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Abstract

Genes encoding proteins in a common pathway are often found near each other along bacterial chromosomes. Several
explanations have been proposed to account for the evolution of these structures. For instance, natural selection may
directly favour gene clusters through a variety of mechanisms, such as increased efficiency of coregulation. An alternative
and controversial hypothesis is the selfish operon model, which asserts that clustered arrangements of genes are more
easily transferred to other species, thus improving the prospects for survival of the cluster. According to another hypothesis
(the persistence model), genes that are in close proximity are less likely to be disrupted by deletions. Here we develop
computational models to study the conditions under which gene clusters can evolve and persist. First, we examine the
selfish operon model by re-implementing the simulation and running it under a wide range of conditions. Second, we
introduce and study a Moran process in which there is natural selection for gene clustering and rearrangement occurs by
genome inversion events. Finally, we develop and study a model that includes selection and inversion, which tracks the
occurrence and fixation of rearrangements. Surprisingly, gene clusters fail to evolve under a wide range of conditions.
Factors that promote the evolution of gene clusters include a low number of genes in the pathway, a high population size,
and in the case of the selfish operon model, a high horizontal transfer rate. The computational analysis here has shown that
the evolution of gene clusters can occur under both direct and indirect selection as long as certain conditions hold. Under
these conditions the selfish operon model is still viable as an explanation for the evolution of gene clusters.
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Introduction

A conspicuous feature of bacterial genomes is the grouping of

genes involved in a metabolic pathway into functional units on the

chromosome. Early linkage studies of Escherichia coli and Salmonella

typhimurium showed that genes in the biosynthetic pathways of

tryptophan and histidine occur on a contiguous region of the

genome [1,2]. Furthermore, genes are often found in their

biochemical reaction order [3]. Gene clustering has since become

recognized as a widespread feature of bacterial genomes. Grouped

genes are sometimes transcribed together as an operon, with

shared promoter and operator sequences (for example the

galactose operon galETK [4,5]). Regulatory genes have also been

found close to the genes they regulate. A classic example is the lacI

repressor gene, which resides near but not within the lacZYA

operon in Escherichia coli. The extent of gene clustering is variable –

a given set of related genes may be clustered in one species but

unclustered and/or reordered in another [6,7]. Interestingly, most

clusters do not contain much intergenic DNA, and in some cases

genes even overlap [8,9].

A number of explanations for clustering have been considered

over the years. The most controversial and influential hypothesis

has been the selfish operon model, which offers a mechanism for the

evolution of clustering without needing to invoke the action of

natural selection [10,11]. In this model, gene clusters persist

because the proximity of the genes in question facilitates their

collective transfer between species. It applies to genes encoding

accessory functions rather than essential genes.

Another model that does not require direct selection to explain

clustering is the persistence model [12]. Unlike the selfish operon

model, this model has been proposed to explain the clustering of

essential genes – genes that are evolutionarily persistent. The

hypothesis here is that by occupying less space, clustered genes are

less likely to be disrupted by the deletion or insertion of DNA. In

other words, an individual with clustered genes is more ‘‘resilient’’

to the lethal or deleterious effects of mutation. This hypothesis is

similar to the idea that genes sharing regulatory sequences by

residing in a single operon present a smaller target for deleterious

mutation than scattered genes with individual control elements

[13].

Hypotheses involving direct selection have also been examined.

Here, clustering of genes confers a direct fitness advantage to the

organism. For example, a scenario in which selection directly

favouring the co-regulation of genes can lead to the evolution of

operons has been outlined [14]. Apart from efficiently regulated

transcription, a fitness advantage may arise through shorter

diffusion times for proteins finding their targets when the genes

encoding them are clustered. Thermodynamic models have been
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developed to apply this idea to enzymes and transcription factors

[15,16]. The efficiency gained from shorter diffusion times is

assumed to translate into a reproductive fitness advantage [17].

Another mechanism conferring advantage to gene clustering is

gene amplification [18]. In this model, gene dosage is rapidly and

reversibly increased by tandem duplication of the genes in

question. The closer the genes are, the greater the probability of

coamplification. The increased dosage is assumed to contribute to

elevated fitness. Other models for the evolution of gene clusters

based on metabolic arguments have also been studied [19,20].

