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ABSTRACT Under physiological and artificial conditions, the dendrites of neurons can be exposed to electric fields. Recent
experimental studies suggested that the membrane resistivity of the distal apical dendrites of cortical and hippocampal pyramidal
neurons may be significantly lower than that of the proximal dendrites and the soma. To understand the behavior of dendrites in
time-varying extracellular electric fields, we analytically solved cable equations for finite cylindrical cables with and without a leak
conductance attached to one end by employing the Green’s function method. The solution for a cable with a leak at one end for
direct-current step electric fields shows a reversal in polarization at the leaky end, as has been previously shown by employing
the separation of variables method and Fourier series expansion. The solution for a cable with a leak at one end for alternating-
current electric fields reveals that the leaky end shows frequency preference in the response amplitude. Our results predict that
a passive dendrite with low resistivity at the distal end would show frequency preference in response to sinusoidal extracellular
local field potentials. The Green’s function obtained in our study can be used to calculate response for any extracellular electric
field.
INTRODUCTION
The neurites of nerve cells can be subjected to extracellular

electric fields either physiologically or artificially. Physiolog-

ically, for instance, it has been shown that the extracellular

potential recorded from the stratum lacnosum-moleculare

in the CA1 region oscillates with a 180� difference in phase

compared to the potentials in the stratum oriens (1,2) and

during hippocampal q-activity. In such a situation, the

dendrites of the pyramidal cells experience oscillatory extra-

cellular electric fields. It has been proposed that the electric

fields produced by neurons may modify the activities of

nearby neurons (3,4). Artificially, electric stimulation is

used to activate excitable cells in clinical and laboratory

settings (5,6). Efforts have been made at gaining an under-

standing of how the membrane potential of neurites behaves

in response to extracellular fields (7–16).

Most neurites have complex electric properties because

of there being various voltage-gated ion-channels along

branched dendrites. Therefore, it would be necessary to take

all morphological and electrophysiological properties into

account to enable us to fully understand the electric behavior

of neurites in electric fields. Before considering the impact of

active properties and morphology, however, we need to get

a fundamental understanding of the behavior of simple

passive finite cables exposed to extracellular electric fields.

Tranchina and Nicholson (15) provided steady-state solutions

for the cable equation in which an extrinsic electric field was

applied to a uniform passive cylindrical cable. The transient
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response of passive cables to extracellular stimulation was

studied by Cartee and Plonsey (7). By numerically solving

the cable equation, they showed that the rate of rise is faster

for shorter cables than for longer ones. For increasingly longer

cables, they showed that the responses approach that of an

infinite cable, namely error functions.

The behavior of the membrane potential of hippocampal

pyramidal neurons in response to extrinsically applied weak

direct current (DC) step fields has been experimentally inves-

tigated either by using conventional whole-cell recording

techniques (17,18) or by using a fast voltage-sensitive dye

imaging technique (19). If the dendrites of the cells can be

considered as finite cables with uniform passive parameters

such as membrane resistivities, intracellular resistivities,

and membrane capacitance, then Cartee and Plonsey’s study

(7) suggests that the rate of rise in the membrane potential

for a DC step extracellular field should be faster than that

for current injection because the electrotonic length of pyra-

midal cells has been estimated to be shorter than a few space

constants (20–23). Contrary to expectations, the rate of rise

near the soma was slow (19). In addition to this, a peculiar

membrane response, a reversal in polarization during DC

step field stimulation, was recorded from the distal part of

the apical dendrites (17,18). Because it has been shown that

low threshold voltage-gated ion channels such as A-type

Kþ channels and T-type Ca2þ channels, and hyper-polariza-

tion-gated ion channels such as hyper-polarization-activated

nonselective cation channels (Ih channels) are present in the

distal part of the dendrites, the actions of those channels can

conceivably be responsible for the discrepancy. However,

there is another possibility. Recent experimental studies
doi: 10.1016/j.bpj.2009.10.041
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FIGURE 1 (A) A finite length cable with extracellular stimuli applied by a

pair of electrodes. The dendrite subjected to extracellular electric fields is

idealized as a finite cylindrical cable, which has resistive intracellular and

extracellular media denoted by resistances, ri and re, stimulated by extracel-

lular currents, Is(t) and � Is(t) with an anode and a cathode located at cable

ends. Stimulus current flows from the anode to the cathode via the intracellular

and extracellular media. To capture effects of the nonuniform membrane resis-

tivity of the dendrite, the shunt conductance g is attached to one end at x¼ L.

The values rm, cm, and Vm are the membrane resistance, membrane capaci-

tance, and membrane potential, respectively. (B) An equivalent system with

Shunt Cable in AC Electric Field 525
suggested that the membrane resistivity of the distal apical

dendrites of cortical and hippocampal pyramidal neurons

may be significantly lower than that of the proximal dendrites

and the soma (24–27). A theoretical study by Svirskis et al.

