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ABSTRACT Self diffusion and mutual diffusion in two-
dimensional membrane systems are analyzed. It is shown that
interprotein interactions can produce markedly different den-
sity-dependent changes in the diffusion coefficients describing
these two processes; the qualitative differences are illustrated
by using a theoretical formalism valid for dilute solutions. Re-
sults are obtained for three analytical potentials: hard-core re-
pulsions, soft repulsions, and soft repulsions with weak attrac-
tions. Self diffusion is inhibited by all three interactions. In
contrast, mutual diffusion is inhibited by attractions but is en-
hanced by repulsions. It is shown that such interaction-depen-
dent differences in self diffusion and mutual diffusion could
underlie, among other things, the disparity in protein diffusion
coefficients extracted from fluorescence recovery after pho-
tobleaching and postelectrophoresis relaxation data.

The lateral diffusion of membrane proteins has been exten-
sively studied (1-8). A considerable body of experimental
data has established rates of protein diffusion in both natural
membranes and well-characterized Mhodel bilayer systems.
The experimental work has hdlped to identify the physical
variables (e.g., membrane viscosity, temperature, protein
geometry, and protein concentration) that influence diffu-
sion and has amply demonstrated the biological importance
of protein mobility. Theoretical descriptions of two-dimen-
sional diffusion (9, 10) have qlso served to define those prop-
erties of the bilayer that most profoundly affect the diffusion
of proteins. Similarly, recent computer simulation studies
have shown that interprotein interactions modulate mem-
brane protein mobility (11-13).

In this paper we analyze the interaction dependence of
two important types of diffusional phenomena in bidmem-
branes: self diffusion and mutual diffusion. We focus on
these two processes because each it manifest experimentally
and each underlies fundamental biological phenomena. Self
diffusion is perhaps most easily explained in the context of a
thought experiment. Imagine a uniform system in which a
single solute molecule is labeled. Brownian forces will cause
this molecule to undergo some mean-squared displacement
(r2) in a time t. In two dimensions, the self-diffusion coeffi-
cient, DS, is then defined by the relationship (r2) = 4Dst. Self
diffusion is monitored by fluorescence recovery after pho-
tobleaching (FRAP; refs. 14-17). Moreover, certain biologi-
cal processes [e.g., visual transduction (18) and mitochondri-
al bioenergetics (19)] rely on self-diffusive motion to bring
about the requisite intermolecular contacts.
Mutual diffusion, on the other hand, refers to the relax-

ation of fluctuations or gradients in protein concentration. A
mutual diffusion coefficient, Dm, can be defined, for exam-
ple, by Fick's laws. An understanding of mutual diffusion
will help us to appreciate protein movement toward coated

pits (theoretical discussions include ref. 20 and references
therein) and the disassembly of structures such as gap junc-
tions (21). Tfie mutual diffusion coefficient can be experi-
mentally determined by monitoring postelectrophoresis re-
laxation (PER; refs. 22 and 23).
At infinite dilution, the self- and mutual-diffusion coeffi-

cients have the same value, Do. This "bare" diffusion coeffi-
cient is given, within the confines of one model, by the Saff-
man-Delbruck equation (9). However, at nonzero lateral
protein densities, membrane proteins interact through mutu-
al excluded volume and sometimes through longer-ranged
potentials (24-27). These interactions can produce markedly
different density-dependent changes in DS and Dm.
Here the aim is to understand the qualitative effects that

interactions can have on protein diffusion; hence, we pre-
sent a relatively simple theory and numerical data that de-
scribe dilute systems containing a single protein species. For
the sake of clarity, we will temporarily neglect hydrodynam-
ic interactions between protein molecules; the interested
reader is referred to the three-dimensional literature (28). We
study three analytical potentialsL-hard-core repulsions,
soft repulsions, and soft repulsions with weak superimposed
attractions-that illustrate the richness of possible interac-
tion-modified diffusive behavior. All three potentials inhibit
self diffusion. In contrast, mutual diffusion is slowed by at-
tractions and enhanced by repulsions. We conclude by
showing that interaction-induced differences in self diffusion
and mutual diffusion could underlie the observed disparity
(23) in diffusion coefficients determined by FRAP and PER.