Other hypotheses have been considered but rejected [10, 17, for

example]. A hypothesis now called the natal model suggests that

clusters arose by gene duplication and divergence such that the

newly formed genes participate in a common pathway. However,

the lack of sequence homology for most genes within clusters

undermines this explanation [10]. Fisher’s theory of the evolution of

linkage and recombination has been suggested to apply to bacteria

[1,21]. Under this theory natural selection favours increased linkage

among co-adapted genes – genes whose products work well together

– because recombination (chromosomal crossover during meiosis)

breaks up combinations of alleles with high fitness. However, it has

been pointed out that this requires high recombination rates, which

are typical for eukaryotes, to work [10]. Although recombination

rates are found to be high in some species [22,23], they are not high

enough relative to the cellular generation rate to support an account

of clustering based on Fisher’s theory.

The debate on the origins and maintenance of gene clusters

continues, with recent genomic studies casting doubt on the selfish

operon hypothesis. First, the prediction that non-essential genes

are clustered while essential genes are not has been tested and

rejected [24]. Second, if horizontal gene transfer is an important

source of gene clusters, then horizontally transferred sequences

should be associated with operons. Genomic data, however, do not

support such an association [14]. On the other hand, they do

support the possibility that genes and their regulators may have

evolved close proximity via horizontal transfer [25]. Third, the

selfish operon model is unable to explain the observation that

genes in clusters are sometimes arranged in the order of

biochemical reactions. A resolution may involve multiple mech-

anisms, of which horizontal transfer of selfish operons is one [12].

Here, we re-examine the theoretical basis for explaining the

origins and maintenance of gene clusters. By studying a number of

distinct models, we provide and discuss conditions under which

clustering can evolve.

Model

We describe three kinds of models for gene clustering in this

article. First, we revisit the selfish operon model [10]. We seek to

explore the parameter space and understand in more detail when

and why it produces gene clusters. Second, we propose a model

based on the Moran process, which tracks individual bacterial cells

and in which the total population size is constant. Third, we develop

a further model that tracks the substitution of new arrangements,

making the assumption that populations are monomorphic. By

running computer simulations of these three systems we consider

the factors that lead to the evolution of gene clusters.

The assumptions common to all models are as follows.

Genomes are made up of circular chromosomes divided into M
regions; we let M~5000 kilobases (kb). This genome size is

constant over time. There are g genes in the pathway of interest.

Only a single gene can occupy any given position. The units of

reproduction are either species or individual bacteria depend-

ing on the model. A genome can undergo rearrangement with

probability r per step or generation. We explore two processes:

first, translocation of a random gene to a random position and

second, inversion by which two breakpoints are chosen randomly

uniformly and the intervening segment inverted. If the resulting

arrangement moves the terminus or origin more than e~25 kb the

new arrangement is regarded as lethal [26,27]. Both translocation

and inversion are used within the selfish operon framework of

Lawrence and Roth 1996, while only inversion is considered for

the Moran model and the rearrangement substitution model.

Model of Lawrence and Roth 1996
In their influential paper, Lawrence and Roth describe a

simulation model that produces gene clusters through a horizontal

gene transfer process that is biased towards genes that are

physically closer on a chromosome [10]. This is called the selfish

operon model. In this model, species in which individuals carry all

the genes needed for the function are called ‘‘positive’’ species.

Each species is assumed to be monomorphically composed of

genomes with a particular arrangement of genes on the

chromosome, and fixation is assumed to occur instantaneously.

That is, each species is associated with a single arrangement of

genes. We are interested in the minimum arc distance along the

chromosome that contains all genes, which is equivalently the

genome length minus the longest interval between pairs of

neighbouring genes. The simulation is initialised with 100 species,

with each species given a random set of gene positions. Lawrence

and Roth kept the number of species between 10 and 900 [10].

We have implemented this by switching off the horizontal transfer

process when the number of species reaches 900 and re-instating it

when the size goes under 900. We ran our simulations for 50,000

time steps.