(14) claimed that the analytic solution of a passive cable

with a significantly large shunt at one end shows a reversal

in the membrane potential response at the shunt end and

a slow rise at the tight end in response to a DC step applied

field. Thus, it is possible that the slow rise and response

reversal in pyramidal cell dendrites are due to the low

membrane resistivity at distal apical dendrites.

We are interested in investigating the electric responses of

a passive finite dendritic cable with a significant shunt at one

end in response to oscillating extracellular electric fields. For

this purpose, we obtained the Green’s function of a passive

finite cable for an extracellular field. Analytic solutions for

a passive finite uniform cable in an extracellular DC step

field confirmed the numerical solutions for finite cables

previously reported by Cartee and Plonsey (7). The solutions

for a shunt-attached finite cable were identical to the ones

reported by Svirskis et al. (14) showing a response reversal

at the shunt end and a slow rise at the tight end. We obtained

analytic solutions for a shunt-attached cable in an extracel-

lular sinusoidal electric alternating-current (AC) field by

using the Green’s function. At the end with no shunt, the

amplitude of the change in membrane potential decays as

the frequency of the field increases, whereas at the other end

where the shunt is attached, the amplitude of the response

shows a frequency preference.

Several studies have shown frequency preferences in

responses that were induced by alternating current injection

through recording electrodes to central nervous system

(CNS) neurons, and the frequency preference has been shown

to be dependent on voltage-sensitive membrane conductances

(28–32). Our results show that CNS neurons with leaky

membrane resistivity at distal dendrites may show a frequency

preference because of their passive membrane properties

when they are in an oscillating extracellular electric field.

intracellular stimuli given by a pair of current injections. Through variable

reduction of the cable system (A) to the cable equation (Eq. 1) and for

boundary conditions (Eq. 3) based on the membrane potential, the cable

system (A) can be transformed into the equivalent system with grounded extra-

cellular medium and a current pair injected into both ends of the cable. In this

equivalent system, the intracellular resistance r0i is ri þ re, the shunt conduc-

tance g0 attached at x ¼ L is ri=ri þ reg, and intracellular stimulus currents at

x¼ 0 and x¼ L become I
0

sðtÞ ¼ � re

riþre
IsðtÞ and � I

0

sðtÞ ¼ re

riþre
IsðtÞ; respec-

tively. (C) Instead of injecting I0s(t) and � I0s(t) at x ¼ 0 and x ¼ L, current

density Ii(x, t) ¼ I0s(t)[d(x � 3) � d(x � (L � 3))] is given along the cable.

The value 3 is an infinitesimal distance. The injected current does not flow

through the very end of the cable, hence Eq. 6. Through this transformation,

we can derive analytic solutions for any extracellular stimulus.
THEORY

Cable equation

Let us consider a finite cylindrical cable that has resistive

intracellular and extracellular media as shown in Fig. 1 A.

The spatial-temporal variation of the membrane potential

along the cylindrical cable is described by the well-known

cable equations (33)

t
vVmðx; tÞ

vt
¼ l2v2Vmðx; tÞ

vx2
� Vmðx; tÞ; (1)

where Vm is the membrane potential in mV, a difference

between intracellular and extracellular potentials. The values

l and t are the space constant in cm and time constant in ms,

respectively, defined by
l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rm

re þ ri

r
and t ¼ rmcm;

where ri and re are the intracellular resistance (in U/cm) and

extracellular resistance (in U/cm). The values rm and cm are
Biophysical Journal 98(4) 524–533
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the membrane resistance (in U/cm) and membrane capaci-

tance (in F/cm), respectively.

Boundary conditions for extracellular
electric fields

A finite-length cable subjected to extracellular electric fields

can be represented as an equivalent system with extracel-

lular stimulations of an anode and cathode pair located at

the cable ends (7), as shown in Fig. 1 A. Stimulus current

flows from the anode to the cathode via the intracellular

and extracellular media. The finite-length cable with sealed

ends at x ¼ 0 and a shunt g (in pS) attached at x ¼ L (in cm)

stimulated with such an electrode pair can be formulated

as cable equation (Eq. 1) with the following boundary

conditions (7),

vVeðx; tÞ
vx

����
x¼ 0

¼ �reIsðtÞ;
vVeðx; tÞ

vx

����
x¼ L

¼ �reIsðtÞ;

vViðx; tÞ
vx

����
x¼ 0

¼ 0;
vViðx; tÞ

vx

����
x¼ L

¼ rigðVi � VeÞ; (2)

where Vi and Ve are the intracellular and extracellular poten-

tial, and the extracellular currents at x ¼ 0 and x ¼ L are Is(t)
and � Is(t) pA, respectively. In this case, there is no current

flow through the sealed ends; thus the intracellular current is

zero at x¼ 0. At x¼ L, some current flows through the shunt;

thus the intracellular current is not zero. By subtracting the

boundary conditions for the intracellular potential from those

for the extracellular potential, we derive the boundary condi-

tions for the membrane potential, Vm:

vVmðx; tÞ
vx

����
x¼ 0

¼ reIsðtÞ;

vVmðx; tÞ
vx

����
x¼ L

¼ reIsðtÞ þ rigVmðL; tÞ: (3)

If g ¼ 0, then the cable is sealed at both ends and

symmetrical.

