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scribed as inoculating, immunizing, steeling, toughen-
ing, or thriving  [6–8] , the notion that mild early life stress 
induces the development of resilience is further support-
ed by longitudinal studies of nonhuman primates. Squir-
rel monkey mothers and other group members periodi-
cally leave newly weaned offspring beginning at 3–6 
months of age to forage for food on their own  [9, 10] . Ini-
tially, brief intermittent separations studied in controlled 
experimental conditions elicit distress peep calls and in-
crease plasma levels of cortisol with partial habituation 
of these measures of arousal observed over repeated so-
cial separations  [11, 12] . Later in life, monkeys exposed to 
intermittent separations show fewer behavioral indica-
tions of anxiety, increased exploration of novel situations, 
and diminished stress levels of cortisol compared to age-
matched monkeys not exposed to prior separations  [13–
17] . These behavioral and hormonal outcomes reflect a 
nonspecific form of stress inoculation  [15]  as exposure to 
one type of early life stress enhances subsequent arousal 
regulation and resilience in coping with different stress-
ors encountered later in life.

  Prior exposure to separation stress also enhances pre-
frontal-dependent cognitive control of impulsive behav-
ior  [18]  and appears to increase ventromedial but not dor-
solateral prefrontal volumes determined in vivo by non-
invasive neuroimaging of the squirrel monkey brain  [19, 
20] . These findings are of interest because large ventro-
medial prefrontal size in humans predicts diminished 

 Key Words 

 Emotion regulation  �  Cognitive control  �  Fear  �  Curiosity  �  
Cortisol 

 Abstract 

 Coping with mild early life stress tends to make subsequent 
coping efforts more effective and therefore more likely to be 
used as a means of arousal regulation and resilience. Here we 
show that this developmental learning-like process of stress 
inoculation increases ventromedial prefrontal cortical vol-
umes in peripubertal monkeys. Larger volumes do not 
 reflect increased cortical thickness but instead represent 
surface area expansion of ventromedial prefrontal cortex. 
Expansion of ventromedial prefrontal cortex coincides with 
increased white matter myelination inferred from diffusion 
tensor magnetic resonance imaging. These findings suggest 
that the process of coping with early life stress increases pre-
frontal myelination and expands a region of cortex that 
broadly controls arousal regulation and resilience. 

 Copyright © 2009 S. Karger AG, Basel 

 Introduction 

 Stressful experiences that are challenging but not 
overwhelming appear to promote the development of 
subsequent resilience in children  [1–5] . Variously de-
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impulsivity  [21] , lower harm avoidance  [22] , and greater 
retention of learned extinction of fear  [23] . Recent neuro-
imaging studies of humans support results from animal 
research confirming that learned extinction of fear is me-
diated by prefrontal downregulation of arousal via in-
hibitory connections that diminish neural output from 
the amygdala  [24, 25] . Additional evidence likewise sug-
gests that differences in the balance between top-down 
prefrontal regulation and arousal inducing amygdala ac-
tivation may account for global trait-like differences in 
coping with stress  [26, 27] .

  In the following study, we further examine prefrontal 
plasticity in a new sample of monkeys randomized to in-
termittent social separation stress or a no-stress condi-
tion. Whole brain T 1 -weighted images acquired at high 
resolution were processed for predefined measures of 
prefrontal cortical volumes and an unbiased analysis of 
cortical thickness unconstrained by predefined regions 
of interest. Diffusion tensor imaging was used to subse-
quently investigate prefrontal connections in terms of 
fractional anisotropy in white matter tissue. Increased 
fractional anisotropy occurs when tissue microstructure 
constrains water proton diffusion directionality as exem-
plified by myelination of axons in white matter  [28] . My-
elination increases nerve conduction velocities and facil-
itates synchronous firing of neurons by reducing travel 
distance effects in distributed networks  [29] . Coordina-
tion of firing inputs to maximize temporal summation at 
postsynaptic neurons is the foundation for a key concept 
in neural plasticity and development-neurons that fire to-
gether, wire together. In children, myelination of prefron-
tal connections determined by fractional anisotropy in-
creases with age  [30]  and maturation of prefrontal-de-
pendent functions  [31] . Results from our studies of 
monkeys suggest that the learning-like process of coping 
with stress likewise increases prefrontal myelination and 
expands a region of cortex that broadly controls arousal 
regulation and resilience.

