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Abstract
Fragile X premutation carriers are at risk for developing a late-onset, progressive neurodegenerative
disorder termed fragile X-associated tremor/ataxia syndrome (FXTAS). A growing body of evidence
suggests the characteristic excess CGG repeat containing FMR1 mRNA observed in premutation
carriers is pathogenic and leads to clinical features of FXTAS. The current model suggests
premutation mRNA transcripts can induce the formation of intranuclear inclusions by the
sequestration of RNA-binding proteins and other proteins. The sequestered proteins are prevented
from performing their normal functions, which is thought to lead to the neuropathology-observed
FXTAS. This paper discusses the existing evidence that microsatellite expansions at the level of
RNA play a role in the disease pathogenesis of FXTAS and some of the approaches that may uncover
downstream effects of expanded riboCGG expression.
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The X-linked FMR1 gene has a polymorphic CGG repeat located in its 5′ untranslated region
(UTR). The alleles of the FMR1 gene can be grouped into three distinct classes depending on
the size of the repeat. Among individuals in the general population, repeat length ranges
between five and 54 triplets, with the majority of X chromosomes carrying either 29 or 30
repeats. A second allele class is known as the full mutation, wherein upon expansion of the
CGG repeat tract to more than 200 triplets, the repeat sequence itself and an adjacent CpG
island become hypermethylated and associated histones are modified. As a result, FMR1
transcription is silenced [1–7]. Thus, fragile X syndrome (FXS), the most commonly inherited
form of mental retardation, results from the loss of function of FMR1. The mechanism for CGG
repeat expansion is still under investigation, however, evidence suggests the expansion to the
full mutation occurs in female gametes [8,9]. Male and female carriers of FXS represent the
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third allele class, known as the premutation allele. Premutation carriers have an intermediate
number of CGG triplets between 55 and 200 repeats, which show no unusual methylation.
Although both males and females can transmit premutation alleles to their offspring, only
alleles obtained via maternal transmission expand to a full mutation and cause FXS in a single
generation. Younger premutation carriers have normal cognitive abilities and are not affected
with FXS. However, reports of tremor and cognitive decline in grandfathers of FXS families
with known probands sparked further study of older males carrying premutation alleles in
families where FXS was present. Case studies of male premutation carriers led to the
description of a new late-onset neurodegenerative disorder termed fragile X-associated tremor/
ataxia syndrome (FXTAS) [10–12].

The most common clinical features of FXTAS include a progressive action tremor with ataxia.
More advanced or severe cases may show a progressive decline in cognition that ranges from
executive and memory deficits to dementia [13]. FXTAS patients may also exhibit
psychological symptoms such as depression, increased anxiety and mood instability [14,15].
Approximately 30% of patients complain of muscle weakness, numbness and pain in the lower
extremities [16], suggesting that the disorder is not confined to the CNS. A useful differential
diagnostic criterion for FXTAS is increased T2 intensities of the middle cerebellar peduncle
(MCP) and adjacent white matter observed by MRI [17]. These criteria distinguish the disorder
from other late-onset movement disorders and dementias. FXTAS patients also demonstrate
mild-to-moderate global brain atrophy, which is most common in the frontal and parietal
regions, as well as in the pons and cerebellum. In addition, degeneration of the cerebellum
including Purkinje cell loss, Bergman gliosis, spongiosis of the deep cerebellar white matter
and swollen axons have been observed in nearly all case studies of autopsy brains of
symptomatic premutation carriers [18,19].

