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Abstract

Background: The appropriate control of mitotic entry and exit is reliant on a series of interlocking signaling events that
coordinately drive the biological processes required for accurate cell division. Overlaid onto these signals that promote
orchestrated cell division are checkpoints that ensure appropriate mitotic spindle formation, a lack of DNA damage,
kinetochore attachment, and that each daughter cell has the appropriate complement of DNA. We recently discovered that
AMP-activated protein kinase (AMPK) modulates the G2/M phase of cell cycle progression in part through its suppression of
mammalian target of rapamycin (mTOR) signaling. AMPK directly phosphorylates the critical mTOR binding partner raptor
inhibiting mTORC1 (mTOR-raptor rapamycin sensitive mTOR kinase complex 1). As mTOR has been previously tied to
mitotic control, we examined further how raptor may contribute to this process.

Methodology/Principal Findings: We have discovered that raptor becomes highly phosphorylated in cells in mitosis.
Utilizing tandem mass spectrometry, we identified a number of novel phosphorylation sites in raptor, and using phospho-
specific antibodies demonstrated that raptor becomes phosphorylated on phospho-serine/threonine-proline sites in
mitosis. A combination of site-directed mutagenesis in a tagged raptor cDNA and analysis with a series of new phospho-
specific antibodies generated against different sites in raptor revealed that Serine 696 and Threonine 706 represent two key
sites in raptor phosphorylated in mitosis. We demonstrate that the mitotic cyclin-dependent kinase cdc2/CDK1 is the kinase
responsible for phosphorylating these sites, and its mitotic partner Cyclin B efficiently coimmunoprecipitates with raptor in
mitotic cells.

Conclusions/Significance: This study demonstrates that the key mTOR binding partner raptor is directly phosphorylated
during mitosis by cdc2. This reinforces previous studies suggesting that mTOR activity is highly regulated and important for
mitotic progression, and points to a direct modulation of the mTORC1 complex during mitosis.
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Introduction

The serine/threonine protein kinase mammalian target of

rapamycin (mTOR) is a key mediator of the cellular response to

nutrient status through its regulation of translation, ribosome

biogenesis, mitochondrial metabolism, and autophagy [1]. mTOR

is present in one of two complexes within the cell: mTORC1 is

defined by raptor, GbL/mLST8, and negative regulatory subunits

PRAS40 and DEPTOR, whereas mTORC2 contains rictor,

mSin1, and Protor as well as GbL/mLST8 and DEPTOR [2].

The best-established substrates of mTORC1 demonstrate the

importance of mTOR in translational control. mTOR phosphor-

ylates S6K1 at T389 to enhance S6K1 activity, which amongst

other things phosphorylates the S6 subunit of the ribosome to

promote translation. mTOR also phosphorylates 4EBP1, causing

its dissociation from its binding partner eIF4E, which is then free

to associate with the cap-complex to promote cap-dependent

translation [3].

The activity of mTORC1 is dependent on the small Ras-like

GTPase, Rheb, whose GTP-loaded state is regulated by a

GTPase-accelerating protein (GAP) complex composed of the

TSC1 and TSC2 tumor suppressors. Inputs from a variety of

pathways converge on the TSC1/2 complex to regulate

mTORC1 signaling [4]. Following growth factor stimulation,

Akt, Erk and Rsk can phosphorylate and inactivate TSC2, leading

to activation of mTORC1. Under conditions of low ATP, the

energy-sensing kinase AMPK is activated and phosphorylates and

activates TSC2, inhibiting mTORC1.

In addition to the hub of signaling at TSC2, phosphorylation of

components of mTORC1 have recently been shown to have

important regulatory roles in mTOR signaling [5,6,7,8,9,10,11].