Although the cable equation (Eq. 1) with the boundary

conditions (Eq. 3) describes the situation shown in Fig. 1 A,

Vi and Ve are no longer explicitly included. As mentioned in

Cartee and Plonsey (7) and Svirskis et al. (14), the boundary

conditions (Eq. 3) are formally equivalent to current injec-

tion into both ends of the cable. This is because the cable

equation (Eq. 1) with the boundary conditions (Eq. 3) can

be interpreted as a cable system with grounded extracellular

medium and current pair injected into both ends of the cable,

as shown in Fig. 1 B. Here, the intracellular resistance r0i is

ri þ re, the extracellular resistance r0e is 0, the shunt conduc-

tance g0 is ri=ri þ reg, and the intracellular stimulus currents

at x ¼ 0 and x ¼ L become

I
0

sðtÞ ¼ �
re

ri þ re

IsðtÞ and � I
0

sðtÞ ¼
re

ri þ re

IsðtÞ;
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respectively. The boundary conditions in this situation are as

follows (Eq. 4), and are the same as Eq. 3. Note that the

direction of the injecting current is inward at the anode and

outward at the cathode:

vVmðx; tÞ
vx

����
x¼ 0

¼ �r
0

iI
0

sðtÞ;

vVmðx; tÞ
vx

����
x¼ L

¼ �r
0

iI
0

sðtÞ þ r
0

ig
0VmðL; tÞ: (4)

This alternative interpretation of the situation may help us

understand the behavior of the solution. Still, there is a serious

problem. Generally, it is difficult to mathematically treat such

time-varying boundary conditions depending on the stimulus

current, I0s(t). In fact, analytic solutions have so far been

derived only for the case of a DC step input, (g ¼ 0 (7);

g s 0 (14)). To go around this difficulty, we derived a slightly

modified cable equation (Eq. 5) and boundary conditions

(Eq. 6) for a physically equivalent situation (Fig. 1 C). In

this situation, instead of injecting I0s(t) and �I0s(t) at x ¼ 0

and x ¼ L, current density Ii(x, t) ¼ I0s(t)(d(x � 3) � d(x �
Lþ 3)) is given along the cable. Here, d(t) is the Dirac d-func-

tion and 3 is an infinitesimal distance along the cable. The

injected current does not flow through the very end of the

cable, hence the boundary condition (Eq. 6):

t
vVmðx; tÞ

vt
¼ l2v2Vmðx; tÞ

vx2
� Vmðx; tÞ þ l2r

0

iIiðx; tÞ; (5)

vVmðx; tÞ
vx

����
x¼ 0

¼ 0;
vVmðx; tÞ

vx

����
x¼ L

¼ r
0

ig
0VmðL; tÞ: (6)

The system is expressed as a cable equation with boundary

conditions independent of the stimulus current, consisting

of the reflecting boundary condition at x ¼ 0 and the leaky

boundary condition at x ¼ L. Through this transformation,

we can derive analytic solutions for any extracellular stim-

ulus current, Is(t), as follows.

Derivation of the Green’s function

Shunt-end case

The eigenvalues and eigenfunctions of the cable equation

(Eq. 1) satisfying the boundary conditions (Eq. 6) are given

by the following expressions (14,33–35):

mntanðmnLÞ ¼ rig; n ¼ 0; 1; 2;.; (7)

4nðxÞqnðtÞ ¼ cosðmnxÞexpð�t=knÞ; (8)

kn ¼
t

1 þ m2
nl2
; (9)

where the eigenvalues, mn, obey the transcendental equation
(Eq. 7).

Here, we calculate the inner products between the eigen-

functions,
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an;m ¼ h4nðxÞ;4mðxÞi ¼
Z L

0

dxcosðmnxÞcosðmmxÞ;

and then we obtain

an;m ¼
"

L

2
þ rig

2

�
cosðmnLÞ

mn

�2
#

dn;m; (10)

where dn, m is the Krönecker d. Because the set of orthogonal

eigenfunctions, {fn(x)}, is complete (36), the d-function can

be expanded in a series of these eigenfunctions:

dðx � x0Þ ¼
XN
n¼ 0

4nðx0Þ4nðxÞ
an;n

: (11)

This enables us to derive the Green’s function of the

cable equation (Eq. 1) with asymmetric boundary conditions

(Eq. 6):

Gðx; x0; t � t0Þ ¼ 1

t

XN
n¼ 0

4nðx0Þ
an;n

4nðxÞexp

�
� t � t0

kn

�
; (12)

where x is the observation point for an impulse response, and

x0 and t0 are the position and time of an impulse input, respec-

tively. A detailed explanation of the derivation is given in the

Appendix.