THEORY
In this section we analyze two-dimensional self diffusion and
mutual diffusion; a similar discussion of three-dimensional
diffusion has been presented by Ohtsuki and Okano (30) and
Felderhof (31). The development will rely on the concept of
the distribution function and ideas that are central to the the-
ory of simple fluids (32, 33).
We note that we are modeling a two-dimensional projec-

tion of diffusive motion in a three-dimensional membrane.
Hence, membrane protein diffusion is associated with three-
dimensional momentum transfer and should be free from any
anomalies that arise in true two-dimensional systems.

Self Diffusion. Here we establish a relationship between
the density and interaction potential of a system and the nor-
malized two-dimensional self-diffusion coefficient, DS/Do.
We begin by stating that the particles in the system move
under the influence of Brownian, viscous drag, and interpro-
tein forces. In addition, it will be assumed for analytical rea-

Abbreviations: FRAP, fluorescence recovery after photobleaching;
PER, postelectrophoresis relaxation.
fIn previous work (27) we determined the potential that character-
izes the interactions between proteins in mouse liver gap junction
at high (native) lateral densities. Since it is possible that the gap-
junction force varies with density (29), we defer analysis of diffu-
sion in the presence of the gap-junction potential.
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sons that one particular particle, denoted 1, is subjected to
an oscillatory external force, Feoexp(iwt). Therefore, the
motion of particle 1 is "driven" and can be characterized by
computing the mobility, u(cw), defined by

(v1)=u(=)Foeoe"'l, [11

where (vj) is the avetage velocity of particle 1.
A self-diffusion coefficient Ds describing the purely diffu-

sive or "undriven" motion of a particle in the system can be
extracted from p(a)) as follows (34):

DS = lim kBT(cw). [21

Here kB is Boltzmann's constant and T is the temperature.
The mobility and hence Ds can be calculated once (vl) is

known. An expression for (vj) follows directly from the Lan-
gevin equation of motion for particle 1:

dv1
m = -fsvl + FOeOeit - > Vlu(rj) + FBroWII(t). [31dt ~~~~~~~J>1

Here m is the mass of a protein molecule, fs is the friction
factor, u(rji) is a pair-wise additive interaction potential that
is summed over other molecules I, and FBOW,,(t) is the ran-
dom Brownian force. If the inertial term in Eq. 3 is neglect-
ed, (vj) takes the form

(v) = JX [FOoei'wt - - f Viu(r)P2(r, t)dr], [41

where r = r2 - r, (see Fig. 1), and P2(r, t) is the time-depen-
dent two particle distribution function. In obtaining Eq. 4,
we have invoked the fact that the average of the Brownian
force is zero. To proceed with the calculation of (vj), P2(r, t)
must be known. The thrust of this discussion will center on
the method for determining this distribution function.
With the neglect of inertial effects, the two-particle distri-

bution function will satisfy a generalized diffusion equation,

0P2(r, t) - V.S [5]
at

where the flux, Js, is given by

is = DO{[2Vr + 2PVru(r)1P2(r, t) + Fof3iOP2(r, t)eiot}. [61

Here 83 1/kBT. Eqs. 5 and 6 follow from the N-particle
Smoluchowski equation upon integration over particle posi-
tions, ri, i > 2, and conversion to relative coordinates (35).
We have neglected a term in Js that depends on the three-
particle distribution function because, in a dilute solution,
the probability of finding three particles in proximity is small.

Eq. 5 may be solved by using perturbation-theory tech-

niques. Before the external force is applied to particle 1, the
protein distribution is governed by the equilibrium radial dis-
tribution function g(r). Therefore, when the external field is
turned on, we assume that the perturbed molecular distribu-
tion takes the form

P2(r, t) = p2g(r)[1 + yp(r, co)cosOeWtt], [71

where y is an expansion parameter that characterizes the
strength of the external force (35), p(r, w) is the radial pertur-
bation, and cos6, the cosine of the angle between r and eo,
dictates the angular dependence of P2(r, t).