PRAS40 is a substrate of both Akt and mTOR, where upon

phosphorylation, PRAS40 dissociates from mTORC1, relieving

inhibition of mTORC1 activity following growth factor stimula-

tion. mTOR also phosphorylates the recently identified mTORC1

component DEPTOR, marking it for degradation and further

alleviating inhibition of mTORC1 [2]. Raptor (regulatory

associated protein of TOR) is thought to act as the key mTORC1

scaffolding protein that binds mTOR substrates via the TOR

signaling (TOS) motif, facilitating their phosphorylation by
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mTOR. A handful of recent studies have demonstrated the

importance of phosphorylation of raptor on various sites in the

regulation of mTOR signaling by pro- and anti-proliferative

signals. Phosphorylation by Rsk at S721 as well as by mTOR at

S863 have been shown to enhance mTORC1 activity [11],

whereas phosphorylation at S722 and S792 by AMPK create 14-

3-3 binding sites and inhibit mTORC1 activity [10]. The exact

mechanism of augmentation or inhibition of mTOR activity by

raptor phosphorylation remains elusive.

We have shown previously that under energy stress conditions,

fewer cells proceed into G2/M and that this cell cycle arrest is

dependent on AMPK phosphorylation of raptor and inhibition of

mTORC1 activity. This suggested that perhaps mTOR signaling

might play a role in mitosis, as suppression of mTOR blocks entry

into G2/M and inappropriate activation of mTOR signaling drives

cells into G2/M. In our investigations into the regulation of mTOR

signaling in mitosis, we identified several sites in raptor phosphor-

ylated by Cdc2 that may play a role in mitotic progression.

Materials and Methods

Antibodies and Plasmids
Myc-raptor, AU1-mTOR, HA-GbL and Flag-PRAS40 originated

in Dr. David Sabatini’s Lab (MIT, Cambridge, MA) and were

obtained from Addgene.org (Cambridge, MA). Ha-tagged 4ebp1 and

S6K1 were obtained from Dr. John Blenis (Harvard Medical School,

Boston, MA). Myc-raptor was subcloned into pENTR3C (Invitrogen),

and serine to alanine point mutations were made using QuikChange

II XL (Stratagene). Mutant alleles were then put into an FBneo DEST

vector by LR reaction (Invitrogen). All constructs were fully sequence

verified. Phospho-Plk1 T210 was from BD Pharmingen (#558400).

Phospho-raptor (S696, T706, S863, S877) and Phospho-histone H3

antibodies were obtained from Millipore. Anti-raptor used for

endogenous raptor immunoprecipitations was from Invitrogen

(#42-4000). The 9E10 anti-myc antibody was used for immunopre-

cipitations (Roche). Antibodies against raptor (#2280), mTOR

(#2983), GbL (#3274), PRAS40 (#2610), phospho-S6K T389

(#9234), pAurora A, B, C (T288/T232/T198) (#2914), Cyclin B1

(#4138), phospho-4EBP1 (T37/46) (#2855), phospho-4EBP1 (S65)

(#9451), myc-tag (#2272), phospho-threonine-proline (#2321), and

GST-tag (#2622) were from Cell Signaling Technologies.

Cell Culture
Hela, A549 and HEK293T cells were grown in DMEM with

10% FBS at 37u with 5% CO2. Cells were transfected with

Lipofectamine 2000 (Invitrogen) as per manufacturer’s instruction

for 32–36 hours. Nocodazole (1 ug/mL) (SIGMA) or taxol (1 uM)

(Cell Signaling Technologies) treatment was administered for 16–

18 hours prior to lysis (usually 16 h post-transfection). Replace-

ment of endogenous raptor with myc-tagged raptor was achieved

by infecting Hela cells with a retrovirus expressing myc-wt or myc-

S696/T706/S711AAA raptor in the FBneo vector, and selection in

neomycin. These stables were subsequently infected with a lentivirus

expressing a short-hairpin RNA that targets the 39 UTR of

human raptor in the pLKO vector and selected in puromycin

and distributed by Addgene (,http://www.addgene.org/pgvec1?f =

c&identifier = 1858&atqx = raptor&cmd = findpl.). A549 cells were

synchronized in G1/S by double thymidine block as follows: 2 mM

thymidine was added to the media for 14–16 hours, plates were

washed twice with PBS, then complete thymidine-free media was

added. Eight to ten hours later, 2 mM thymidine was added again

for 14–16 hours, cells were washed twice with PBS, then released

into thymidine-free media. 50 uM roscovitine was administered for

6 hours following 16 hours nocodazole treatment in A549 cells.

