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 Polyunsaturated Fatty Acids and 
Cardiovascular Disease:
Implications for Nutrigenetics 
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we summarize the biochemical metabolism of  � –3 and  � –6 
PUFAs, evaluate the evidence for genetic and nutrigenetic 
contributions of 5-LO pathway genes to CVD, and discuss the 
potential of future studies that could identify other gene-di-
etary interactions between PUFAs and CVD traits. 
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 The Atherogenic Process 

 The most common cause of CVD, atherosclerosis, is a 
progressive disease characterized by the accumulation of 
lipids and fibrous elements in large arteries  [1] . It is a com-
plex process of numerous factors and mediators involv-
ing the dynamic exchange of signals between resident 
cells, such as endothelial cells and smooth muscle cells, 
and infiltrating monocyte/macrophages and lympho-
cytes. The atherogenic process is initiated by the accumu-
lation of low-density lipoprotein (LDL) particles in the 
subendothelial layer of the artery wall, where they are 
oxidized by cell-derived reactive oxygen species ( fig. 1 , 
step I). The resulting production of adhesion molecules, 
chemokines, and growth factors by endothelial cells 
causes inflammatory cells, comprised predominantly of 
monocytes, to adhere to the vessel wall and migrate into 
the subendothelial space. In this microenvironment, the 
activated monocytes proliferate and differentiate into 
macrophages, which engulf oxidized LDL particles and 
subsequently transform into foam cells ( fig. 1 , step II). 
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 Abstract 

 Cardiovascular disease (CVD) arises as a result of genetic pre-
disposition in the context of a disease-promoting environ-
ment. While several risk factors have been identified for CVD, 
such as elevated serum lipid levels and hypertension, most 
of the genes identified thus far do not appear to involve such 
‘conventional’ risk factors. Moreover, the interactions be-
tween genes and environment, such as a diet high in certain 
fats, adds another level of complexity to CVD and renders 
identification of the underlying genetic factors even more 
difficult. Polyunsaturated fatty acids (PUFAs), such as the  � –
6 and  � –3 fatty acids, which have multiple roles in mem-
brane structure, lipid metabolism, blood clotting, blood 
pressure, and, in particular, inflammation, have been linked 
to the reduction in CVD. Linoleic ( � –6) and  � -linolenic acid 
( � –3) are essential fatty acids that can be converted into 
long-chain    PUFAs,    such    as    arachidonic    acid    (AA)   and   ei-
cos apentaenoic acid (EPA)/docosahexaenoic acid (DHA), 
 respectively. These long-chain PUFAs are metabolized by 
 enzymatically catalyzed systems via cyclooxygenases and 
 lipoxygenases. The 5-lipoxygenase (5-LO)/leukotriene (LT) 
biosynthesis pathway has been biochemically and geneti-
cally associated with CVD traits in mice and humans, particu-
larly in the context of dietary AA and EPA/DHA. In this review, 
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Accompanied by a progressive increase in extracellular 
lipids and intimal smooth muscle cells that have migrat-
ed through the media, the resulting ‘fatty streaks’ devel-
op into advanced lesions as the lipid-laden macrophages 
undergo apoptosis to form a necrotic core ( fig. 1 , step III). 
Proinflammatory cytokines that are also expressed in the 
lesion cause the smooth muscle cells to proliferate and 
secrete collagen and other extracellular matrix proteins, 
resulting in the formation of a fibrotic cap. Such advanced 
lesions become increasingly complex with calcification, 
ulceration at the luminal surface, and hemorrhage from 
small vessels that grow into the lesion from the media, 
rendering them unstable and prone to rupture ( fig. 1 , step 
IV). Ultimately, plaque erosion and rupture can lead to 
clinical events such as myocardial infarction (MI) or 
stroke.

