysis of EC gaps, actin remodeling, morphological enlargement or
disassembly of cell adhesion complexes upon agonist stimulation to characterize endothelial
permeability (see for 2,4 review). These approaches only indirectly implied a role of contractile
forces in the regulation of endothelial permeability. Functional assays such as membrane
wrinkling assay, collagen lattices or single cell traction force analysis were used to confirm
activation of EC contraction by edemagenic agonists (thrombin, nocodazole) leading to EC
hyperpermeability 13–16. However, without AFM studies, it was very difficult if not impossible
to a) quantitatively analyze stiffness/elastic modulus in a particular EC contained within
endothelial monolayer; b) determine the distribution of subcellular mechanical indices; c)
compare effects of barrier-protective and barrier-disruptive agonists on intracellular
mechanical properties; and d) link these data with morphological and functional changes in
EC monolayers. Increasing number of studies refers to cortical actin cytoskeletal enhancement
as a major mechanism of EC barrier protection. However, mechanical properties of EC
peripheral cytoskeleton have not been directly tested. We believe that changes in mechanical
properties of cortical cytoskeleton and cell-cell adhesive complexes are keys to understanding
the molecular mechanisms of agonist-induced EC barrier enhancement and barrier recovery.
These measurements are only possible by using AFM methods including those described in
this study. Ongoing studies by our group will further characterize cytoskeletal and cell adhesion
protein targets involved in dynamic changes in cortical cytoskeletal mechanics critical for EC
barrier protection and recovery.

The barrier-disruptive agonists used in this study trigger various signaling molecules including
myosin light chain kinase, Rho-GTPase, protein kinase C, Erk-1,2, p38 MAP kinases, NFκB,
which may cause EC barrier compromise 6,7,46–51. Similarly, agonist-induced barrier-
protective effects are also mediated by various signaling pathways including Rac and Cdc42
GTPases, protein kinase A, Epac-Rap1 signaling, PI3-kinase, etc. 29–31,40,52,53. However, the
common feature of EC responses to various barrier-disruptive agonists is formation of centrally
positioned actomyosin filaments leading to cell retraction, disruption of cell-cell contacts and
EC monolayer integrity. In turn, barrier-protective agonists OxPAPC, HGF and prostacyclin
analog iloprost tested in this study, although associated with activation of distinct signaling
pathways, however enhanced peripheral cytoskeleton and peripheral elasticity modulus.

The mechanisms of differential actin cytoskeletal remodeling induced by barrier-protective
and barrier-disruptive agents are not yet fully understood. Increasing number of publications
including our studies 11,27,54,55 suggest a central role for Rac GTPase in the peripheral actin
cytoskeletal remodeling and cell-cell junction assembly. Indeed, Rac activation has been
reported in EC stimulated with OxPAPC, HGF and prostacyclin 27,29–31,56. In contrast,
activation of Rho GTPase and myosin light chain kinase, which promote central stress fiber
formation, cell retraction and disruption of cell-cell contacts has been described in EC
challenged with thrombin, H2O2 and VEGF 6,7,9,48.

In summary, this study provides comprehensive analysis of cytoskeletal remodeling examined
in parallel by immunofluorescent staining and AFM methods and links differential patterns of
force distribution in EC monolayers with specific permeability responses. Results of AFM
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analysis of regional cytoskeletal stiffness in the agonist-stimulated EC monolayers support the
model of endothelial barrier regulation via a balance between centrally localized contractile
and peripheral tethering forces. The AFM approach described in this study provides a suitable
assay to test the role of specific molecules in EC contractility and barrier regulation via force
mapping of the individual cells expressing functional mutants of signaling or cytoskeletal
proteins within intact EC monolayers. Furthermore, parallel force mapping of macro- and
microvascular EC monolayers may help identify the differences in the patterns of cytoskeletal
remodeling, tethering forces and cell-cell adhesive forces observed in the lung macro- and
microvascular beds and associated with regional differences in regulation of lung permeability.
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Figure 1. Effect of thrombin, VEGF, hydrogen peroxide, OxPAPC, HGF and iloprost on
transendothelial electrical resistance
HPAEC monolayers were grown on gold microelectrodes. At the time point indicated by arrow,
cells were treated with: A - 0.2 U/ml thrombin, 200 ng/ml VEGF, 100 μM H202; B - 20 μg/
ml, OxPAPC, 20 ng/ml HGF, 200 ng/ml iloprost; or C - pretreated with OxPAPC, HGF or
iloprost prior to thrombin stimulation, and transendothelial resistance was monitored during 3
hrs. Results are representative of five independent experiments.