Torin1 (50 nM) (Dr. D. Sabatini, MIT) was added for 1 h.

Biochemistry
For immunoprecipitations, cells were washed with ice cold PBS

and collected in lysis buffer 1 (20 mM Tris pH 7.5, 150 mM NaCl,

1% Triton X-100, 50 mM NaF, 1 mM EDTA, 1 mM EGTA,

2.5 mM sodium pyrophosphate, 1 mM b-glycerophosphate,

10 nM Calyculan A, and EDTA-free complete protease inhibitor

tablets (Roche) as per manufacturer’s directions) for experiments in

Figures 1, 2, 3, 4a and 4b or lysis buffer 2 (40 mM HEPES pH 7.5,

150 mM NaCl, 0.3% CHAPS, 50 mM NaF, 1 mM EDTA, 1 mM

EGTA, 2.5 mM sodium pyrophosphate, 1 mM b-glycerophos-

phate, 10 nM Calyculan A and EDTA-free complete protease

inhibitor tablets) for Figures 4c and 5. Lysates were incubated on ice

for 15 minutes after lysis, then spun at 13,200 rpm at 4uC for

15 minutes. The supernatants were collected and normalized for

protein levels by BCA assay (Pierce). Whole cell lysates were

incubated with antibodies for 1.5 hours with constant rocking at

4uC, then protein-A or –G sepharose beads (Invitrogen) were added

for 1 hour. Immunoprecipitates were washed three times with lysis

buffer, and sample buffer was added to 1X final, and samples were

boiled at 95uC for 5 minutes. Helas were lysed in boiling SDS-lysis

buffer (10 mM Tris pH 7.5, 100 mM NaCl, 1% SDS) and

equilibrated by BCA assay. Samples were resolved on 8–12%

SDS-PAGE gels, transferred to PVDF and immunoblotted

according to the antibody manufacturer’s instructions.

Phosphatase Treatment
Anti-myc immunoprecipitations were performed on cell lysates

from HEK293T cells transiently transfected with myc-raptor

treated with or without nocodazole. After washing the beads twice

in lysis buffer 1, they were washed twice in CIAP buffer (50 mM

Figure 1. Raptor is phosphorylated on S/T*-P sites in cells
treated with nocodazole. (A) Raptor undergoes a mobility shift on
SDS-PAGE following nocadazole which is collapsed by phosphatase
treatment. Myc-tagged raptor was expressed in HEK293T cells and
nocadazole treated for 16 h. Where indicated, immunoprecipitates were
treated with or without calf-intestinal alkaline phosphatase (CIP) and
then resolved in SDS-PAGE, and subjected to anti-myc immunoblotting.
(B) Raptor is recognized by a phospho-threonine proline antibody in
mitotic arrested cells. HEK293T cells transiently expressing myc-tagged
raptor were treated for 16 h with taxol and immunoprecipitates were
immunoblotted with an antibody that recognizes phospho-threonine
followed by proline.
doi:10.1371/journal.pone.0009197.g001

cdc2 Phosphorylates Raptor
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Figure 2. Mass spectrometry analysis of raptor reveals several novel phosphorylation sites. (A) Phosphorylation sites in raptor after nocodazole
treatment as detected by LC/MS/MS. The presence of a phosphate moiety is indicated by a magenta colored box. Note that four serine-or threonine sites
followed by a proline were detected in this analysis. Sites of oxidation (green) and deamidation (blue) represent in vitro artifacts of the mass spectrometry
experiment. (B). Schematic of human raptor domain structure with all known phosphorylation sites found in this and previous studies (for full details see
Table S1). Note that most phosphorylation sites cluster in two regions of the protein. (C) Conservation of the indicated phosphorylation sites.
doi:10.1371/journal.pone.0009197.g002

cdc2 Phosphorylates Raptor
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Tris pH 8.5, 100 uM EDTA) then incubated with 5 uL calf-

intestinal alkaline phosphatase (CIAP) (NEB) with constant

agitation at 37uC for 30 minutes.