Sealed-end case

When g ¼ 0, the eigenvalues and eigenfunctions expressed

in Eqs. 7 and 8 become

mn ¼
np

L
and an;m ¼

L

2
dn;m: (13)

Therefore, the Green’s function derived here includes the

conventional Green’s function for sealed ends (37–39).

Response to extracellular stimulus

The advantage to using the Green’s function method is that

it enables us to obtain analytic solutions of responses to

any extracellular stimulus current, Is(t). According to the

transformation into the equivalent system described in

Eqs. 5 and 6, by convolving the Green’s function (Eq. 12)

with the current density Ii(x, t) in Eq. 5, we can obtain a

solution for the cable response to the extracellular stimulus,

Is(t), as

Vmðx; tÞ ¼
XN
n¼ 0

AnðxÞ
Z t

0

dt0exp

�
� t � t0

kn

�
Isðt0Þ; (14)

AnðxÞ ¼
rel

2

tan;n

ð4nðLÞ � 4nð0ÞÞ4nðxÞ: (15)

This equation means that a finite length cable perturbed by

extracellular stimuli can be expanded in a series of first-order

lag elements, as in the case of intracellular stimuli
(14,33–35). Namely, it is equivalent to a parallel circuit con-

sisting of a set of first-order lag elements with different time

constants, kn (n ¼ 0, 1, 2, $$$).

Equation 14 can be separated into the following two

terms:

Vmðx; tÞ ¼
rel

2

t

XN
n¼ 0

4nðLÞ
an;n

4nðxÞ
Z t

0

dt0exp

�
� t � t0

kn

�
Isðt0Þ

� rel
2

t

XN
n¼ 0

4nð0Þ
an;n

4nðxÞ
Z t

0

dt0exp

�
� t � t0

kn

�
Isðt0Þ:

(16)

Here, the first term corresponds to a response to the injection

current, re

riþre
IsðtÞ, into the shunt end (x ¼ L),

and the second term is equal to that to the injection cur-

rent, � re

riþre
IsðtÞ, into the sealed end (x ¼ 0). Consequently,

the difference between the two responses to the intracellular

stimuli at both ends of the cable is equal to the response to

the extracellular stimulation.
RESULTS

Numerical calculation and parameters

To solve Eq. 1 numerically with the boundary conditions

(Eq. 3), we employed the implicit method (40).

The eigenvalues mn obeying Eq. 7 were calculated with

the Newton’s method (40). Moreover, for the numerical

calculations of Eq. 14, we approximated the infinite series

composing Eq. 14 as a finite series until n ¼ 1000. In this

case, the error ratio is 0.382%. Here, the error ratio we

used is defined as the difference between the steady solution

of Eqs. 1 and 3 in response to the DC stimulus calculated by

the implicit method and that of the finite series until n¼ 1000

normalized to the former solution.

We used the parameter values suggested for the hippo-

campal CA1 pyramidal neuron: specific membrane capaci-

tance Cm ¼ 1.5 (mF/cm2) (25), specific membrane resistivity

Rm¼ 30 (kUcm2) (25,41,42), specific intracellular resistivity

Ri¼ 200 (U-cm) (22,42), diameter of the cable d¼ 1.2 (mm)

(22), and length of the cable L ¼ 700 (mm) (22). The param-

eters for determining the electric characteristics per unit

length of cable were calculated as rm ¼ Rm/(pd), rs ¼ Rs/

(pd), ri ¼ 4Ri/(pd2), and cm ¼ Cmpd. The extracellular

resistance was set to be re ¼ 20 (U-cm) (39).

The inhomogeneous membrane resistance of the dendrite,

which has been reported by Stuart and Spruston (27), Inoue

et al. (25), Golding et al. (24), and Omori et al. (26), has been

modeled by assuming that its effect can be approximated

by the effect of the shunt g attached to the uniform cable

at x ¼ L. In Figs. 2–4, we used g ¼ 880 pS. If one-tenth

of the cylindrical cable whose whole length is 700 mm is

leakier than other nine-tenths of the cable, the membrane

resistance per unit length of the leakier part corresponding

to g ¼ 880 pS becomes 7.96 MU-cm. When the diameter
Biophysical Journal 98(4) 524–533