  Over the past half century, epidemiological studies 
have revealed numerous risk factors for atherosclerosis 
 [2] . These are, in large part, controlled by traits with ge-

netic components, including gender, age, hypertension, 
hyperlipidemia, obesity, and diabetes. Collectively, these 
have come to be known as ‘conventional’ risk factors. The 
importance of genetics in CVD has been examined in 
many family and twin studies where heritability esti-
mates for atherosclerosis have been large in most studies, 
frequently exceeding 50%. While the role of convention-
al risk factors in CVD is generally accepted, it is also like-
ly that there are genetic contributions to CVD that are 
independent of known risk factors. For example, certain 
individuals develop premature heart disease but do not 
exhibit high cholesterol or hypertension. This may, in 
part, be due to genetic influences that act at the level of 
vessel wall metabolism, which lead to variations in cel-
lular function or inflammatory responses among indi-
viduals. Recent large genome-wide association studies 
support this notion since the genes with the strongest sig-
nals are not linked to lipid levels and blood pressure  [3] . 
Moreover, these studies also demonstrate the genetic 

  Fig. 1.  Steps in the progression of atherosclerosis. Step I: LDL par-
ticles accumulate in the sub-endothelial cell layer and become 
trapped within matrix proteins, where they are oxidized (oxLDL) 
by cell-derived reactive oxygen species. Step II: Chemotactic and 
growth factors stimulate monocytes to transmigrate across the 
endothelial cell layer and differentiate into macrophages. Macro-
phages engulf the oxLDL, leading to foam cell formation. Step III: 
Foam cells produce a variety of mediators and eventually undergo 

apoptosis or necrosis, contributing their contents to a growing 
core of cellular debris and cholesterol. This process is accompa-
nied by the migration of smooth muscle cells into the intima from 
the media and the formation of a fibrotic cap. Step IV: As the ad-
vanced lesion continues to grow, it becomes increasingly unstable 
and prone to rupture, which can result in a thrombus or clinical 
event such as MI or stroke. 
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complexity underlying CVD since over 10 loci have been 
identified thus far, which together only explain a fraction 
of the total genetic variation.

  Another level of complexity involves the interactions 
between genes themselves and with environmental fac-
tors, such as stress, a diet high in certain fats, lack of ex-
ercise, and smoking. Thus, common forms of CVD result 
from the interplay between susceptibility genes and life-
style.

  Polyunsaturated Fatty Acids 

 Fatty  acids  are  a  class   of   lipid   compounds   that   con-
sist of a hydrocarbon skeleton with a carboxyl group
(–COOH) at one end. They are classified as saturated fat-
ty acids (SFAs), monounsaturated fatty acids (MUFAs), 
or polyunsaturated fatty acids (PUFAs) based on the 
number of double bonds between atoms in their carbon 
chain. Saturated fatty acids have no double bonds and are 
therefore fully saturated with hydrogen atoms, whereas 
MUFAs and PUFAs have 1 double bond and more than 1 
double bond per molecule, respectively. Individual fatty 
acids can be identified by formal chemical names that 
indicate the length of the carbon chain and the locations 
of any double bonds. MUFAs and PUFAs are further clas-
sified as  � –3,  � –6, or  � –9 based on the location of the 
first double bond from the methyl end of the fatty acid 
molecule.

  Humans are not capable of synthesizing fatty acids 
with double bonds more than 9 carbons distal from the 
carboxyl end of the fatty acid  [4] . As such, linoleic acid 
(LA; C18:   2 � –6) and  � -linolenic acid (ALA; C18:   3 � –3) 
are essential  � –6 and  � –3 PUFAs, respectively, that must 
be obtained from dietary sources in order to ensure nor-
mal physiologic functions  [5] . Foods rich in LA include 
corn and sunflower oils, whereas flaxseed oil is particu-
larly high in ALA. Longer-chain  � –6 and  � –3 PUFAs, 
such as arachidonic acid (AA; C20:   4 � –6) and eicosapen-
taenoic acid (EPA; C20:   5 � –3), are not strictly ‘essential’ 
because they can be synthesized from LA and ALA, re-
spectively, through elongation and desaturation steps 
catalyzed by the  � 6- and  � 5-desaturase enzymes  [6]  
( fig. 2 ). In humans, conversion of ALA to EPA occurs 
slowly, whereby approximately 5% is converted to EPA, of 
which 2–5% is further converted to docosapentaenoic 
acid [C22:   5 � –3] (DHA)  [7–9] . Additionally, the large 
amount of  � –6 fatty acids in the typical Western diet in-
terferes with endogenous synthesis of EPA and DHA 
from ALA since the  � –3 and  � –6 fatty acids compete for 