In Vitro Kinase Assays
Anti-myc immunoprecipitations from HEK293T cells tran-

siently transfected with myc-raptor for 16 hours followed by 12

hours of 2 uM hydroxyurea treatment were washed three times

with lysis buffer 1, then three times with kinase buffer (25 mM Tris

pH 7.5, 10 mM MgCl2, 0.1 mM Na3VO4, 5 mM b-glycerophos-

phate, 2 mM DTT). Immunoprecipitates were then incubated

with 20 uL kinase reaction mix (kinase buffer, 10 uM ATP) with

or without 175 ng recombinant Cdc2/cyclin B (Cell Signaling

Technologies #7518) at 30u for 30 minutes with constant shaking.

Reaction was quenched by addition of sample buffer to 1X and

boiling at 95u for 5 minutes.

LC/MS/MSTandem Mass Spectrometry
For all mass spectrometry (MS) experiments, myc-Raptor

immunoprecipitates were separated using SDS-PAGE, the gel

was stained with Coomassie blue, and the myc-Raptor band was

excised. Samples were subjected to reduction with dithiothreitol,

alkylation with iodoacetamide, and in-gel digestion with trypsin or

chymotrypsin overnight at pH 8.3, followed by reversed-phase

microcapillary/tandem mass spectrometry (LC/MS/MS). LC/

MS/MS was performed using an Easy-nLC nanoflow HPLC

(Proxeon Biosciences) with a self-packed 75 mm id x 15 cm C18

column connected to a LTQ-Orbitrap XL mass spectrometer

(Thermo Scientific) in the data-dependent acquisition and positive

ion mode at 300 nL/min. MS/MS spectra collected via collision

induced dissociation in the ion trap were searched against the

concatenated target and decoy (reversed) single entry Raptor and

full Swiss-Prot protein databases using Sequest (Proteomics

Browser Software, Thermo Scientific) with differential modifica-

tions for Ser/Thr/Tyr phosphorylation (+79.97) and the sample

processing artifacts Met oxidation (+15.99), deamidation of Asn

and Gln (+0.984) and Cys alkylation (+57.02). Phosphorylated and

unphosphorylated peptide sequences were identified if they

initially passed the following Sequest scoring thresholds against

the target database: 1+ ions, Xcorr $2.0 Sf $0.4, P$5; 2+ ions,

Figure 3. Raptor is phosphorylation on Ser696 and Thr706 during mitosis. (A) The mitotic induced bandshift is collapsed by mutation of
Ser696, Thr706, and Thr711. Indicated serine/threonine-to-alanine non-phosphorylatable raptor mutants were expressed in HEK293T cells treated
with taxol as in Figure 1. (b, c) Wild-type or non-phosphorylatable raptor alleles were immunoprecipitated from nocadazol treated HEK293T cells and
then immunoblotted with indicated site-specific phospho-raptor antibodies. Note specificity of each antisera and that Ser696 and Thr706, but not
Ser863 or Ser877 are increased by nocadazole treatment.
doi:10.1371/journal.pone.0009197.g003