FIGURE 2 Biphasic response at the shunt end (x ¼ L) to DC step extra-

cellular stimulus. The resistor sticking out of the cable at the x¼ L end repre-

sents the shunt and the truncated cone with a resistor inside it represents

a recording electrode. In the upper plots, the dashed line is a numerical solu-

tion to the cable equation using the implicit method, and the solid line is the

theoretical solution from Eq. 18. The lower trace shows a DC step extracel-

lular stimulus current. These solutions show slower hyperpolarization after

rapid depolarization, i.e., a biphasic change. Here, g ¼ 880 pS.
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of the cable is 1.2 mm, the specific membrane resistivity

is 3 kUcm2, which is one-tenth of the specific membrane

resistivity we used.
Biophysical Journal 98(4) 524–533
Response to DC step extracellular stimulus

First, we consider the case of a DC step current input, Is(t) ¼
Icu(t) where

uðtÞ ¼
�

1 ðtR0Þ;
0 ðt < 0Þ: (17)

According to Eq. 14, the response to the DC step stimulus is

Vmðx; tÞ ¼
XN
n¼ 0

AnðxÞIckn

�
1� exp

�
� t

kn

��
: (18)

This solution is formally similar to that of Svirskis et al. (14).

Note that in the strict sense, the model used here is not iden-

tical to the one of Svirskis et al., which neglected the resistive

extracellular medium. Their model is classified as a Rattay’s

model (13), assuming that the potential gradients in the

extracellular space are uniform.

When g ¼ 0, applying a Laplace transform to the solution

Eq. 18 yields

~Vmðx; sÞ ¼
reIcl

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ts þ 1
p

sinh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ts þ 1
p

ð2x � LÞ
2l

�

cosh

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ts þ 1
p

L

2l

� : (19)
FIGURE 3 Cable with a shunt shows a frequency prefer-

ence in response to a ZAP extracellular stimulus. (A-1) AC

extracellular stimulus current with an increasing frequency,

i.e., ZAP current. (A-2) Frequency of the ZAP current as

a function of the time t. The frequency of the ZAP current

used here exponentially increases from 0 Hz to 200 Hz

obeying freq ¼ 200=ðexpð1Þ � 1Þ½expðt=1000Þ � 1�. (B-1)

The trace is the numerically obtained ZAP responses at the

x ¼ L end of the cable with a shunt (g ¼ 880 pS). The

arrowhead in panel B-1 indicates the maximum point of

the amplitude responses at the shunt end of the cable

with the shunt to the ZAP extracellular stimulus. (B-2)

The trace is the numerically obtained ZAP responses at

the x ¼ L end of the cable without shunt (g ¼ 0 pS). AC

extracellular stimuli do not cause the frequency preference

in the cable without the shunt. (C and D) The traces in

panels C and D show numerically obtained responses at

the shunt end (x ¼ L) to ZAP injection currents into the

shunt end (x ¼ L) and the sealed end (x ¼ 0), respectively.

A subtraction of the numerical solution in panel D from

that in panel C is equal to the response in panel B-1. The

amplitudes responses to the ZAP injection current only

into one end monotonically decrease with increasing

frequency, in contrast with the frequency preference in

response to the ZAP extracellular stimulus.



FIGURE 4 Comparison of amplitude-frequency characteristics in the

cables with and without a shunt. The long broken line and solid line, respec-

tively, denote amplitude-frequency characteristics of the cable with a shunt

(g ¼ 880 pS) at the sealed end (x ¼ 0) and the shunt end (x ¼ L) in response

to the AC extracellular stimuli. The dotted line denotes amplitude-frequency

characteristics of the cable without shunt (g ¼ 0 pS). These results were

obtained from Eq. 22. The dots show the amplitude-frequency responses

of the cable equation with the shunt at the shunt end (x ¼ L) obtained by

the implicit method in the sinusoidal steady state. Only the leaky part of

the cable with the shunt shows a frequency preference. The amplitude of the

frequency response at the sealed end of the cable with the shunt is larger than

that of the cable without the shunt.
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Moreover, according to the final value theorem, the steady

solution becomes

Vmðx;NÞ ¼ 2reIcl

sinh

�
2x � L

2l

�

cosh

�
L

2l

� : (20)

These results are equal to Eq. 47 in Cartee and Plonsey (7).

Fig. 2 superimposes the theoretical solution of the cable

with a shunt at one end on the numerical simulation of

Eqs. 1 and 3. Both solutions show slow hyperpolarization

after rapid depolarization, i.e., a biphasic change, as previ-

ously reported (14,19,26).
Response to AC extracellular stimulus

Next, we consider the case of an AC input current, Is(t) ¼ Ic

sin(ut). The value u is the angular frequency of the AC

extracellular stimulus. Here, we elucidate the frequency

dependence of the cable with a shunt at one end in response

to an AC extracellular stimulus. After enough time passes,

the frequency response converges to

Vðx; tÞ ¼ Bðx;uÞIcsinðut þ Fðx;uÞÞ; (21)

where the amplitude, B(x, u), and the phase, F(x, u), are

Bðx;uÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi XN
n¼ 0

1

1þ k2
nu2

AnðxÞ
!2

þ
 XN

n¼ 0

knu

1þ k2
nu2

AnðxÞ
!2

vuut ;