  Materials and Methods 

 Socially housed squirrel monkeys  (Saimiri sciureus)  were ran-
domized to either brief intermittent separation stress (n = 4 males 
and 7 females) or a no-stress control condition (n = 1 male and 8 
females) at 17 weeks of age. For each of ten total separation ses-
sions, monkeys were removed from their natal group for a one-
hour period once a week  [15] . In the no-stress control condition, 
age-matched monkeys remained undisturbed in their natal 
groups. After completion of these protocols at 27 weeks of age, all 
of the monkeys were maintained in identical conditions. Behav-
ioral and neuroendocrine measures of anxiety were assessed in 

the presence of mothers at 35 and 50 weeks of age  [15] . Mothers 
were then permanently removed and their offspring were housed 
with peers. Cognitive control of behavior was assessed at 1.5 years 
of age  [18]  and exploratory behavior was examined at 2.5 years of 
age  [17] . Puberty occurs at 2–3 years of age and the average max-
imum life span is  � 21 years. Noninvasive magnetic resonance 
imaging was performed at 3.3 years of age as described below. All 
procedures were conducted in accordance with the NIH Guide 
and were IACUC approved.

  Brain Image Acquisition 
 Brain images were acquired on a General Electric 3T Signa MR 

scanner (Milwaukee, Wisc., USA) with protocols we developed 
for squirrel monkeys. All monkeys were scanned under anesthe-
sia induced by subcutaneous injection of 20 mg/kg ketamine hy-
drochloride, 4 mg/kg xylazine hydrochloride, and 0.04 mg/kg at-
ropine sulfate followed by 0.5–1.5% isoflurane gas. Body temper-
atures were maintained within the normal range using a cushioned 
heat pad. Ear plugs provided protection from noises generated by 
the scanner.

  Whole brain T 1 -weighted images were acquired in the coronal 
plane with a three-dimensional inversion recovery-prepared fast-
spoiled gradient pulse sequence  [32] : TR = 12 ms, TE = 3 ms, TI = 
300 ms, flip angle = 15, NEX = 4, matrix = 256  !  256, FOV = 8 
cm, voxel size = 0.312  !  0.312  !  1.0 mm, slice thickness = 1 mm, 
gap = 0 mm, total scan time = 17 min. Diffusion tensor imaging 
data were then acquired in the coronal plane with a diffusion-
weighted self-navigated interleaved spiral technique  [33] : TR = 
2,500 ms, TE = 46.5 ms, NEX = 4, matrix = 128  !  128, FOV = 8 
cm, slice thickness = 3 mm, gap = 0 mm, bandwidth =  8 125 kHz, 
number of spiral interleaves = 19, total scan time = 22 minutes. 
The amplitude of the diffusion-sensitizing gradients was 5 Gauss/
cm with a duration and separation of, respectively, 15.8 and 22 ms. 
This resulted in a b value of 800 s/mm 2 . Diffusion was measured 
along six noncollinear directions (x, y, z) = [(1, 1, 0),(0, 1, 1),(1, 0, 
1),(–1, 1, 0),(0, –1, 1),(1, 0, –1)], and a reference measurement was 
made along these directions with a b value of 10 s/mm 2 .

  Brain Image Processing 
 All image data were analyzed without knowledge of the treat-

ment conditions. Initially, T1-weighted images were processed to 
measure predefined prefrontal volumes using BrainImage soft-
ware (http://spnl.stanford.edu/tools/brainimage.htm). Image 
processing included removal of non-brain tissue, AC-PC posi-
tional normalization, and resampling into cubic voxels (0.312  !  
0.312  !  0.312 mm). A trained rater then traced ventromedial and 
dorsolateral prefrontal cortical volumes in the left ( fig. 1 a) and 
right cerebral hemispheres on 26–34 contiguous coronal images 
per monkey from the genu of the corpus callosum to the frontal 
pole. The specific rules used to identify these predefined regions 
are described in our earlier research  [20] . Inter-rater reliabilities 
expressed as intra-class correlations from fixed effects models 
were greater than 0.90.