Horizontal transfer leads to a species that lacks the function (a

‘‘negative’’ species) acquiring the function along with the arrange-

ment of gene positions of the donor genome. The probability of

horizontal transfer t(i) decreases with distance i. Although its form

is not given in [10], we will assume it is exponential with a decay

parameter a. That is,

t(i)~t0e{ai: ð1Þ

The exponential distribution is a natural choice for the size

distribution of transferred DNA among bacteria, and has been

Author Summary

Genes involved in a common pathway or function are
frequently found near each other on bacterial chromo-
somes. A number of hypotheses have been previously
presented to explain this observation. A particularly
influential theory is the selfish operon model, which posits
that horizontal transfer could promote gene clustering by
favouring transfer of arrangements of genes that are close
together. Subsequent theoretical development and anal-
ysis of genomic data have contributed to the debate about
the plausibility of this model. Here, by re-examining the
evolutionary dynamics of gene clusters, we provide and
discuss conditions under which gene clusters can evolve.
We find that first, some form of bias for clustering is
required for clusters to evolve. This bias can be in the form
of bias in horizontal transfer towards genes that are close
together, or direct natural selection for gene proximity.
Our computational work does not present a theoretical
obstacle to the selfish operon model as a possible
explanation for the evolution of gene clusters.

Conditions Leading to Gene Clustering
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empirically tested for homologous recombination [28,29]. Some

support for a skewed distribution of gene transfer fragment lengths is

found in Ochman and Jones 2000 [30].

At each time step, each species or individual can undergo loss

of the function with probability l. Following Lawrence and Roth,

we set the loss probability l to 0.001 per genome per time step

and the maximum probability of horizontal transfer t0, occurring

when the genes are located in the same minute of the

chromosome, to 0.01 per genome per time step [10]. We set

a~0:004 by default, under which a 50 kb fragment is 6 times

more likely to transfer than one of 500 kb. Because the

probability of rearrangement is likely to be very low in nature

[31], we set r~10{6 per genome per time step by default.

Lawrence and Roth 1996 used a much higher value of r~0:01
and we investigate the effect of lowering this parameter from this

high value. We studied the effect of varying t0 and a by varying

parameters one at a time as well as using latin hypercube

sampling [32,33] to explore the parameter space. Under this

methodology, each parameter is divided into equiprobable

regions in the area of interest, and parameter sets are con-

structed by selecting values randomly from the resulting grid

without replacement. A uniform distribution was used for each

parameter.

The algorithm we used for the dynamic is as follows.

1. Initialise population as described above.

2. For each species j,

(a) With probability r, rearrange the genome by moving a

gene to a random new position.

(b) With probability l, destroy gene function (the species is

lost from the pool of positive species).

(c) If the number of positive species is under 900:

Horizontal transfer leads to recruitment of a species

(from a limitless supply of negative species) with the same

arrangement of genes as species j, with probability t(ij),
where ij is the minimum arc distance between the genes

in genome j.

3. Compute the average minimum arc distance between genes

across species in the population of positive species.

4. Repeat steps 2, 3 until the end of the simulation.

One problem we have noticed with this model is that given a

rearrangement event, the genes in question are always affected. A

more natural assumption would be that the genes in question are

affected with probability g=M, which is the proportion of the

genome occupied by the g genes assuming that genes are 1

kilobase in length. Thus, we have also run the simulations using

this corrected translocation process, replacing step 2(a) in the

above algorithm with

N With probability rg=M move a gene to a random new

location.

This correction effectively lowers the rearrangement probability

by a few orders of magnitude.

We have also implemented a version of the model in which

rearrangement occurs by inversion instead of translocation. Here,

we replace step 2(a) in the algorithm with

N With probability r choose two random positions a,b randomly

uniformly between 1 and M. To implement breakpoints

occurring between genes, subtract 0.5 from each of these

values.

If (0vavM=2 and 0vbvM=2) or (M=2vavM and

M=2vbvM ) or (M{evazbvMze) then the inversion is

viable. (Recall e is the tolerance to imbalance between origin and

terminus.) For each gene whose location pi is between a and b,

move it to its new location given by azb{pi.

A Moran model of clustering
We construct a model in which the population evolves

according to a Moran process [34,35] combined with a process

of genome inversion. Here, we track a population of bacterial cells.

As with the selfish operon model, we consider a pathway involving

3 or more genes. A population is initialised with all bacteria

carrying the same genome with genes placed randomly uniformly

on the chromosome. The population size is N. Let w(i) represent

the relative fitness of cells with the genes at minimum arc distance

i. Genomes with the genes closer together have a reproductive or

survival advantage over those with the genes further apart. We use

the function w(i)~e{ai to describe this relationship. Because this

relative fitness function is analogous to t(i), we use the same

symbol (a) to describe the decay in fitness with respect to distance

i. An alternative function w(i)~1=(1z(i=10)2) was also used to

ascertain the effect of using a steep sigmoidal relationship.