the same elongase and desaturase enzymes  [10] . More-
over,  � –6 PUFAs cannot be converted into  � –3 PUFAs 
or vice versa in mammalian cells  [4] . Thus, dietary rec-
ommendations for obtaining sufficient quantities of pre-
formed EPA and DHA are through the consumption of 
fatty fish or fish oil supplements, both of which are rich 
sources of such PUFAs.

  Inflammation as a Link between PUFAs and CVD 

 The cardioprotection conferred by PUFAs, in particu-
lar EPA/DHA, has been extensively reviewed elsewhere 
and is thought to occur through various mechanisms ( ta-
ble 1 ), including the reduction of serum triglyceride lev-
els, anti-arrhythmic effects, decreasing platelet aggrega-
tion, plaque stabilization, and/or reduction of blood pres-
sure  [11–14] . Another potentially important link between 
PUFAs and atherosclerosis may be through inflamma-
tion, which can be regulated by the eicosanoids  [15–17] . 
Importantly, the effects of eicosanoids can be driven, in 
large part, by competition between AA and EPA as sub-
strates for enzymes that catalyze release of the fatty acids 
from cell membranes or their conversion into a variety of 
metabolites. In response to a calcium stimulus, cytosolic 

C18:2�–6 C18:3�–3

C18:3�–6 C18:4�–3

C20:3�–6 C20:4�–3

C20:4�–6 C20:5�–3

�6 Desaturase

Elongase

�5 Desaturase

LA ALA

AA EPA

  Fig. 2.  The enzymes and intermediates of PUFA metabolism. LA 
and ALA, 2 essential PUFAs that must be obtained from the diet, 
are desaturated and elongated by the  � 6- and  � 5-desaturase en-
zymes to generate longer-chained PUFAs, such as AA and EPA. 
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phospholipase A 2  releases membrane bound AA, which 
then becomes available for eicosanoid synthesis  [18] . 
Eicosanoids can be formed from AA through a variety of 
enzymatic reactions involving cyclooxygenases (COX) 
and 5-lipoxygenase (5-LO). The COX-dependent metab-
olism of AA yields the 2-series prostanoids while the 5-
LO pathway yields the 4-series leukotrienes (LTs) ( fig. 3 ; 
 table 2 ), the latter having long been implicated in other 
allergic inflammatory diseases, such as asthma  [19] . 5-
LO is the rate-limiting enzyme in LT biosynthesis and is 

expressed primarily in leukocytes, particularly mono-
cytes and macrophages. Once released, free AA is pre-
sented by 5-LO activating protein (FLAP) to 5-LO, which 
incorporates molecular oxygen into AA to generate LTA 4 . 
LTA 4  can then be converted to LTB 4  via LTA 4  epoxide 
hydrolase (LTA4H) or shunted into the cysteinyl LT path-
way and converted to LTC 4  through the conjugation of 
glutathione by LTC4 synthase (LTC4S). Importantly, the 
2,4-series eicosanoids are proinflammatory and possess 
many atherogenic properties  [15, 20, 21] . For example, 
thromboxane A 2 , a major COX product synthesized in 
platelets, promotes platelet aggregation  [22] . By compari-
son, LTB 4  is a potent chemotactic factor for circulating 
monocytes and neutrophils, whereas LTC 4 , LTD 4  and 
LTE 4  are the slow-reacting substances of anaphylaxis and 
mediate bronchoconstriction and smooth muscle con-
traction  [19] .