  The T 1 -weighted images were subsequently processed for 
whole brain cortical thickness analysis unconstrained by pre-
defined   regions of interest using FreeSurfer software (http://surf-
er.nmr.mgh.harvard.edu/). Images were segmented into gray 
matter, white matter, and cerebrospinal fluid according to voxel 
intensity values and geometrical constraints  [34] . A surface defor-
mation algorithm was applied which first fits the white matter 
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surface and then expands outward to find the gray matter surface 
 [34, 35] . White and gray matter surfaces were carefully inspected 
and irregularities were manually corrected. For each monkey’s 
left and right hemispheres, the algorithm produced separate cor-
tical mesh models comprised of  � 138,500 vertices connected 
with triangular faces having an average face area of  � 0.05 mm 2 . 
Cortical thickness was computed as the distance between each 
linked vertex in the mesh models  [36] . To allow for statistical com-
parisons (see below), all mesh models were spatially realigned to 
a group-average spherical surface representation that optimally 
co-registered corresponding sulcal and gyral brain features  [35, 
37] . Cortical thickness values were re-sampled into the common 
average spherical coordinate system and smoothed using an it-
erative nearest-neighbor averaging procedure with full width at 
half maximum of 10 mm.

  The diffusion tensor imaging data were reconstructed prior to 
averaging on a Linux workstation. Motion-induced phase varia-
tion from interleaf to interleaf was measured using the center por-
tion of k-space data and corrected with a conjugate gradient meth-
od. Fractional anisotropy was computed for each voxel as previ-
ously described  [33] . Prefrontal white matter regions traced on 
T 1 -weighted images were spatially realigned to the fractional an-
isotropy images using SPM software (http://www.fil.ion.ucl.ac.
uk/spm/). Voxel values of fractional anisotropy were extracted 
with a Matlab script and used to calculate a mean value per mon-
key for each white matter region of interest.

  Data Analysis 
 Mixed factor analysis of variance was used to test the hypoth-

esis that intermittent separation stress increases ventromedial 
and not dorsolateral prefrontal cortical volumes. The stress versus 
no-stress comparison was considered a between-subjects factor 
and brain side was included as a within-subjects factor. The study 
was not adequately powered to detect gender differences and gen-
der was therefore excluded from analysis.

  Anatomical mesh modeling was used to subsequently exam-
ine cortical thickness unconstrained by predefined cortical re-
gions of interest. The effects of intermittent separation stress were 
analyzed using least squares regression with statistically signifi-
cant differences visualized on a group-average brain template. 
Group differences were verified on individual brains by inverting 
the spherical surface transformations for each monkey subject. 
One male and one female from the separation stress condition 
were excluded from the cortical thickness analysis because their 
anatomical mesh models could not be resolved.

  Lastly, analysis of variance was used to examine stress effects 
on prefrontal white matter fractional anisotropy. Pearson correla-
tions were determined to assess relationships between white mat-
ter anisotropy and prefrontal cortical volumes. The descriptive 
statistics presented below are mean  8  SEM and all test statistics 
are evaluated with two-tailed probabilities (p  !  0.05).

  Results 

 In keeping with previous studies we found that in-
termittent separation stress increased ventromedial 
(F(1,17) = 6.49, p = 0.021) and not dorsolateral (p = 0.11) 

prefrontal cortical volumes compared to the no-stress 
control condition with total brain volume variation con-
trolled as a statistical covariate ( fig. 1 b). The stress-by-
brain side interactions were not significant for either vol-
umetric measure of prefrontal cortex.

  Intermittent separation stress also increased cortical 
thickness in several clusters that together encompassed 
6% of all cortical tissue ( table 1 ). None of these clusters 
were found within the pre-defined prefrontal regions 
( fig. 2 ). Clusters of increased cortical thickness induced 
by intermittent separation stress were located in dorsolat-
eral premotor cortex (clusters R1 and L2), medial cingu-
late cortex (clusters R3 and L6), and the posterior parahip-
pocampal gyrus (clusters R4 and L7) on both sides of the 
brain ( fig. 2 ). On average, cortical thickness was only 1% 
greater in prefrontal regions of monkeys exposed to sepa-
ration stress compared to the no-stress condition (p = 
0.610). In contrast, the surface area of prefrontal cortex 
was 8% greater (F(1,16) = 4.92, p = 0.041) in monkeys ex-
posed to intermittent separation stress (2,226  8  49 mm 2 ) 
compared to the no-stress condition (2,066  8  53 mm 2 ).