cdc2 Phosphorylates Raptor

PLoS ONE | www.plosone.org 4 February 2010 | Volume 5 | Issue 2 | e9197



Figure 4. Cdc2 is the raptor Ser696, Thr706 kinase. (A) Purified cdc2 can directly phosphorylate raptor on Thr706 and Ser696 in vitro. Myc-
raptor (wild-type or S696/T706AA) was immunoprecipitated from hydroxyurea treated HEK293T cells. Immunoprecipitates were incubated with or
without active recombinant Cdc2/cyclin B and immunoblotted with phospho-raptor Ser696, Thr706 or total raptor. (B) Endogenous raptor is
phosphorylated on Thr706 in synchronized cells undergoing mitosis, and this phosphorylation is blocked by the CDK inhibitor roscovitine. A549 cells
were synchronized by double thymidine block and endogenous raptor was immunoprecipitated at the indicated times after release with an anti-
raptor antibody and immunoblotted with phospho-raptor Thr706. Whole cell lysates taken from the same cells were immunoblotted for mitotic
markers phospho-histone H3 Ser10 and phospho-Plk1 Thr210. (C) Raptor immunoprecipitates with endogenous cyclin B. Hela cells stably expressing
myc-wt raptor with stable knockdown of endogenous raptor treated with or without taxol for 16 hours. myc-tagged raptor was immunoprecipitated
and immunoblotted for Cyclin B.
doi:10.1371/journal.pone.0009197.g004

cdc2 Phosphorylates Raptor
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Figure 5. Cdc2 phosphorylation of raptor does not change mTORC1 complexes or signaling. (A) HEK293T cells were transiently
transfected with myc-raptor (wild-type or Ser696/Thr706/Ser711AAA: ‘‘3A’’), AU1-mTOR, HA-GbL and Flag-PRAS40 for 16 hours, followed by 16 hours
of nocodazole treatment following addition of fresh media to plates. Cells were lysed and myc-raptor was immunoprecipitated using an antibody
against the myc-tag. Immunoprecipitates were resolved by SDS-PAGE and probed with antibodies against the Flag- and HA- tags. (B,C) HEK293T cells
were transiently transfected with myc-raptor (wild-type or 3A) and Flag-S6K or Flag-4EBP1. 16 hours later, media was changed and nocodazole was
added for 16 hours. Cells were lysed and lysated were split in two; myc-raptor was immunoprecipitated with an antibody against the myc-tag, and
Flag-S6K or 4EBP1 were immunoprecipitated with an antibody against the Flag-tag. Immunoprecipitates were resolved by SDS-PAGE and
immunoblotted with indicated antibodies. (D) Hela cells stably expressing myc-raptor (wt or 3A) with stable knockdown of endogenous raptor were
treated with nocodazole for 16 hours, then Torin1 or roscovitine were added for 4 hours. Cells were lysed and myc-raptor was immunoprecipitated
with an antibody against the myc-tag. Immunoprecipitates were resolved by SDS-PAGE and immunoblotted with the indicated antibodies.
doi:10.1371/journal.pone.0009197.g005

cdc2 Phosphorylates Raptor
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Xcorr $2.0, Sf $0.4, P$5; 3+ ions, Xcorr $2.60, Sf $0.4, P$5

against the target protein database. Passing MS/MS spectra were

manually inspected to be sure that all b- and y- fragment ions

aligned with the assigned sequence and modification sites.

Determination of the exact sites of phosphorylation was aided

using FuzzyIons and GraphMod and phosphorylation site maps

were created using ProteinReport software (Proteomics Browser

Software suite, Thermo Scientific). False discovery rates (FDR) of

peptide hits (phosphorylated and unphosphorylated) were estimat-

ed below 1.5% based on reversed database hits.

Results

Raptor Is Phosphorylated on S/T-P Sites in Cells Stalled in
Mitosis with Nocodazole

We have shown previously that cells undergoing energy stress

arrest in G2/M and that if they lack the ability to downregulate

mTORC1 signaling during energy stress, they proceed inappro-

priately into mitosis [10]. In the course of further examining how

mTORC1 signaling is regulated during mitosis, we observed that

stalling cells in mitosis through use of the microtubule destabilizing

drug nocodazole caused a shift in the mobility of raptor on SDS-

PAGE, and this was reversed by in vitro phosphatase treatment of

the immunoprecipitates (Figure 1a). Similar results were also seen

with the microtubule stabilizing drug taxol, which also promotes

mitotic arrest (Figure 1b). Phosphorylation-induced mobility shifts

are often indicative of phosphorylation on serine/threonine-

proline residues, and indeed we see an increase in immunoreac-

tivity of an anti-phospho-threonine-proline antibody on raptor

immunoprecipitates isolated from arrested cells compared to

asynchronous cells (Figure 1b).