  EPA and DHA consumption results in dose-depen-
dent increased incorporation of these fatty acids into cel-
lular phospholipids. Whereas AA-derived eicosanoids 
are potent mediators of inflammation, the 3,5-series eico-
sanoids derived from EPA/DHA have anti-inflammatory 
and anti-atherogenic effects ( fig. 2 )  [12, 16, 23] . The EPA-
derived prostanoids (i.e. TXA 3 ) have little biological ac-
tivity compared with their corresponding AA-derived 
counterparts. Similarly, EPA-derived LTs are also biolog-
ically less active than their AA-derived counterparts with 
LTB 5  an order of magnitude less active than AA-derived 
LTB 4   [24] . The 5-series LTs also compete with the more 

Table 1. Cardioprotective effects of EPA/DHA on CVD risk fac-
tors

Effect Proposed mechanism

Lowered serum
triglycerides 

reduction in hepatic triglyceride production and 
lipoprotein assembly

Anti-
arrhythmic

modulation of electrophysiological properties of 
cardiac myocytes

Lowered blood 
pressure

improved endothelial cell function,
vascular relaxation, and arterial compliance

Decreased plate-
let aggregation

reduction in prothrombotic prostanoids 
through competition with AA

Decreased
inflammation

reduction in 4-series leukotriene production
and signaling through competition with AA and
leukotriene receptor antagonism, respectively

LTB4

LTC4

LTD4

LTE4

LTB5

LTC5

LTD5

LTE5

PGI2
TXA2

PGD2

PGE2

PGF2�

PGI3
TXA3

PGD3

PGE3

PGF3�

COOH

CH3

COOH

CH3

EPAAA

Prostanoids Leukotrienes Prostanoids Leukotrienes

C20:4�–6 C20:5�–3

Cyclooxygenase Cyclooxygenase5-Lipoxygenase 5-Lipoxygenase
  Fig. 3.  Generation of eicosanoids from AA 
and EPA. Metabolism of AA and EPA by 
the COX and 5-LO pathways leads to the 
2,4- or 3,5-series prostanoids and LTs, re-
spectively. The 2,4-series eicosanoids pro-
duced from AA promote inflammatory 
and prothrombotic effects, whereas the 
corresponding 3,5-series eicosanoids pro-
duced from EPA have either the opposite 
effects or possess much lower levels of bio-
logical activity.     
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active 4-series LTs for their respective receptors (LTB4R 
and LTB4R2) for LTB 4  and type 1 and type 2 cysteinyl LT 
receptors (CysLTR1 and CysLTR2) for LTC 4 , LTD 4  and 
LTE 4 , which further decreases the inflammatory activity 
of the 4-series LTs. Thus, the 2,4-series eicosanoids pro-
duced from AA promote inflammatory and prothrom-
botic effects, whereas the corresponding 3,5-series eico-
sanoids produced from EPA have either the opposite ef-
fects or possess much lower levels of biological activity. 
Since the typical Western diet is rich in LA (and AA) and 
relatively poor in EPA/DHA, it has been proposed that 
lowering the dietary  � –6/ � –3 ratio would provide an ef-
ficient means by which to reduce risk of CVD and other 
inflammatory conditions  [5] .

  Contribution of LT Pathway Genes to CVD 

 The 5-LO pathway has recently garnered a great deal 
of attention for its potential role in CVD-related traits. 
This stems from a series of biochemical, genetic, and 
pharmacological studies in mice and humans over the 
last several years, which collectively have provided rela-
tively strong evidence for the proatherogenic role of LTs 
 [20, 25, 26] . In an initial study with inbred mouse strains, 
an atherosclerosis susceptibility locus was mapped to a 
region of mouse chromosome 6 harboring several poten-
tial candidate genes for CVD traits, including that encod-
ing the 5-LO enzyme  [27] . In a subsequent study, it was 
reported that 5-LO-deficient mice on a genetically hyper-
lipidemic background had dramatically reduced aortic 
lesion formation despite cholesterol levels in excess of 500 
mg/dl  [28] . These studies were amongst the first to di-
rectly implicate a role for 5-LO in atherosclerosis. Subse-
quent reports have also suggested the involvement of 5-