  Previously, we found that intermittent separation 
stress increased prefrontal cortical and underlying white 
matter volumes in a different sample of monkeys  [20] . 
Here, we used diffusion tensor imaging to examine pre-
frontal white matter in terms of fractional anisotropy 
( fig. 3 a). Intermittent separation stress increased ventro-
medial (F(1,18) = 4.64, p = 0.045) and not dorsolateral 
(p = 0.418) prefrontal white matter fractional anisotropy 
compared to the no-stress condition ( fig. 3 b). This re-
gion-specific difference coincides with separation stress-
induced differences in ventromedial and not dorsolateral 
prefrontal cortical volumes. White matter measures of 
fractional anisotropy in ventromedial (r = 0.53, d.f. 18, 
p = 0.016) and not dorsolateral (p = 0.618) regions corre-
lated with their respective volumes of prefrontal cortex. 
No other separation stress effects were identified by an 
unbiased voxel-based exploratory analysis of white mat-
ter fractional anisotropy.

  Discussion 

 In neuroscience, plasticity has traditionally been stud-
ied at the synaptic level in the context of learning and 
memory. Results from our studies of monkeys suggest 
that the learning-like process of coping with stress has 
broader effects on plasticity in prefrontal development. 
Exposure to intermittent social separations that simulate 
a naturally occurring but stressful transition in develop-
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  Fig. 2.  Social separation stress-induced differences in cortical 
thickness. Blue clusters on brain templates depict regions where 
cortex is significantly thicker (p  !  0.05) after exposure to inter-
mittent social separation stress compared to the no-stress condi-
tion (n = 9 monkeys per condition). Red clusters signify vice ver-
sa. Dashed lines demarcate the posterior boundary of prefrontal 
regions, and measures of cortical thickness for each labeled clus-
ter are provided in  table 1 . 
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  Fig. 3.  Social separation stress-induced adaptations in prefrontal 
white matter development.  a  Representative diffusion tensor im-
ages of fractional anisotropy in dorsolateral (dlPWM) and ven-
tromedial (vmPWM) prefrontal white matter.  b  Ventromedial 
prefrontal white matter fractional anisotropy is greater in mon-
keys exposed to intermittent social separation stress compared to 
the no-stress condition (n = 9–10 monkeys per condition; mean 
 8  SEM). The asterisk signifies a stress main effect (p  !  0.05). 
Stress effects were not discerned in dorsolateral prefrontal regions 
and none of the stress-by-brain side interactions were statistical-
ly significant.   
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cortical development.  a  Representative T 1 -weighted coronal im-
ages of dorsolateral (dlPFC) and ventromedial (vmPFC) prefron-
tal cortex.  b  Ventromedial prefrontal cortical volumes are larger 
in monkeys exposed to intermittent social separation stress com-
pared to the no-stress condition (n = 9–10 monkeys per condition; 
mean  8  SEM). The asterisk signifies a stress main effect (p  !  
0.05). Stress effects were not discerned in dorsolateral prefrontal 
regions and none of the stress-by-brain side interactions were sta-
tistically significant. 
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ment increases ventromedial and not dorsolateral pre-
frontal cortical volumes. Increased ventromedial pre-
frontal cortical volumes reflect surface area expansion 
and coincide with increased white matter myelination in-
ferred from neuroimaging. In published studies of the 
same monkeys, we previously reported that intermittent 
separations diminish subsequent stress-levels of cortisol, 
increase exploration of novel situations, and enhance 
prefrontal-dependent cognitive control of behavior  [15, 
17, 18] . Taken together, these findings suggest a role for 
prefrontal neuroadaptations in arousal regulation and 
resilience.

  The cellular basis of stress-induced prefrontal neuro-
adaptations is unknown. Prefrontal cortical cell prolif-
eration, dendritic elaboration, and synapse formation are 
largely complete soon after parturition in human and 
nonhuman primates  [38, 39] . Around puberty, prefrontal 
cortical volumes then undergo a significant decline that 
corresponds with synaptic pruning  [40]  and possibly 
neuronal cell loss  [41] . Diminished usage-dependent cell 
loss and selective retention of synaptic connections in 

ventromedial prefrontal cortex may accompany the 
learning-like process of coping with early life stress. This 
possibility is consistent with evidence of experience-de-
pendent prefrontal plasticity in adolescent rats  [42] .