Selection for clustering here can be due to any of the mechanisms

discussed in the Introduction.

The algorithm is as follows.

1. Initialise the population as described above.

2. Choose an individual at random. Choose two positions (a,b) at

random uniformly between 1 and M. To implement break-

points occurring between genes, subtract 0.5 from each of these

values.

3. Inversion occurs with probability r.

(a) If inversion occurs,

i. if (0vavM=2 and 0vbvM=2) or (M=2vavM and

M=2vbvM ) or (M{evazbvMze) then the

inversion is viable. For each gene whose location pi is

between a and b, move it to its new location given by

azb{pi.

ii. Otherwise the inversion is lethal: replace the individual

with a random individual from the population in

proportion to w(ij) where ij is the minimum arc distance

between the genes in genome j.

(b) Otherwise if inversion does not occur, there is random

death and replacement. Replacement birth occurs by

picking a random individual from the population in

proportion to w(ij).

4. Record the average minimum arc distance between genes

across the population.

5. Repeat steps 2–4 until the end of the simulation.

Following the classical definition of the Moran process, a single

generation is N time steps.

This process is very slow with high population sizes,

particularly when the rearrangement probability r is low. The

computational demands of running these simulations precluded

the possibility of systematically analysing sensitivity to parame-

ters. This motivated us to develop a further model, which

tracks the mutation and fixation process without following

details at the population level. This model is described in the

next subsection.

2(a)

2(a)

Conditions Leading to Gene Clustering
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Rearrangement substitution model
Here, the population is monomorphic (except during periods of

substitution of new arrangements) and so only a single genome

arrangement is tracked. Again, the g genes in the pathway in

question can occupy M~5000 positions, N represents the popu-

lation size and r is the rearrangement probability. The assumption

that the population is monomorphic implies that rN must not be

too large. In each generation the probability of a rearrangement

occurring in at least one individual is 1{(1{r)N which can be

approximated with 1{e{rN since rN is small. The time until the

next rearrangement event T� is distributed geometrically with

parameter 1{e{rN . We use inversion rather than translocation as

the source of rearrangements.

As above we specify selection through an exponential decay

in fitness as a function of the minimum arc distance i, so

that the relative fitness of a new genome with distance i’ is

e{ai’=e{ai~ea(i{i’), and the selective coefficient is s~ea(i{i’){1.

A new arrangement fixes in a population with probability

u~
1{e{2s

1{e{2sN
ð2Þ

and the time it takes to reach fixation is

T ’~
ð1

1=N

(1{e{2Nsx)(1{e{2Ns(1{x))

sx(1{x)(1{e{2Ns)
dx: ð3Þ

These quantities have been derived from diffusion theory in

population genetics (for details see [36]). We use N in place of 2Ne

to apply the theory to haploids, where Ne is the effective

population size of a diploid population.

The algorithm for the rearrangement substitution model is

therefore as follows.

1. Initialise by choosing a random arrangement of genes. Choose

these positions without replacement.

Set Tstop, the number of generations to run the simulation.

Set current time to T~0.

2. Get random time T until next rearrangement event:

T�*Geom(1{e{rN):

3. Inversion: choose two integers at random (uniformly between 1

and M inclusive). Subtract 0.5 from each value. Label these

points a and b.

(a) If (0vavM=2 and 0vbvM=2) or (M=2vavM and

M=2vbvM ) or (M{evazbvMze) then the new

arrangement is viable. Obtain the new arrangement as

follows. Locate all genes between a and b. Call these

positions pi. For each i, place the gene into the new

location given by azb{pi. Go to Step 4.

(b) Otherwise, the arrangement is not viable. Set T ’~0 and

go to Step 6.

4. Obtain the current minimum arc distance i and the minimum

arc distance i’ of the mutant arrangement. Compute the

selection coefficient:

s~ea(i{i’){1

where i’ is the new distance.

5. Compute the fixation probability u given by Equation (2).

Fixation occurs if a random uniform U(0,1) is less than u.
If fixation occurs, find the expected time until fixation T ’

given by Equation (3). Set the current genome to the new

arrangement.
Otherwise there is no fixation and T ’~0.