Birukova et al. Page 12

Nanomedicine. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Summary of agonist effects on EC permeability
TER measurements were made at the time points corresponding to maximal TER changes in
response to each agonist shown by vertical lines in Figure 1. Shown are pooled data of three
to eight independent experiments.
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Figure 3. Effect of agonists on endothelial monolayer permeability for micromolecules
HPAEC monolayers grown in transwell plates were treated with 20 μg/ml, OxPAPC, 20 ng/
ml HGF, 200 ng/ml iloprost, 0.2 U/ml thrombin, 200 ng/ml VEGF, 100 μM H202 for 2 hrs, or
cells pretreated with OxPAPC, HGF or iloprost (15 min) were further challenged with thrombin
(2 hrs). Measurements of permeability for FITC-labeled dextran were performed as outlined
in Methods section. Shown are pooled data of three independent experiments. Results are
represented as mean ± SD. *p<0.01, versus vehicle control; #p<0.01, versus stimulation with
barrier disruptive agonists alone.
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Figure 4. Effect of OxPAPS on thrombin-induced cytoskeletal remodeling and adherens junction
integrity
EC grown on glass coverslips were incubated with iloprost (200 ng/ml, 15 min) or thrombin
(0.2 U/ml, 15 min) alone or with iloprost followed by thrombin treatment for 15 min. Cells
were fixed, and double immunofluorescent staining was performed according to the protocol
described in the Methods section. Cells were probed with Texas Red phalloidin to detect actin
filaments (A) and with VE-cadherin antibody to label adherens junctions (B). Results are
representative of three independent experiments.
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Figure 5. Height and deflection images of agonist-stimulated pulmonary endothelial cell
monolayers
Pulmonary EC grown on glass coverslips and treated with iloprost (200 ng/ml, 15 min),
thrombin (0.2 U/ml, 15 min), or combination of iloprost and thrombin, as described in previous
figures, were used for image acquisition using AFM techniques. A - AFM height images of
larger areas of EC monolayers; B - deflection images showing more detail of the regions
indicated with squares in panel A. Data were acquired using the same cantilever with 0.06 N/
m spring constant in PBS buffer at room temperature, as described in Materials and Methods.
Shown are representative data of three independent experiments.
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Figure 6. Effects of barrier-disruptive and barrier-protective agonists on intracellular elasticity
distribution measured using atomic force microscopy
A - Human pulmonary endothelial cell monolayers grown on glass coverslips and treated for
15 min with vehicle (left panels), 0.2 U/ml thrombin (middle panels), or 200 ng/ml iloprost
were fixed in 3.7% formaldehyde and used for elasticity measurements by AFM. Histograms
represent the overall distribution of elastic modulus across the entire cell. A Gaussian fit (black
dashed line) is superimposed on each histogram. Full widths at half maximum (FWHM) values
of the distributions are 0.2 MPa (vehicle), 0.3 MPa (thrombin) and 0.1 MPa (iloprost). Human
pulmonary endothelial cell monolayers grown on glass coverslips and treated for 15 min with:
B - 0.2 U/ml thrombin, 200 ng/ml VEGF, 100 μM H202, or C - 20 μg/ml, OxPAPC, 20 ng/ml
HGF or 200 ng/ml iloprost were fixed in 3.7% formaldehyde and used for elasticity
measurements by AFM. Shown are representative samples of multiple analyzed cells and
measurements. Scale in z-axis (elastic modulus): 0–1 MPa for all elasticity maps. Scale is color
coded in tones of black, red, yellow and white, with black corresponding to 0 MPa and white
to 1 MPa. Directions of elasticity scans used for calculations of Ep/Ec ratios are shown by
arrows.
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Figure 7. Measurements of intracellular elasticity distribution in agonist-stimulated EC using
atomic force microscopy
Human pulmonary endothelial cell monolayers grown on glass coverslips and pretreated with
HGF or iloprost (15 min) prior to thrombin challenge (15 min) were fixed in 3.7%
formaldehyde and used for elasticity measurements by AFM. Shown are representative
samples of multiple measurements. Scale in z-axis (elastic modulus): 0–1 MPa for both
elasticity maps. Scale is color coded in tones of black, red, yellow and white, with black
corresponding to 0 MPa and white to 1 MPa.
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