  Unlike the pattern of prefrontal gray matter growth 
and regression, prefrontal white matter increases linearly 
throughout childhood and adolescence in primates  [30, 
43] . White matter is composed of axons sheathed in my-
elin produced by oligodendrocytes, and increased my-
elination induced by early experiences appears to affect 
information processing in distributed neural networks 
 [29] . Despite evidence that coping with stress depends on 
myelinated prefrontal cortical and subcortical intercon-
nections  [24, 25, 44] , myelination is seldom considered in 
discussions of neural plasticity as a mechanism for expe-
rience-dependent resilience  [45–47] .

  The observation that stress affects ventromedial and 
not dorsolateral prefrontal white matter interconnections 
corresponds with structural and functional differences 
between these regions. The dorsolateral region is primar-
ily comprised of granular cortex  [48, 49]  and its connec-
tions are consistent with executive functions, i.e. atten-
tion, planning, and working memory  [50, 51] . The ven-
tromedial region largely consists of agranular cortex  [48, 
49]  and its connections indicate a role in visceral and sen-
sory information integration, autonomic and neuroen-
docrine systems regulation, and the control of adaptive 
emotional behavior  [44, 52, 53] .

  Effect sizes for stress-induced prefrontal neuroadapta-
tions are small but similar in magnitude to brain changes 
induced by environmental enrichment in marmoset 
monkeys  [54]  and rats  [55, 56] . Enrichment entails expo-
sure to novel inanimate and/or social stimulation  [57]  
and elicits neuroendocrine indications of mild stress in 
rats  [58] . After exposure to enrichment, however, rats 
show diminished anxiety  [57]  and enhanced prefrontal-
dependent learning  [59]  compared to nonenriched con-
trols. These findings combined with our studies suggest 
that enrichment effects may be mediated, in part, by the 
process of coping with stress.

  Controlled exposure to stress-related cues is also a fea-
ture of resiliency training for people that work in condi-
tions where performance in the face of adversity is re-
quired, e.g. medical and military personnel, aviators, po-
lice, firefighters, and rescue workers  [7, 60] . A similar 
process likewise occurs during cognitive behavior ex-
posure therapy for stress-induced psychopathology. Pa-
tients are taught to confront their stress-related memo-
ries in imagination and then to interact with stress-in-
ducing objects or situations in vivo. Repeated exposure to 

Table 1. Social separation stress-induced differences in cortical 
thickness determined by unbiased mesh modeling analysis

Cluster Area
mm2

Mean (SEM) cortical thickness
mm

p

intermittent
separations

no 
separations

L1 132.74 2.80 (0.02) 2.64 (0.03) 0.001
L2 358.79 2.23 (0.03) 2.07 (0.03) 0.001
L3 29.07 1.82 (0.04) 1.97 (0.05) 0.039
L4 83.72 1.55 (0.04) 1.34 (0.04) 0.003
L5 50.84 1.19 (0.04) 0.96 (0.07) 0.010
L6 65.32 2.23 (0.045) 2.03 (0.05) 0.008
L7 370.92 1.84 (0.03) 1.68 (0.03) 0.000
R1 61.29 2.73 (0.04) 2.55 (0.05) 0.009
R2 97.42 1.90 (0.03) 2.08 (0.04) 0.003
R3 154.71 2.17 (0.03) 2.06 (0.03) 0.015
R4 286.32 1.79 (0.04) 1.65 (0.03) 0.004
R5 8.08 1.61 (0.03) 1.47 (0.05) 0.029

The area and thickness of all clusters identified as significant-
ly different in monkeys exposed to intermittent separation stress 
compared to the no-stress condition are presented for each cluster 
location depicted in figure 2 (n = 9 per condition). Total cortical 
area of the group-average brain template is 25,200 mm2. Cluster-
wise cortical thickness group differences were confirmed by 
MANOVA for the left (clusters L1–L7, Wilks’ lambda = 0.125, 
F(7,10) = 9.973, p = 0.001) and right (clusters R1–R5, Wilks’ lamb-
da = 0.335, F(5,12) = 4.757, p = 0.013) hemispheres.
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