6. Update elapsed time: T : ~TzT�zT ’
7. If elapsed time TwTstop, stop the process and record the

minimum arc distance. Otherwise, return to Step 2.

Tstop was set at 50,000 generations. We investigated this model

by varying one parameter at a time as well as using latin

hypercube sampling to explore the parameter space.

Results

Lawrence and Roth model
When three genes are placed randomly around a chromosome

with a uniform distribution, the average minimum arc distance

between them is around 1900 kb. When the rearrangement

probability r is 10{3 or 10{4, the selfish operon model [10]

produces an initial wave of gene clustering down to around

600–800kb ((Figure 1A), also reflected in the rise of the

proportion of genomes that are clustered under a threshold

(Figure 1B). The maximum population size of 900 is reached

quickly (Figure 1C) and the dynamics of clustering undergo a

change as a new population dynamic regime sets in. When the

rearrangement probability is high, clusters break up until the

average minimum arc distance settles on high values (Figure 1A).

In these cases, the selfish operon model fails to maintain tight

clustering in the long term. In particular, gene clusters do not

evolve under the parameter values used by Lawrence and

Roth [10].

To determine if there are conditions under which the selfish

operon model does produce clustering, we re-examined this model

by exploring its parameter space. Figure 2 reveals the effect of

varying the parameters in this model on the average minimum

arc distance. It shows that under the original model clustering is

only produced when the rearrangement probability r is low, the

number of genes g is small, and the maximum transfer

probability t0 is sufficiently high. Under the corrected translo-

cation process, the effective rearrangement probability is lowered

by a factor g=M and the probability r itself has no apparent

effect on clustering. The decay in transfer probability a (see

Equation 1) must take intermediate values of around 10{3 for

clustering to evolve. If a is too low, selection is too weak to

promote clustering while if it is too high, the probability of

transfer is depressed for most minimum arc distances, preventing

selection from acting effectively.

Very similar results are observed when translocation is replaced

by inversion, as shown by varying one parameter at a time as well

as by latin hypercube sampling analysis (Figure 3). The major

difference is that a high probability of inversion does not prevent

the evolution of clusters to the same extent as observed in the

uncorrected translocation process of Figure 2A.

Moran model
We further explored the evolution of clustering using the Moran

model with selection for gene clusters. By holding the population

size constant this model also allows us to disentagle the effects of

population dynamics from those of rearrangement and selection.

Figure 4 shows simulation runs of the process for progressively

lower values of r: 10{2,10{3,10{5. It was not computationally

feasible to run the simulation under even lower, and more

realistic, values. The general pattern emerging from these sample

Conditions Leading to Gene Clustering
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Figure 2. Gene clustering under the selfish operon model. The average minimum arc distance between genes at equilibrium as a function of
various parameters: A) the probability of rearrangement r under the original uncorrected translocation process, B) rearrangement probability r with
the translocation process corrected so that the probability g=M of choosing the genes in question is included, C) the maximum transfer probability
t0 ; D) the parameter a, which describes the decay in the horizontal transfer rate over distance. Each point indicates the mean of 100 runs and error
bars show the central 90% of simulations. Each simulation was run for 50,000 time steps. Unless indicated otherwise, there are three genes in the
pathway and the parameter values are t0~0:01, a~0:004, and l~0:001.
doi:10.1371/journal.pcbi.1000672.g002

Figure 1. Gene clustering under the original selfish operon model. The plots show A) the average minimum arc distance between genes, B) the
proportion of genes clustered under 3 minutes and C) the total population size over time, for three realisations of the process using three values of the
rearrangement probability r, indicated in solid (r~0:01), dashed (r~10{3) and dotted curves (r~10{6). Unless indicated otherwise, there are three
genes in the pathway and the parameter values are t0~0:01, a~0:001 and l~0:001. Only the first 15,000 steps of the simulations are shown here.
doi:10.1371/journal.pcbi.1000672.g001

Conditions Leading to Gene Clustering
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trajectories is that the minimum arc distance is reduced through a

series of selective sweeps. The time taken until the appearance of

a rearranged genome that reaches fixation is long and depends on

the rearrangement probability r and the population size N. The

reduction of minimum arc distance is a slow process made even

slower by lowering r. Using a steep sigmoidal function for

selection instead of exponential decay (Figure 4D) gave qualita-

tively similar results.