Mass Spectrometry Analysis of Raptor Reveals Several
Novel In Vivo Phosphorylation Sites

In attempts to identify the residues of raptor responsible for the

nocodazole-induced bandshift, microcapillary liquid-chromatog-

raphy/tandem mass spectrometry (LC/MS/MS) was performed

on raptor immunoprecipitated from cells with or without

nocodazole treatment. We identified several novel phosphoryla-

tion sites from this analysis, including Ser696, Thr706, Ser738,

Ser771 and Ser877 (Figure 2a, Table S1). Of these sites, Ser696,

Thr706, Ser771, and Ser863, Ser877 are S*-P sites, all of which

are evolutionarily conserved through vertebrates (Figure 2b).

Interestingly, mapping our phosphorylation sites along with all

those from phospho-proteomic databases including PhosphoSite-

Plus (www.phosphosite.org; [12]) reveals that phosphorylation sites

within raptor cluster to two regions located between the HEAT

repeat region and the WD-repeat containing C-terminal of raptor

(Figure 2c).

Raptor Is Phosphorylated on Ser696 and T706 during
Mitosis

Next we examined whether mutation of any of the identified

serine/threonine-proline sites to alanine would alter the mobility

shift induced in raptor upon nocodazole or taxol treatment. From

this analysis, we discovered that an allele of raptor with mutation

of Ser696 and Thr706 to alanine, showed reduced band-shifting

(Figure 3a). Mutation of the adjacent serine-proline residue,

Ser711, to alanine in combination with 696/706 was found to

further collapse the bandshift, suggesting that S711 is also

phosphorylated in cell blocked in mitosis. Mutation of other

reported S/T*-P sites in raptor did not collapse the bandshift

(Fig. 3a, data not shown).

To directly determine the residues of raptor up-regulated

following nocodazole treatment, phospho-specific-antibodies

against Ser696, Thr706, Ser877, and Ser863 were generated

and verified as recognizing only wild-type myc-tagged raptor

immunoprecipitated from HEK293T cells, but not raptor mutated

at the specified phospho-acceptor residue (Figure 3b, c).

Treatment with nocodazole to block cells in mitosis greatly

increased phosphorylation of raptor on Ser696 and Thr706

(Figure 3b) but notably, not any of the other S/T*-P sites tested

(Figure 3c).

Cdc2 Is the Raptor Ser696, Thr706 Kinase
Having identified several residues of raptor phosphorylated in

cells blocked in mitosis, we next sought to identify the upstream

kinase for Ser696 and Thr706. Knowing the upstream kinase was

active following nocodazole treatment, and was proline-directed,

we decided to examine the mitotic CDK family member Cdc2.

First we tested whether recombinant Cdc2-cyclin B kinase

complexes were capable of in vitro phosphorylation of raptor

immunoprecipitated from hydroxyurea treated HEK293T cells

(and hence derived from cells where Cdc2 would be inactive)

(Figure 4a). Indeed cdc2/cyclin B induced robust phosphorylation

of raptor in vitro on Thr706 and Ser696.

To examine whether Phospho-Thr706 can be detected during

natural mitotic progression and is not simply due to kinases

activated by microtubule stress, we synchronized A549 cells using

double thymidine block and endogenous raptor was immuno-

precipitated at various timepoints following thymidine release

and immunoblotted with the phospho-raptor Thr706 antibody

(Figure 4b). Mitotic entry peaked at 8 to 10 hours following

thymidine release in these cells as demarcated by increased

mitotic markers phospho-histone H3 and phospho-Plk1, coin-

ciding exactly with maximal Thr706 phosphorylation on

endogenous raptor (Fig 4b). Importantly, endogenous raptor

phosphorylation was observed during mitosis in the synchronized

cells similar to that observed following nocadozole treatment

when all of the cells are arrested in mitosis. We further examined

cdc2 involvement through acute treatment of nocodazole

arrested cells with the cdc2 inhibitor roscovitine. Roscovitine

resulted in inhibition of endogenous phospho-raptor Thr706

(Fig. 4b, lanes 9–10).