If the perturbation expression for P2 is inserted into Eq. 5
and the coefficients of I are equated {the -) term yields g(r)
= exp[-(3u(r)]}, one obtains an equation for p(r, t). It is ap-
parent from Eq. 2 that we are interested in the limit wc- 0; in
this limit, p(r, w = 0) p(r) satisfies the equation

Vr-{[Vr + f3Vru(r)]g(r)p(r)cosO} = -cosO
d

dt' [81

The expression under the divergence in Eq. 8 is simply
g(r)Vr[p(r)cosf]. Upon writing the vector operators in two-
dimensional polar coordinates, we diverge from the previous
three-dimensional analysis (31) and obtain a perturbation
equation valid in two dimensions

2 d2 + /r d +rgd dp 2dgrg-2+ 9r-r-p= -r -dr dr /dr dr [91

Eq. 9 is solved numerically (see Methods) subject to
boundary conditions, which state that the radial perturbation
approaches zero as r becomes very large,

lim p(r) = 0,
r--Hoo

[la]

and that the flux JS, vanishes when two particles "collide,"

dp = -1
dr [lOb]

The implementation of Eq. 10 is discussed under Methods.
Once p(r) is known, the diffusion coefficient is easily de-

termined. It follows from Eqs. 1, 2, 4, and 7 that

Ds(p) p3 C' du(r) r
Do__ = 1 + -

dr p(r)g(r)rdr. [11]

Mutual Diffusion. Here we investigate the interaction and
density dependence of the mutual-diffusion coefficient, DY,
in dilute solutions. The calculation of an interaction-modi-
fied Dm will proceed by analogy with standard discussions of
mutual diffusion. These standard treatments do not take into
account interparticle interactions and hence are strictly valid
only at infinite solute dilution. It is usually assumed that .a
gradient in concentration or in the one-particle distribution
function, PI(rl, t), exists in the membrane and that the flux is

Jm = DOVP,(rl, t).

FIG. 1. Coordinate system used in the evaluation of diffusion
coefficients.

We use the same notation, Do, for the bare self- and mutual-
diffusion coefficients because at infinite solute dilution,
these quantities should be identical. Our problem is then to
identify the analogue of Eq. 12 that is valid at nonzero densi-
ties, where Do is replaced by a generalized Dm.

Ohtsuki and Okano (30) and Felderhof (31) have discussed
this problem in three dimensions; in their treatments, the

[121
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generalization of Eq. 12 is determined as follows. The diffu-
sion equation for Pl(r1, t) is

aP,(r1, t)
at

= DoV- [ViPl(ri, t) + 13J Viu(r)P2(r1, r2, t)dr2j [13]

Therefore, the flux that enters into the calculation of Dm is

Jm = Do[VPl + f3 Vlu(r)P2dr2]. [14]

If Eqs. 12 and 14 are compared, it is evident that we can
identify an interaction-modified mutual-diffusion coefficient
if 14 is recast into a form in which the flux is directly propor-
tional to VP1(r1, t). To do this, we need to calculate P1 and P2
when the gradient is present. For a uniform system, P1 = o,
the density of the system, and P2 = p2g(r). However, the
imposition of a gradient serves to change the distribution of
protein and the functions P1 and P2. The gradient is, there-
fore, the analogue of the external field in the self-diffusion
problem, and we proceed, as we did in the earlier discussion,
with a perturbation analysis of its effect on distribution.
We will allow the gradient to produce small deviations

from the equilibrium particle configuration. Moreover, if it is
assumed that the distribution functions vary slowly on the
microscopic time scale, we may neglect the temporal varia-
tion in P1 and P2 and write

Pl(rl) = p + pl(rl), [15a]

Proc. NatL AcadJ Sci. USA 85 (1988)

Vpl(r1) = X. Eqs. 17 and 18 therefore show that

Jm = Do{1 -. 3Pf d( r2g(r)dr VPl(rJ). [19]

By analogy with Eq. 12, the proportionality factor relating
the flux to the gradient in Eq. 19 is just the generalized diffu-
sion coefficient. Thus,

Dm(p)
= 1 - l"pp du(r) 2dr.

Do l~f drgrd. [20]

A similar result has been written down by Phillies (14).