(22)
�1

PN
n¼ 0

knu

1 þ k2
nu2

AnðxÞ

Fðx;uÞ ¼ �tan PN

n¼ 0

1

1 þ k2
nu2

AnðxÞ
: (23)

Fig. 3 B-1 shows the frequency response at the shunt end

(x¼ L) obtained by a numerical simulation for the ZAP stim-

ulus. The frequency of the ZAP stimulus obeys the following

equation:

freq ¼ 200

expð1Þ � 1

h
exp
� t

1000

�
� 1
i
:

As denoted by the arrowhead in Fig. 3 B-1, the amplitude

was maximized at ~10 Hz. On the other hand, as shown in

Fig. 3 B-2, in contrast with the frequency preference of the

cable with the shunt end, the amplitude response of the cable

without the shunt end monotonically decreases as the

frequency of the stimulus increases.

As previously mentioned, the extracellular stimulations

with the anode and cathode were formally equivalent to

current injection into both ends of the cable. Fig. 3, C and

D, shows the frequency response at the shunt end (x ¼ L)

to an intracellular stimulus at one side of the cable ends

(x¼ 0 and x¼ L) (see the inset in Fig. 3, C and D). Subtract-

ing the numerical solution in Fig. 3 D from that of Fig. 3 C is

equal to the response to the extracellular stimulation shown

in Fig. 3 B-1. As shown in Fig. 3, C and D, the amplitudes

of the responses to the ZAP intracellular stimulus only at

one end monotonically decrease with increasing frequency,

in contrast with the frequency preference in response to the

ZAP extracellular stimulus as shown in Fig. 3 B-1.

Fig. 4 shows the amplitude-frequency characteristics in

the cables with and without a shunt. In contrast with the

frequency preference of the shunt end (x ¼ L), the amplitude

response at the sealed end (x ¼ 0) of both the cables with

and without a shunt monotonically decreases as the fre-

quency of the stimulus increases. Therefore, only the leaky

part of the cable shows a frequency preference in response

to an AC extracellular stimulus. Furthermore, as shown in

Fig. 4, we can clearly see that the amplitude of the frequency

response of the cable at the sealed end (x¼ 0) with a shunt, is

larger than that of the cable without a shunt in low frequency

range.

As shown in Fig. 5, A and D, the amplitude of the

frequency response at the sealed end becomes larger as the

shunt conductance g and the membrane time constant t

increase.

Fig. 5, B-1, B-2, C, and E, shows the parameter depen-

dence of the preferred frequency maximizing the amplitude

response at the shunt end (x ¼ L) to the AC extracellular

stimulus. Depending on the shunt conductance g and the

membrane time constant t, the preferred frequencies varied

from the d- to the b-bands (1–30 Hz). The dominant frequen-

cies inducing large amplitudes are mainly in d- and q-bands

(1–12 Hz).
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FIGURE 5 Parameter dependence of the frequency response. (A) Amplitude-frequency characteristics in the sealed end (x ¼ 0) depending on the shunt

conductance g. (B, 1 and 2) Amplitude-frequency characteristics and normalized characteristics in the shunt end (x ¼ L), depending on g. Here, the membrane

time constant t ¼ 45 ms. (C) Preferred frequency maximizing the amplitude response at the shunt end (x ¼ L) depending on g and t. (D) Amplitude at 0 Hz in

the sealed end (x ¼ 0) depending on g and t. (E) Amplitude maximized at the preferred frequency in the shunt end (x ¼ L) depending on g and t. These results

were obtained from Eq. 22. Depending on these parameters, the preferred frequencies at x ¼ L vary from d- to b-bands. The dominant frequencies inducing

large amplitudes are mainly in d- and q-bands. On the other hand, the amplitude of the frequency response at x ¼ 0 becomes larger as g and t increase.
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DISCUSSION

To understand the behavior of dendrites subjected to time-

varying extracellular electric fields, we analytically solved

cable equations for finite cylindrical cables with and without

a leak conductance attached to one end by employing the

Green’s function method. Analytic solutions have previously

been derived only in the case of the DC step stimulus (sealed

case (7); shunted case (14)) because it is difficult to mathe-

matically treat time-variable boundary conditions in Eq. 3.