LO in atherosclerosis-related phenotypes as well  [29, 30] , 
but this has not been consistently observed across all 
studies  [31] . More recently, 5-LO has been implicated in 
metabolic traits, such as adiposity, bone density, and pan-
creatic dysfunction  [32, 33] . Biochemical evidence in hu-
man coronary and carotid plaques also provides evidence 
that the 5-LO pathway promotes proatherogenic process-
es. For example, several studies have shown that 5-LO, 
FLAP, and LTA4H are abundantly expressed in arterial 
walls of CVD patients, with 5-LO having markedly in-
creased expression in advanced lesions and localizing to 
inflammatory cells, such as macrophages and dendritic 
cells  [34–36] . More recently, 5-LO gene expression in pe-
ripheral blood cells was positively correlated with the ex-
tent of coronary atherosclerosis in CVD patients  [37] . 
Thus, 5-LO pathway genes and LTs could potentially con-
tribute to lesion progression in humans, from its initial 
stages up to the development of complex plaques that are 
prone to rupture and cause an MI. 

 In parallel, genetic studies in humans add to the evi-
dence that the 5-LO pathway contributes to the risk of 
CVD. For example, in a cohort study of healthy indi-
viduals, certain alleles of a 5-LO promoter repeat poly-
morphism, consisting of a variable number of Sp1 tran-
scription factor binding sites, were associated with sig-
nificantly increased carotid intima-media thickness 
and plasma biomarkers of inflammation  [38] . An inter-
esting extension of these analyses was that high dietary 
AA exacerbated the atherogenic effect of the variant al-
leles, whereas high dietary EPA/DHA blunted this effect 
 [38] , thereby providing a potential molecular mecha-
nism for the observed association through gene-dietary 
interactions. In a subsequent study with a Costa Rican 
sample, the variant 5-LO promoter alleles did not show 
an association with a clinical phenotype, namely MI 

Table 2. Major genes of the LT biosynthetic pathway

Gene and symbol Function

Cytosolic phospholipase A2 (cPLA2) releases AA from cell membranes
5-Lipoxygenase (5-LO) incorporates oxygen into AA and forms LTA4
5-Lipoxygenase-activating protein (FLAP) presents AA to and activates 5-LO
LTA4 epoxide hydrolase (LTA4H) converts LTA4 to LTB4
LTB4 omega hydroxylase (LTB4H) catalyzes the breakdown of LTB4
LTC4 synthase (LTC4S) converts LTA4 to the first cysteinyl LT, LTC4
LTB4 receptor 1 (LTB4R) receptor for LTB4
LTB4 receptor 2 (LTB4R2) a second receptor for LTB4
Cysteinyl leukotriene receptor 1 (CysLTR1) receptor for cysteinyl LTs, such as LTD4
Cysteinyl leukotriene receptor 2 (CysLTR2) a second receptor for the cysteinyl LTs
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 [39] . However, the variant alleles did exhibit a nutrige-
netic interaction with AA levels where individuals car-
rying 1 or 2 copies of the shorter variant repeats had an 
elevated risk of MI in the high dietary AA group com-
pared to homozygotes for the common allele in the low 
AA group. By contrast, the shorter variants were protec-
tive in the context of low dietary AA  [39] . It is notewor-
thy that, without knowledge of the dietary status of sub-
jects, the association of these alleles and MI could be 
neutralized in an unstratified analysis that considered 
all individuals together since the gene-diet interaction 
between the variant 5-LO promoter repeats and MI risk 
went in opposite directions. Although speculative, such 
a notion may explain why an association with the pro-
moter repeats and MI has not been detected in other 
populations  [40, 41] . By comparison, there was no evi-
dence for a nutrigenetic interaction between 5-LO pro-
moter variants and dietary EPA/DHA in the Costa Ri-
can cohort. This finding may be due to the relatively low 
consumption of fish by the population in the Central 
Valley region of Costa Rica  [42] , from which this sample 
was collected. Nonetheless, the results from these 2 
studies suggest that genetic variation in 5-LO can affect 
atherosclerosis in humans, particularly in the context of 
high dietary AA levels.