Finally, we examined whether we could detect and in vivo

association between raptor and the cdc2/cyclin B kinase complex.

Utilizing Hela cells stably expressing low levels of tagged raptor,

raptor immunoprecipitates from cycling or taxol-arrested cells

revealed the presence of endogenous cyclin B (Fig 4c).

Cdc2 Phosphorylation of Raptor on Ser696, Thr706 Does
Not Impact Mtorc2 Complex Formation

mTORC1 is a multi-protein complex whose function requires

proper association of all components [13]. To test whether Cdc2

phosphorylation of raptor might change the association of various

components of mTORC1, epitope tagged cDNAs of the

components of mTORC1 were expressed in HEK293E cells with

or without nocodazole. No changes in the amount of HA-GbL or

Flag-PRAS40 that co-immunoprecipitated with myc-tagged raptor

were observed with either nocodazole treatment or raptor allele

(Figure 5a). However, in whole cell lysates taken from the same

cells, endogenous 4EBP1 phosphorylation increased, which occurs

regardless of raptor allele.

It has been demonstrated that raptor acts as a scaffolding

protein between mTOR and its substrates [14,15], so we tested

whether Cdc2 phosphorylation of raptor changes the association

of known mTOR substrates S6K and 4EBP1. We observed no

cdc2 Phosphorylates Raptor
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significant change in the amount of Flag-tagged S6K or 4EBP1

immunoprecipitated with myc-raptor in HEK293T cells treated

with or without nocodazole regardless of raptor allele (Figure 5 b,

c), and the same is true of the reciprocal immunoprecipitations.

To confirm these results in a more physiological system, cell

lines stably over-expressing a low level of myc-tagged raptor alleles

with stable knockdown of endogenous raptor with short hairpin

RNA that targets the 39 UTR of raptor [16] were generated in

Hela cells. No changes in the ability of endogenous mTORC1

components to co-immunoprecipitate with myc-raptor were

observed with either nocodazole treatment or different raptor

alleles (Figure 5d). Taken together, these data suggest that

phosphorylation of raptor by Cdc2 does not significantly change

the composition of mTORC1 nor the ability of mTOR to signal to

downstream substrates S6K or 4EBP1 during mitosis.

Discussion

How signaling pathways coupled to nutrient uptake and

expenditure couple to the cell cycle machinery and proliferation

control has been an area of increasing investigation. The

mTORC1 signaling pathway is a critical integrator of environ-

mental inputs into protein translation and cell growth. However,

the precise role of mTORC1 signaling in mitotic progression

remains enigmatic [17].

Our previous studies indicated the presence of G2/M metabolic

checkpoint enforced by AMPK in a manner dependent on its

ability to phosphorylate raptor and suppress mTORC1 activity.

Cells expressing non-phosphorylatable alleles of raptor continued

to progress through mitosis unabated unlike those expressing wild-

type raptor, and ultimately displayed increased rates of apoptosis.

Consistent with an AMPK/mTORC1 dependent checkpoint,

AMPKa2 and its upstream kinase LKB1 were isolated in an RNAi

screen for modulators of G2/M in mammalian cells [18].

Furthermore, increased phosphorylation at the AMPKa2 activa-

tion loop was observed in a proteomic study for kinases activated

during G2/M [19] and more recently, activated AMPK has been

proposed to reside at the mitotic spindle [20], hinting at both

spatial and temporal regulation of AMPK in mitosis which may

restrict or target its regulation of mTOR to specific locations or

phases of mitosis.