METHODS
In this section we present the basic systems that were ana-
lyzed and describe the methods used to obtain self- and mu-
tual-diffusion coefficients.
The Potentials. We studied diffusion in the presence oftwo

types of potential: 6-4 and hard core. The potentials and as-
sociated distribution functions are shown in Fig. 2. A general
6-4 potential is defined according to

27-kT[(or)6 - (cr/r)4].4
[21]

This potential crosses zero at r = or and attains its minimum
value, -kBT, at r = (3/2)1/20. ro. The associated force is
repulsive for r < ro and attractive for r > ro.

10.0 -

where the gradient is taken to have the form

p1(r1) = X ri. [15b]
E--
m

..M 5.0-

.-4J4
We also write

P2(rl, r2) = Pl(r1)Pl(r2)G(rl, r2). [16]

In Eq. 16 the function G(rj, r2) is the sum of the equilibrium
radial distribution function g(r) = exp[-,Bu(r)] and a pertur-
bation term g(ri, r2).
Our goal now is to determine the relationship between the

flux and the perturbation functions. If Eqs. 15 and 16 are

inserted into the flux expression 14 and terms up to first or-

der in density are retained, it is found that

M= Do[Vjpj(ri) + fUp Viu(r)pj(r2)g(r)dr2j [17]

Note that when p 0, Eqs. 17, 15a, and 12 yield Dm = Do.
Therefore, these generalized expressions reduce to the stan-
dard relationships when the solute is infinitely dilute.
To complete the calculation of Dm, the gradient and inte-

gral expressions appearing in Eq. 17 must be evaluated for
our particular choice of the perturbation Pl. We have V1pj =

V(X- rj) = X. The integral in Eq. 17 can also be related to the
gradient parameter X. At this point, we diverge from the dis-
cussion that has been presented previously by the three-di-
mensional theorists and derive expressions that apply to a
two-dimensional membrane. We find

C0 du(r)2
Viu(r)pj(r2)g(r)dr2 = -rIX r2g(r)dr. [18]

odr

The generalized two-dimensional diffusion coefficient can
now be identified. Note that Eq. 15a implies that VP1(rl) =

0.0 -

2.0 -

bO

1.0-

0.0 -
.

0.0 1.0 2.0
r ka)

.I'...
3.0 4.0

FIG. 2. Analytical potentials and radial distribution functions
used in the calculation of diffusion coefficients. (A) Potentials A
(-) and R ( ) and the hard-core interaction (---) defined in Eqs. 22-
24. The value of dHc associated with the hard-core potential is arbi-
trarily shown equal to ro; only the product lrp(dHc)2/4 fA deter-
mines the rate of change of the diffusion coefficient. (B) Radial dis-
tribution functions associated with the potentials in A. These distri-
bution functions were determined from the analytical expression
g(r) =exp[-u(r)/kBT], which is valid in the dilute limit. The radial
distribution function gives a measure of the probability of finding a
second particle a distance r from a given central particle. A value of
g = 1 indicates that there is a uniform likelihood of locating particle
2; values <1 (diminished probability) are associated in the dilute
limit with u > 0, while values >1 (enhanced probability) are associ-
ated with u < 0.

A

I I r,
-4
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To maintain consistency with published work (29), we de-
fined a 6-4 potential with attractions and repulsions (fluid A)
by truncating the 6-4 potential at r = 2.5rO and shifting it up
slightly to maintain continuity

u64(r) - u64(2.5ro) r ' 2.5rO

o0 r > 2.5ro. [221

The force was not changed by this process, except that duAl
dr = 0 for r > 2.5ro.
A closely related, purely repulsive interaction (fluid R)

was derived from the 6-4 potential by using the Weeks-
Chandler-Andersen decomposition (36) [i.e., by subtracting
from Eq. 21 the value u64(ro) and then setting the potential
equal to zero beyond ro]:

u=64(r) - u64(rO) r c ro
uR(r) =

r > ro. [231

The repulsive force is identical in fluids R and A; however,
there are no interactions in Eq. 23 at separations that corre-
spond to the attractive component of Eq. 22.
The repulsive component in the A and R potentials is

meant qualitatively to model the rather soft excluded-vol-
ume repulsions that might arise from interactions between
proteins that are soft or deformable. The attractive compo-
nent likewise represents qualitatively the case of fairly long-
ranged attractions (26).
We also analyzed a hard-core repulsion.

uHC(r) =
r ' dHc

r > dHc.