To address this problem, we transformed the cable stimu-

lated by an extracellular electrode pair (Fig. 1 A) into an

equivalent system with grounded extracellular medium and

the current density

Iiðx; tÞ ¼ �
re

ri þ re

IsðtÞ½ðdðx � 3Þ � dðx � ðL� 3ÞÞ�

along the cable (Fig. 1 C), where 3 is an infinitesimal

distance. Through this transformation, the boundary condi-

tions (Eq. 3) are transformed into the boundary conditions

consisting of the reflecting boundary condition and the leaky

boundary condition in Eq. 6. Thus, we can derive analytic

solutions for a general extracellular stimulus by employing

the Green’s function method. As a consequence of this anal-

ysis, we can picture the behavior of a cable subjected to
Biophysical Journal 98(4) 524–533
extracellular electric fields as responses to intracellular

stimuli at both ends of the cable, and this can help us imagine

the behavior of dendrites in time-varying extracellular elec-

tric fields. Moreover, our theoretical framework makes it

possible for us to understand the modifications of neural

activities caused by extracellular electric fields, and thus, it

has the potential for a new understanding of nonsynaptic

interactions of nerve cells via extracellular electric fields.

Whereas the Green’s function of finite cables sealed at

both ends was given in Tuckwell (38) and Koch (39), there

was no clear description for cables with asymmetric

boundary conditions consisting of a reflecting and leaky

one. For such cables, analytic solutions for intracellular

DC step stimuli have been obtained by using the separation

of variables method and Fourier series expansion (33–35).

On the other hand, for the finite cable with symmetric sealed

ends and nonuniform membrane resistivity, the Green’s

function for intracellular stimuli was given in London et al.

(43). For extracellular DC step stimuli, Svirskis et al. (14),

derived solutions here again by using the separation of vari-

ables method and Fourier series expansion. For AC intracel-

lular or extracellular stimuli, however, no analytic solution

has been derived for such cables. To our knowledge, our

study is the first attempt to obtain the Green’s function of



FIGURE 6 Mechanism of the unique behav-

iors induced by extracellular stimuli. (A and B)

The dotted and broken lines denote responses at

the x ¼ L end to DC step intracellular stimulus

at x ¼ 0 and x ¼ L, respectively. These lines

were numerically obtained from the first and

second terms of Eq. 16. The solid lines are

responses to a DC extracellular stimulus, and

they were obtained from Eq. 18. (A) Responses

in the case without shunt (g ¼ 0 pS).

(B) Responses in the case with a shunt (g ¼
880 pS). A delayed response denoted by the

arrowhead in panel B, which is unique to the

shunt case, is the main reason for the biphasic

response. (C and D) The dotted and broken

lines denote phase-frequency characteristics in

response to AC currents injected into x ¼ 0 and

x ¼ L, respectively. The solid lines are phase-

frequency characteristics in responses to an AC

extracellular stimulus. These lines were obtained

from Eq. 23. (C) Responses in the case without

shunt (g ¼ 0 pS). (D) Responses in the case

with a shunt (g ¼ 880 pS). The relative phase

between the dotted and broken lines in panel D

quickly becomes larger than that in panel C as the frequency of stimuli increases. The balance between the increment of the relative phase and the attenuation

of the amplitude with increasing frequency of stimuli is the main reason for the frequency preference. The arrowhead in panel D shows the phase advance

around the preferred frequency.
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finite cable with asymmetric boundary conditions perturbed

by general intracellular/extracellular stimuli. Our solution for

extracellular DC step stimuli (Eq. 18) is formally equivalent

to that of Svirskis et al. (14).

As revealed in Fig. 1 C, we can picture the behavior of

a cable subjected to extracellular electric fields as responses

to intracellular stimuli at both ends of the cable. To elucidate

the mechanism of the unique behaviors induced by extracel-

lular stimuli, we plotted the responses to intracellular stimuli

in Fig. 6. Fig. 6, A and B, shows responses to DC step stimuli

in the cables without and with a shunt at x ¼ L. By com-

paring these figures, we can see a clear distinction between

electric spread speed from x ¼ 0 to x ¼ L in these cables.

The arrowhead in Fig. 6 B denotes a delayed response, which

is unique to the cable with a shunt. The main reason for the

biphasic response is the slow spread of potential from the

sealed end to the shunt end (25,26).

Fig. 6, C and D, shows phase-frequency characteristics in

response to AC stimuli in cables without and with a shunt at

x ¼ L. Whereas in both cables the phase in responses to AC

intracellular stimuli becomes monotonically delayed as the

frequency of stimuli increases, the phase of the cable with

the shunt advances in response to AC extracellular stimuli,

as denoted by the arrowhead in Fig. 6 D. By comparing these

figures, we can see a clear distinction between the relative

phases of the two frequency responses to intracellular stimuli

in these cables. The relative phase of the cable with the shunt

(Fig. 6 D) quickly becomes larger than that of the cable

without the shunt (Fig. 6 C) as the frequency of stimuli

increases. As mentioned previously, the difference between

two sinusoidal waves of the membrane potentials induced
by the AC intracellular stimuli at both ends of the cable is

equal to the wave induced by the AC extracellular stimulus.