Rearrangement substitution model
The rearrangement substitution model, which ‘‘compresses’’

time by tracking fixation events, is amenable to sensitivity analysis.

Figure 5 demonstrates that a low rearrangement probability of

r~10{5 is able to produce clustering in 50,000 generations.

Even lower probabilities lead to weak or no clustering because

successful rearrangements that reduce the distance between genes

are too rare. Increasing the population size N improves the

efficiency of selection and leads to clustering. Similarly, increasing

the decay in fitness a improves clustering. Gene clusters are

also more readily formed for pathways with a smaller number of

genes g.

Similar results are produced when the parameter space is

explored using latin hypercube sampling (Figure 6). Minimum arc

distance decreases with r and N and increases with g. Distance

also decreases with a, though this effect is subtle. For N (panel B)

and a (panel C) the correlation with distance is statistically

detectable using a non-parametric method (Kendall’s tau), with

P-values of 3|10{5 and 0.0148 respectively. The corresponding

P-values for r (panel A) and g (panel D) were both less than 10{15.

Note that each factor on its own does not explain much of the

variation in distance.

Discussion

This study presents new computational models showing that

direct natural selection can lead to the formation of gene clusters

under appropriate conditions. We have also re-examined an

existing simulation model involving indirect selection – the selfish

operon model. By exploring these models under many conditions,

we have identified the regions in parameter space that produce

gene clustering. In the following, we will discuss parameters as

rates rather than probabilities per time step.

Figure 3. A sensitivity analysis for the selfish operon model with inversion rather than translocation. Each panel plots the average
minimum arc distance between the genes. Simulations were run for 50,000 steps. In the top three panels (A–C) one parameter is varied at a time
while keeping the others constant. Each point represents the mean of 100 simulations and error bars indicate the central 90% of simulations. The
responses are shown for three different values of the number of genes, g. The plots show distances over the probability r of rearrangement, which
occurs here through inversion (panels A and D), the maximum probability of transfer t0 (B and E) and the decay in transfer probability over distance a
(C and F). The default parameter values for these simulations are t0~0:01,a~0:004, r~10{6 and l~0:001: The bottom three panels (D–F) show the
results of simulations for g~3 in which the parameters were set randomly according to latin hypercube sampling with 150 points and 40 simulations
per point.
doi:10.1371/journal.pcbi.1000672.g003

Conditions Leading to Gene Clustering
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Selfish operon model revisited and the role of re-

arrangement rates. The selfish operon model of Lawrence

and Roth 1996 is able to produce gene clusters, but only when the

right conditions hold. The overall transfer rate must be high, as

reflected in the maximum rate of transfer, and the decay in transfer

over distance must be in a suitable range. The rearrangement rate

must be low. We note that with a slight correction – accounting for

the probability that rearrangement affects the genes in question –

these rates are indeed effectively low enough for clustering to evolve.

When the selfish operon model is modified so that inversion is the

mechanism of rearrangement, again gene clusters can evolve, and

inversion rates must be low enough to prevent clusters from

disintegrating too quickly once formed.

Rates of fixation of rearrangements are typically very low in

nature. From comparisons of genomic data the number of

rearrangements per genome per lineage varies across evolutionary

lineages, but is usually on the same order of magnitude as or a little

higher than the expected number of substitutions per site [37,38].

Rocha (2006) found the substitution rate of rearrangements to be

several orders of magnitude lower than the cellular per generation

rate of 10{4 [39] because of selection against most new

arrangements [40]. Overall these studies suggest the rearrange-

ment rate may be on the order of 10{9{10{8 per year. The

application of these figures to the model of Lawrence and Roth

1996 is not straightforward because the time unit is not set in that

model. However, given the wide level of variation in gene content

even within bacterial species [41] and the slow process of

rearrangement [40], it is likely that the rearrangement rate is far

lower than the rate of horizontal gene transfer. Our analysis of the

selfish operon model suggests that gene clusters can evolve under

such conditions.