  The genetic studies described above are corroborated 
by other positive association studies as well. For example, 
2 studies recently reported association of other 5-LO 
variants with CVD traits in Caucasian samples  [43, 44] . 
In addition, DeCode Genetics reported an association 
between FLAP haplotypes and MI/stroke  [45] , which has 
been replicated in some populations  [46–49] . Subse-
quently, DeCode also reported that one particular haplo-
type (HapK) of the LTA4H gene is associated with MI in 
case-control cohorts from Iceland and the USA  [50] . In-
terestingly, the effect of HapK on MI was much stronger 
in African-Americans, suggesting the existence of inter-
actions with other genes in individuals of African ances-
try. It is also important to point out that such positive 
associations have not been uniformly observed across all 
studies and populations. For example, association of 5-
LO and FLAP variants were not associated with CVD 
phenotypes in several other studies  [51–53] , which could 
be due to either differences in study design, population 
stratification, and/or genetic heterogeneity. Alternatively, 
it is possible that 5-LO pathway genes only have modest 
genetic contributions to CVD risk. However, it has also 
yet to be reported whether these other variants exhibit 
nutrigenetic interactions with dietary PUFAs and CVD 
phenotypes, analogous to the 2 studies described above 

for the 5-LO promoter polymorphism, which would be 
important studies to carry out as well.

  Knowledge that 5-LO and LTs are involved in asthma 
previously led to the development of drugs targeting dif-
ferent parts of the pathway, such as zileuton, montelukast, 
and zafirlukast. In addition to potentially modulating LT 
synthesis through nutritional strategies, this raises the 
possibility of administering existing drugs, or newly de-
veloped ones, to target the 5-LO pathway for the preven-
tion of CVD. However, a major question that remains to 
be answered is which branch of the 5-LO pathway is im-
portant for atherogenic-related processes. For example, 2 
recent reports have demonstrated the efficacy of FLAP 
inhibitors for reducing serum inflammatory CVD risk 
factors in individuals carrying MI-predisposing haplo-
types of the FLAP gene  [54]  and aortic lesion formation 
in mice  [55] . Deficiency of the LTB 4  receptors or their 
pharmacologic antagonism has also been reported to re-
duce inflammatory cytokine production in monocytes, 
lipid accumulation, monocyte infiltration, and smooth 
muscle proliferation in the artery wall, and, consequent-
ly, atherosclerosis  [56–59] . Taken together with the ath-
eroprotective phenotype of 5-LO deficient mice  [28] , 
these data suggest that LTB 4  signaling, potentially 
through its chemotactic properties, is an important 
mechanism for atherogenesis.

  By comparison, there is also evidence to suggest that 
the cysteinyl LTs have proatherogenic properties as well. 
In this regard, variants of the LTC4S gene have been as-
sociated with increased coronary artery calcification, ca-
rotid atherosclerosis, and risk of stroke  [60–62] , and 
montelukast, a cysteinyl LT receptor antagonist, reduces 
inflammatory CVD biomarkers in asthmatics  [63]  as well 
as aortic lesion formation in hyperlipidemic mouse mod-
els  [64] . Thus, both branches of the 5-LO pathway appear 
to be proatherogenic suggesting that reduction of either 
type of 4-series LTs, whether through pharmacological 
manipulation or dietary PUFA modification (i.e. increas-
ing EPA/DHA intake), could have beneficial effects on 
CVD. However, it must also be noted that genetic ablation 
of 5-LO, and consequently both LTB 4  and the cysteinyl 
LTs, results in pancreatic  � -cell dysfunction  [33] . Thus, it 
will be important for future studies to address whether 
therapeutic strategies targeting only one branch of the 5-
LO pathway can provide cardioprotection while avoiding 
potentially undesirable metabolic adverse effects. For ex-
ample, montelukast, widely used for the treatment of 
asthma, has potentially cardioprotective effects, as men-
tioned above, and has not been reported to be associated 
with metabolic disturbances.
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  Conclusions and Future Implications for 

