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Acidovorax ebreus strain TPSY is the first anaerobic nitrate-dependent Fe(II) oxidizer for which there is a
completed genome sequence. Preliminary protein annotation revealed an organism optimized for survival in a
complex environmental system. Here, we briefly report the completed and annotated genome sequence of strain
TPSY.

Microorganisms from diverse anoxic environments are ca-
pable of nitrate-dependent Fe(II) oxidation at circumneutral
pH (4, 11, 17, 18, 20, 21). Despite their geochemical impor-
tance (22), little is known of the underlying biochemical and
genetic mechanisms. Genome sequencing of several nitrate-
dependent Fe(II) oxidizers will provide insight into this pro-
cess. By comparing Fe(II) oxidation mechanisms in various
organisms, we hope to identify both the conserved and dispar-
ate aspects of the metabolism. The genome of Acidovorax
ebreus strain TPSY is the first of these to be sequenced.

Strain TPSY is a motile, Gram-negative facultative anaerobe
isolated from groundwater collected from the U.S. Department
of Energy Integrated Field Research Challenge site at Oak
Ridge, TN. Growth experiments performed as previously de-
scribed (21) revealed TPSY’s incapacity for lithoautotrophic
growth, which was supported by a lack of genes in the genome
encoding any known CO2 fixation pathways. TPSY did grow mixo-
trophically with Fe(II) as the electron donor and a 0.1 mM ace-
tate carbon source. 16S rRNA gene sequence analysis placed
TPSY in the class Betaproteobacteria with 99.8% similarity to
Acidovorax sp. strain JS42 in the family Comamonadaceae.

The completed genome consisted of a single circular chro-
mosome of 3,796,573 bp with an average 66.8% G�C content.
A total of 3,479 protein-encoding genes were predicted, and 34
(0.98%) had no similarity to public database sequences. Se-
quencing performed at the Department of Energy Joint
Genome Institute (JGI) used Sanger sequencing and 454
pyrosequencing to a depth of 20� coverage. All JGI library
construction and sequencing techniques can be found at
http://www.jgi.doe.gov/. Sequence assembly, quality assess-
ment, and annotation were performed using the software
Phred/Phrap/Consed (www.phrap.com) (6–8), Dupfinisher
(10), CRITICA (2), GLIMMER, and GENERATION (5)
and the JGI Integrated Microbial Genomes site (12). The

completed genome sequence contained 33,341 reads and
had an average of ninefold coverage per base and an error
rate of �1 in 100,000.

TPSY was named in part for its meandering motility, and its
genome confirmed the twitching phenotype with the presence
of pilT, pilU, and a complete set of flagellar and chemotaxis
genes. The ability of TPSY to oxidize simple alcohols and
acids with oxygen or nitrate respiration was confirmed by the
genome. In addition, biosynthetic pathways for all amino
acids except tyrosine and phenylalanine were present. No
homologues of chorismate mutase (EC 5.4.99.5), an enzyme
required for tyrosine and phenylalanine anabolism, were
identified. The genome contained both intact Embden-Mey-
erhof-Parnas and Entner-Doudoroff pathways, in addition to a
pentose phosphate pathway and a trichloroacetic acid cycle.

In support of its facultative anaerobicity, a complete set of
genes for denitrification and three different terminal oxidases
(cytochrome aa3, cbb3, and cytochrome d quinol oxidase) were
present. The cbb3 and cytochrome d oxidases, with their high
oxygen affinity, putatively enable survival in microaerobic en-
vironments (14).

TPSY had sequences encoding 30 transposases, 11 integrases,
and 11 phage/prophage-related genes. A region of particular in-
terest putatively conferred resistance to lead, arsenate, and mer-
cury: pbrRATARTBC, arsRDAB, and merRPCADE. Evidence
suggests horizontal transfer and insertion of this region, as it was
flanked on the 5� end by � prophage-related genes and the 3� end
encoded a putative Tn21 transposase. Phenotypic studies by the
method of Wang et al. (19) revealed MICs of 16 �M phenylmer-
curic acetate and 250 �M MgCl2. TPSY was also capable of
growth in the presence of arsenate (10 mM) but did not use it as
an electron acceptor.

Related to phage infection, one CRISPR (clustered, regu-
larly interspaced, short palindromic repeats) region (3, 16) was
predicted. The core proteins, the cas1 and cas2 genes, and a
csn1 gene formed the CRISPR subtype Nmeni, which is asso-
ciated with vertebrate pathogens and commensals (9). How-
ever, the lack of typical pathogenic type I or III secretion
systems such as the hec cluster of Dickeya chrysanthemi (15) or
the inv/spa system of Salmonella enterica serovar Typhimurium
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(13) indicated that TPSY would probably not exhibit a patho-
genic lifestyle.

Nucleotide sequence accession number. The genome se-
quence of Acidovorax ebreus strain TPSY (formerly Diaphoro-
bacter sp. strain TPSY) reported in this paper has been depos-
ited in the GenBank database under accession number
NC_011992.
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