If the two waves are in phase, then they will tend to cancel

out. Conversely, if the two waves are out of phase, then the

resultant wave will have a large amplitude. Note that the

polarity of the second term of Eq. 16 is negative. Thus, ampli-

tude of the resultant wave becomes larger as the relative

phase of the two waves become out of phase. On the other

hand, as shown in Fig. 3, C and D, the amplitudes of the

responses to the AC intracellular stimulus only at one end

monotonically decrease with increasing frequency. Conse-

quently, the main reason for the frequency preference is the

balance between the increment of the relative phase and the

attenuation of the amplitude with increasing frequency of

stimuli. Because the quick increment of the relative phase

reflects the slow electric spread from the sealed end to the

shunt end, it is appropriate to say that the biphasic response

in the DC step extracellular stimulation and the frequency

preference in the AC extracellular stimulation share the

same mechanism.

Several studies have shown frequency preference of

responses that were induced by applying an AC current

through recording electrodes to CNS neurons, and the

frequency preference has been shown to be dependent on

voltage-sensitive membrane conductances (28–32). Our theo-

retical results show that CNS neurons with leaky membrane

resistivity at distal dendrites may show a frequency preference

when they are in an oscillating extracellular electric field.

Recently, estimates of the nonuniform distribution of the

dendritic membrane resistance have been obtained using

either a combination of double whole-cell patch clamping
Biophysical Journal 98(4) 524–533
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and simulations or voltage imaging and simulations, and the

distal dendrite was found to be more leaky than the proximal

dendrite in both cortical layer V pyramidal neurons (27) and

hippocampal CA1 pyramidal neurons (24,26,44). Thus, there

is a possibility that both neuron types show a frequency pref-

erence for oscillating extracellular electric fields.

As shown in Fig. 5, depending on the shunt conductance

attached to one end and the membrane time constant, the

preferred frequency varied from d- to b-bands. Particularly

if the membrane time constant is ~20 ms, the finite cable

can tune in the preferred frequency from 0 Hz to 20 Hz

through modulation of the shunt conductance. This result rai-

ses the possibility that CNS neurons show a wide range of

frequency preference depending on the leaky membrane

resistivity at distal dendrites. For example, in an EEG

recording, the hippocampus shows a characteristic 4–12

Hz oscillation, the q-rhythm. As mentioned above, the leaky

distal part of the dendrite may cause a sensitive tuning of

hippocampal CA1 pyramidal neurons in a q-oscillating

extracellular electric field.
Gðx; x0; t � t0Þ ¼ 1

2p

XN
n¼ 0

Z N

�N

du

4nðx0Þ
an;n

iut þ m2
nl2 þ 1

4nðxÞexpðiuðt � t0ÞÞ: (28)
In Fig. 4 and Fig. 5 D, we have shown that the response

amplitude at the sealed end of a cable with a shunt is greater

than that of the cable with no shunt in low-frequency range.

This is because the extracellular stimulating current caused

a larger voltage drop across the sealed membrane than the

shunt membrane. This fact implies that the response at the

sealed end of a cable can be amplified by introducing a shunt

to the other end of the cable. If voltage-gated ion channels for

inward current such as Na channels or Ca channels are

located at the sealed end of the cable, then those channels

are more likely to be activated by applying extracellular

current when the other end has a shunt. The cell body or

the initial segment of a neuron with leaky dendrites may

have higher sensitivity to the extracellular field than those

without leaks.
APPENDIX: DERIVATION OF THE GREEN’S
FUNCTION

Because the set of eigenfunctions {fn(x) ¼ cos(mnx)} is complete, the

Green’s function of the finite-length cable equation (Eq. 1) with the

boundary conditions (Eq. 6) and the d-function representing the impulse

input can be expressed as a series of eigenfunctions as follows:

Gðx; x0; t�t0Þ¼ 1

2p

XN
n¼ 0

Z N

�N

duGðn;u; x0Þ4nðxÞexpðiuðt�t0ÞÞ;

(24)
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1
Z N XN 4 ðx0Þ4 ðxÞ
dðx � x0Þdðt � t0Þ¼
2p �N

du
n¼ 0

n n

an;n

expðiuðt�t0ÞÞ:

(25)

Here, the time components of these functions are represented by the inverse

Fourier transform. Gðn;u; x0 Þ denotes the frequency transfer function of this

system.

The Green’s function satisfies the following equation:

t
vGðx; x0; tÞ

vt
� l2v2Gðx; x0; tÞ

vx2
þ Gðx; x0; tÞ

¼ dðx � x0Þdðt � t0Þ: (26)

Substituting Eqs. 24 and 25 into Eq. 26, one can determine the frequency

transfer function as

Gðn;u; x0Þ ¼

4nðx0Þ
an;n

iut þ m2
nl2 þ 1

: (27)

Thus, the Green’s function becomes
The inverse Fourier transform for the time domain gives

Gðx; x0; t � t0Þ¼ 1

t

XN
n¼ 0

4nðx0Þ
an;n

4nðxÞexp
	
� m2

nl2 þ 1

t
ðt � t0Þ
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