Nutrigenetics of PUFAs and CVD Traits 

 Until recently, reports of genes being associated with 
CVD traits had not been consistently confirmed in sub-
sequent studies. In the last few years however, new evi-
dence from genome-wide association studies has emerged 
suggesting that genes, which would otherwise not have 
been considered good candidates based on their roles in 
pathways unrelated to known risk factors, are conclusive-
ly associated with coronary artery disease, MI, stroke, 
atrial fibrillation, blood pressure, inflammatory bio-
markers, and serum lipid levels  [3] . Given the pleiotropic 
effects of EPA/DHA on a variety of cardiovascular phe-
notypes ( table 1 ), it is possible that PUFAs could also ex-
hibit nutrigenetic associations with some of the newly 
identified CVD genes. For example, 2 consistently ob-
served effects of EPA/DHA are reduction of serum tri-
glyceride levels and protection from arrhythmias. Thus, 
it is possible that genes controlling serum triglycerides 
and atrial fibrillation could interact with dietary and tis-
sue levels of EPA/DHA to modulate these physiological 
effects. Such studies would be analogous to those de-
scribed above for gene-dietary interactions between 5-
LO variants and dietary AA and EPA/DHA. However, to 
detect such nutrigenetic effects will require large samples 
sizes where both clinical and dietary data are available.

  The major challenge now facing geneticists is an un-
derstanding of the molecular and pathophysiological 
mechanisms through which the newly identified genes 
contribute to CVD traits, which is currently lacking and 
awaits more detailed functional experiments. In this re-
gard, molecular tools, such as microarrays or mouse 
models, can be very useful for such studies, given the dif-
ficulty of dissecting complex disease genetic associations, 
as well as gene-gene and gene-diet interactions in hu-
mans. For example, a mouse model has been generated, 
which carries a transgene for the  C. elegans   � –3 fatty acid 

desaturase enzyme that converts  � –6 PUFAs to  � –3 
 PUFAs in its tissues  [65] . Thus, well-controlled experi-
ments that avoid potentially confounding factors inher-
ent in dietary intervention studies have been carried out 
with these mice to study the role of EPA/DHA in a variety 
of disorders, including colitis  [66] , ocular neovascular-
ization  [67] , prostate cancer  [68] , and acute lung injury 
 [69] . An important study that has yet to be reported is the 
phenotype of these mice with respect to CVD traits, 
which should provide direct evidence for the effects of 
 � –3 PUFAs on atherosclerosis in an animal model.

  In summary, PUFAs, and EPA/DHA in particular, ex-
ert a variety of beneficial physiological effects that are 
important for the development or progression of CVD 
and its related traits. By modulating the levels of 5-LO-
pathway-derived eicosanoids through competition with 
AA, EPA/DHA metabolites are thought to have impor-
tant anti-inflammatory properties. Biochemical, genetic, 
and pharmacological evidence from a number of studies 
in mice and humans suggests that the 5-LO/LT plays a 
role in CVD, particularly with respect to nutrigenetic as-
sociations involving dietary AA and EPA/DHA levels. 
Future studies employing a variety of complementary ap-
proaches, including novel genomics tools, animal mod-
els, and large human study populations for gene-dietary 
interactions, will be required to elucidate the mecha-
nisms underlying the various effects of PUFAs on CVD.
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