A low number of genes in the pathway promotes

clustering. In both the selfish operon model (Figures 2,3) and

the rearrangement substitution model (Figures 5, 6), gene clusters

evolved more readily when the number of genes in a pathway was

low. It accords with intuition that less time is taken for a smaller

number of genes to cluster. Yet large clusters exist in nature. A

possible explanation is that clustering occurs in stages rather than

all at once. For this scenario to work, subsets of genes already

clustered must be held together while the remaining genes move

close to the cluster. Biologically, what could make gene clusters an

absorbing state? Clusters of genes are sometimes but not always

transcribed and regulated together (found on operons). If such

genes are separated, their function may be undermined or

destroyed. Another possibility is that genes overlap on a

chromosome [9]. If the region of overlap is essential to both

genes, again selection would act to maintain the clustered

arrangement of those genes. It is unclear, however, how widely

applicable this mechanism is. Future modelling efforts could

include the possibility that selection acts not only on the minimum

arc distance but also on the particular arrangement of the genes.

For instance, in a three-gene pathway, a genome in which two

genes are close together may be favoured over one in which the

three genes are spaced evenly over the same minimum arc

distance.

The roles of selection and transfer bias in gene cluster

evolution. As intuition dictates, the evolution of clusters also

requires some kind of a bias favouring clusters, which can appear

in the form of biased horizontal transfer (the selfish operon model)

or natural selection for gene proximity (the Moran model with

inversion, and the rearrangement substitution model). In each case

the parameters must be appropriate to give natural selection or

transfer bias their efficacy to produce gene clusters. In the selection

model the population size needs to be high and the decay in fitness

Figure 4. Gene clustering under a Moran model. The average
minimum arc distance between genes over time for four sample runs of
the simulation using rearrangement rates r~0:01 (A and D), r~0:001
(B) and r~10{5 (C). The other parameters are N~1000,a~0:004 and
g~3 genes. In panel D) a run of the simulation is shown in which we
model selection for distance using a sigmoidal instead of exponential
function. In this case, fitness decreases markedly between distances of 5
and 20kb. The final distance after 200 generations was 176 kb. Observe
that in panel B) it took more than 10 times as long for the genes to
approach a clustered state (distance 284 kb) than in panel A) (distance
77 kb), and that in panel C) the genes are still far apart at around 850 kb
after 20,000 generations.
doi:10.1371/journal.pcbi.1000672.g004
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over distance must be sufficiently high. Under the conditions we

studied, the evolution of gene clusters is expected to occur very

slowly. However, billions of years have passed since the last

universal common ancestor, providing ample time for gene

clusters and operons to have evolved and to have been

transferred between species.

We remark that in mathematical models of the level of detail

presented here, including the selfish operon model of Lawrence

and Roth [10], bias in horizontal transfer is indistinguishable

from direct natural selection. The persistence model of bacterial

gene clusters described by Fang et al. [12] represents another

model of selection. There, deletions are more likely to destroy

gene function when the genes are further apart on the

chromosome. This is a form of negative selection acting against

non-clustered essential genes. Both the selfish operon model and

the persistence model involve a form of indirect selection, and we

suggest that either direct or indirect selection, or both, are needed

for clusters to form and be maintained. Current models do not

and cannot separate these two phenomena. For example,

although we specified the Moran model for a population of

individual cells under direct selection for gene clustering, it is

possible to interpret the same model as one tracking a population

of species (as in the selfish operon model) in which selection is

indirect, and in the form of horizontal transfer biased towards low

minimum arc distances.

We did not attempt to discriminate between the alternative

forms of selection or bias favouring clustering. Rather, we have

shown that under appropriate conditions these models can lead to

gene clustering. A systematic and formal comparison of alternative

models is a remaining challenge, which may require a common

Figure 5. Rearrangement substitution model, varying one parameter at a time. The panels show the average minimum arc distance
between the genes plotted over A) the inversion probability r, B) the population size N , C) the decay in fitness over distance a and D) the number of
genes g in the pathway in question. The default parameter values are N~105 , a~0:004, r~10{6 and g~3. Simulations were run for 50,000
generations. Each point represents the mean from 100 simulations and the error bars indicate the central 90% of simulated values.
doi:10.1371/journal.pcbi.1000672.g005
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mathematical framework for comparing the consequences of these

alternatives. Although the selfish operon model has been

questioned as the sole mechanism for the evolution of gene

clustering, we believe it cannot yet be rejected as a contributor on

either empirical or theoretical grounds.
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