Here dHc is the hard-core diameter of the diffusing particles.
The associated force is a delta function centered on dHc.

Diffusion coefficients for the 64 potential are formulated
in terms of a reduced particle density, p* = pa 2. Results for
the hard-disk potential are expressed as a function of area
fraction, fA, of protein coverage for reasons made clear in
Results and Discussion. A (unique) hard-disk diameter can-
not be associated with the soft 6-4 potentials.

Analysis of the 6-4 Potentials. The 6-4 self-diffusion coeffi-
cients were calculated numerically from Eqs. 9-11. The dif-
ferential equation, 9, that determines p(r) was converted into
a system of linear equations that coupled together values of
p at discrete points ri, following standard techniques (37).
Derivatives of p(r) were replaced by weighted differences
based on a five-point quartic fit (38). Boundary conditions in
Eq. 10 were imposed by replacing the edge equations gener-
ated from Eq. 9 by the linearized boundary conditions. Eq.
10a was implemented for a (large) value of r at which
du(r)/dr is zero. Similarly, Eq. 10b was imposed for a (small)
value of r at which g(r) 0. The result of these manipula-
tions was a matrix equation representing Eqs. 9 and 10 with
p(r) as its unique solution. Eq. 11 was then evaluated by us-
ing Simpson's rule (39).
The mutual-diffusion coefficient is given by Eq. 20. The

integral was evaluated by using Simpson's rule.
Analysis of the Hard-Disk Potential. The hard-core self-

and mutual-diffusion coefficients were calculated analytical-
ly. We consider the calculation of Ds. For the excluded vol-
ume interaction, gHC(r < dHc) = 0 and gHC(r > dHc) = 1. It
follows that the dilute hard-core perturbation equation reads
(for r > dHc)

2 d2p+ dp
r =0. [251

Expression 25 is just Euler's equation (40) and, therefore,
the solution for p(r), which satisfies the boundary condition
at r = 00, is p(r) = Cir. The constant C is fixed by the bound-
ary condition in Eq. lOb. We find C = (dHC)2. If the hard-
core perturbation p(r) = (dHc)2/r (valid for r > dHc) is insert-
ed into Eq. 11 and the quantity -f3g(r)du/dr = dg/dr is re-
placed by 8(r - dHc), one finds Ds = 1 - 2fA. This result,
for the hard-core interaction, was previously obtained by
Ackerson and Fleishman (41).
The mutual-diffusion coefficient is also easily evaluated

analytically. The result is given in the next section.

RESULTS AND DISCUSSION
Interpretation of Results. In the Theory section, we dem-

onstrated that, for a dilute system, the self- and mutual-diffu-
sion coefficients are linear functions of density. The precise
functional form was determined for two related long-ranged
interactions and a hard-core potential. The data are summa-
rized in Table 1. Comparison with results obtained from a
more general theory (to be published elsewhere) shows that
these formulae are accurate to within about 5% if p* -- 0.2
(fluid A and fluid R) and fA ' 0.2 (hard core).
We see that interparticle interactions act to slow self diffu-

sion in all three fluids; however, the effect is slightly more
pronounced in fluid A than in the closely related fluid R. At
nonzero solute concentrations, strong contact repulsions in-
hibit self diffusion by blocking potential paths, thereby mak-
ing particle movement more circuitous. Attractions also in-
hibit self diffusion because they effectively tether particles
into less mobile aggregates.
The three potentials induce markedly different changes in

the mutual-diffusion coefficient. Mutual diffusion was re-
tarded in fluid A but was enhanced in fluid R and the hard-
core liquid. Repulsions serve to push neighboring particles
apart; regions of high concentration tend, therefore, to dissi-
pate more quickly than they would in the absence of interac-
tion. In contrast, the attractions in fluid A hold particles to-
gether and so retard large-scale separations.