Previous studies also suggest that mTOR signaling plays a

positive role in the progression through mitosis in a variety of

species. In budding yeast, a temperature sensitive allele of raptor

or rapamycin-treatment of cells both induce mitotic delay and a

prolonged G2 [21]. In contrast, in fission yeast rapamycin

induces early mitotic onset in synchronized cultures [22], though

in both yeasts, TOR activity has been tied to the control of Polo

kinase activation. Further work is needed in each of these

biological settings to further dissect the role of TOR in mitotic

control.

We demonstrate here that the mitotic kinase cdc2 directly

phosphorylates raptor during mitosis, though we have been

unable to demonstrate the contribution those phosphorylations

play to overall mitotic progression or mTORC1 signaling during

mitosis in the tumor cell settings we have examined thus far.

Importantly, our data suggests there may be additional cdc2 sites

beyond Ser696, Thr706, and Ser711 in raptor and until these

sites are fully identified, the phenotype of a fully cdc2 non-

phosphorylatable raptor remains unknown. Nontheless, the cdc2

sites in raptor may be more critical for growth control in non-

tumorigenic settings, which is an area requiring further

investigation.

One additional complicating factor is these analyses is the fact

that cdc2 has been reported to directly phosphorylate both S6K1

[23,24,25] and 4ebp1 directly [26,27]. Indeed the well-character-

ized Ser65 and Ser70 phosphorylation sites in 4e-bp1 have been

proposed to be sites of phosphorylation by cdc2, events that are

dependent on mTORC1 activity. Additionally, cdc2-dependent

phosphorylation of EE2K was shown to be suppressed by amino

acid deprivation and increased in cells lacking TSC2, conditions

that respectively serve to inhibit and stimulate mTORC1

signaling, leading to the suggesting that mTORC1 activity may

serve to contribute to cdc2-dependent regulation of EEF2K [28].

The possibility exists therefore that both cdc2 and mTORC1

kinase complexes serve to inter-regulate one another depending on

the precise timing and localization of each during different stages

of mitosis. The fact that several components of the mTORC1

pathway are targeted by cdc2 may result in no single one of them

being critical in isolation as a cdc2 target whose phosphorylation is

absolutely required for mitotic progression.

A complication of much of the previous literature studying the

effect of mTOR on G2/M progression utilizing rapamycin is that

recent finding from several labs that rapamycin does not fully

inhibit mTORC1 kinase activity. Kinase inhibitors directed at

mTOR itself yield changes in mTORC1 signaling and growth

arrest phenotypes more similar to RNAi for raptor [29,30,31].

Importantly, these effect of mTOR kinase inhibitors were

demonstrated to be independent of the mTORC2 complex and

its function [29,30]. These findings are also consistent with a

variability of rapamycin in inhibiting S6K1 signaling but not

4ebp1 phosphorylation universally in mammalian cells, unlike

RNAi or genetic deletion of raptor or mTOR [30,32]. The

inability of rapamycin to suppress 4ebp1 phosphorylation indicates

that previous studies in mammalian cells studying effects of

rapamycin on mitosis were not accounting for the full role of

mTORC1. Future studies using these new direct mTOR kinase

inhibitors will be needed to fully dissect its requirement in different

stages of mitotic progression.

Additional tools including phospho-specific antibodies which

can work for immunolocalization may better reveal where the

population of cdc2-phosphorylated raptor and 4ebp1 are during

the different stages of mitosis. Understanding how AMPK activity

and mTOR activity are controlled spatially and temporally during

mitosis will undoubtedly lead to fundamental insights into how

nutrients control cell division as well as to how protein translation

is coupled to timely cell cycle exit during differentiation or stem

cell renewal. A deeper understanding of how mTORC1 controls

cell cycle progression is essential for use of targeted mTOR

inhibitors in the treatment of cancer and many other mTOR-

related pathologies [33].

Supporting Information

Table S1 All identified in vivo phosphorylation sites in raptor.

Conservation is indicated and predicted kinases from Scansite are

listed in black. Reported in vivo kinases are indicated in red.

Found at: doi:10.1371/journal.pone.0009197.s001 (0.76 MB TIF)
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