In general, the theoretical expressions that determine the
density and potential dependence of Ds are not particularly
susceptible to qualitative analysis. The formalism is complex
because the perturbation p(r) must first be computed, and
then p(r) and du/dr must be used together to find DS/Do.
Therefore, the details of both p(r) and the force combine to
determine the nature of the modulation.
The mutual-diffusion formula is more transparent: the sign

of the integrand in Eq. 20 is determined by the sign of the
interaction force. If the force is purely repulsive, mutual dif-
fusion is always enhanced. If the force is purely attractive,
mutual diffusion is always inhibited. The effect of a force
containing both repulsive and attractive components is de-
termined by the details of the integration.
Comparison with Other Studies of Self Diffusion. Our ana-

lytical expression for Ds/Do in hard-disk systems can be
compared with previous studies (11, 13) of the self diffusion
of hard hexagons on a lattice. These latter results depend
only on the area fraction occupied by protein and at low den-
sities are fit to within 5% by the relationship DS(fA) = 1 -

Table 1. Equations for diffusion coefficients
System DS/DO DmIDO

Fluid A 1 - 1.68p* 1 - 6.20p*
Fluid R 1 - 1.48p* 1 + 3.34p*
Hard core 1 - 2fA 1 + 4fA

These equations describe the density dependence of the self- and
mutual-diffusion coefficients. Results for fluids A and R are given in
terms of the reduced density of particles, while results for the
hard-core interaction are expressed as a function of the area fraction
of protein.

Biophysics: Scalettar et aL
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2.1187fA (13); this fit compares favorably with our formula,
1 - 2fA-
The density dependence of Ds has been monitored for the

membrane proteins bacteriorhodopsin (3, 42) and gramicidin
(43). The experimental data clearly demonstrate that Ds is
indeed a decreasing function of concentration. However, the
scatter in the data at low lateral densities makes it difficult
quantitatively to compare our theory and experiment.

Implications for the Experimental Determination of Diffu-
sion Coefficients. We noted in the Introduction that both self
and mutual diffusion are biologically important and are,
therefore, the subject of extensive experimental study. How-
ever, the interpretation attached to the experimental data is
not completely unambiguous. For example, the recent re-
view article by Young et al. (23) compared diffusion coeffi-
cients determined by FRAP and PER. Results were present-
ed for three proteins: concanavalin A receptors and acetyl-
choline receptors from Xenopus muscle cells and low-
density lipoprotein receptors on human fibroblasts. In each
case the diffusion coefficients obtained from PER measure-
ments were significantly larger than the corresponding val-
ues obtained with the FRAP technique (5-20 times larger for
the concanavalin A receptors, 50 times larger for the acetyl-
choline receptors, and 100 times larger for the low density
lipoprotein receptors). In contrast, diffusion coefficients for
Fce receptors on rat basophilic leukemia cells determined by
the two techniques did not differ significantly (44). It has
been suggested that the typically smaller FRAP diffusion co-
efficients could reflect a retarding interaction between the
FRAP label and the extracellular glycocalyx. The existence
and magnitude of such an effect would depend on the partic-
ular label and cell surface characteristics.

It is also possible that interprotein interactions give rise to
the differences noted above. We have mentioned that PER
monitors mutual diffusion, while FRAP measures self diffu-
sion. For particles that interact, even through simple exclud-
ed volume forces, Ds and Dm will differ and hence DFRAP
will not, in general, be the same as DPER. Moreover, to date,
the interactions between (studied) membrane proteins have
been shown to be predominantly repulsive in character (24,
27); hence, we would predict that the diffusion coefficient
extracted from a FRAP experiment should be smaller than
that obtained from PER (DFRAp/Do < 1, while DPER/DO >
1). Other forms of potential could give rise to other behavior
(this could be the case for the Fce receptors).
The magnitude of an interaction-mediated modulation is

probably sufficient to explain the observed differences. Data
from Pink (11), Saxton (13), and our generalized analysis of
the hard-core interaction (data not shown) indicate that
DS(fA = 0.5)/Do 1/4. We have also found (data not
shown) that Dm(0.5)/Do 12 for the hard-core fluid. Both of
these results hold when hydrodynamic effects and protein-
induced lipid perturbations are neglected. Such differences
are qualitatively consistent with the experimental data.

Finally, we mention that Small et al. (45) monitored the
mutual diffusion of proteins along developing bullfrog olfac-
tory axons and found that the measured diffusion coeffi-
cients were larger than typical FRAP protein diffusion coef-
ficients. The authors postulated that differences between
self and mutual diffusion could underlie this observation, al-
though they did not treat this point quantitatively.
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