A study of penetrance revealed that more than a third of all carriers aged 50 years and older
will show symptoms of FXTAS and the penetrance of this disorder exceeds 50% for men over
70 years of age [20]. The prevalence of premutation alleles is approximately one in 800 for
males and one in 250 for females in the general population [21,22]; however, it is estimated
that approximately one in 3000 men of more than 50 years of age in the general population
will show symptoms of FXTAS [23]. These estimates do not consider the influence of size on
penetrance, which predicts a correlation between the age of onset of symptoms to the size of
the repeat. Recent studies have correlated the age of onset of clinical symptoms with the length
of expanded repeats, demonstrating that larger repeats represent an increased risk factor for
the development of FXTAS [23,24]. The degree of brain atrophy [24] and severity of the tremor
and ataxia [24], as well as the risk of developing cognitive impairments [25], have also been
correlated with CGG repeat length [24].

Although few, there are cases of FXTAS clinical features in female premutation carriers [26–
29]. The lower frequency of FXTAS in females is thought to be due to the partial protection
offered by random X-inactivation, leading to approximately half of cells expressing only the
normal allele in most female carriers. Recent studies have been aimed at defining differences
between male and female FXTAS, as well as female penetrance. One such study, led by Adams
et al., demonstrated milder whole brain and cerebellar volumetric loss in FXTAS females than
in FXTAS males; however, FXTAS females exhibit significantly reduced brain volume
compared with unaffected premutation carrier females or control females without the
premutation [30]. Similar patterns of brain atrophy and white matter disease were observed in
both males and females affected by FXTAS. Unlike FXTAS males, FXTAS females do not
show significant correlation between reduced cerebellar volume and both increased FXTAS
severity and increased CGG repeat length [30]. A study of FXTAS penetrance in 85 women
with premutation alleles predicted that approximately 16.5% of female carriers over 50 years
of age will exhibit signs of FXTAS [31].
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Female premutation carriers are at an increased risk for developing other medical and
neurological problems. It has been established that between 16 and 24% of female premutation
carriers will exhibit fragile X-associated primary ovarian insufficiency (FXPOI), which results
in the cessation of menstruation before the age of 40 years [32,33]. Although the basis for
FXPOI is not understood, the penetrance and age of onset appear to correlate with CGG repeat
length [34]; however, a later study suggests a nonlinear relationship between age of menopause
and premutation size, in which female carriers with premutations in the midsize range are at a
greater risk for FXPOI, while larger repeat tracts are associated with lower risk [35]. Aside
from FXTAS and FXPOI, increased prevalence of thyroid disease, fibromyalgia and
hypertension have been observed in female premutation carriers [31,36].

Neuropathology: intranuclear inclusions
The neuropathological hallmark and post-mortem criterion for definitive FXTAS is the
presence of eosinophilic, ubiquitin-positive intranuclear inclusions. FXTAS inclusions are
negative for tau and α-synuclein, which rule out FXTAS as a tauopathy or synucleinopathy
[37–39]. The inclusions are located in broad distributions throughout the brain – in neurons,
astrocytes and the spinal column. FXTAS inclusions share the ubiquitin-positive hallmark with
several other inclusion disorders, such as the polyglutamine disorders; however, FXTAS
inclusions do not stain with antibodies that recognize polyglutamine. It is important to note
that, unlike the polyglutamine disorders, there is no known structurally abnormal protein with
FXTAS. The presence of ubiquitin and heat-shock proteins (HSP) in the FXTAS inclusions
strongly suggests a defect in the proteasome degradation or protein-folding pathways; however,
the link between these processes and RNA-mediated neurodegeneration is unknown.

Iwahashi et al. purified human FXTAS frontal cortex inclusions using fluorescence-activated
flow-based methods [40]. Both mass spectroscopic analysis of purified inclusions and
immunohistochemical analysis of isolated nuclei and tissue sections uncovered 19 proteins that
constitute the protein complement of the inclusions (Table 1). The protein components of
FXTAS inclusions fell into eight major functional categories, including: histone family;
intermediate filament; microtubule; myelin-associated proteins; RNA-binding proteins
(RBPs); stress-related proteins; chaperones and ubiquitin–proteasome-related proteins.
Several proteins previously identified as components of FXTAS inclusions, such as ubiquitin,
HSP70 and 20S subunit of the proteasome, were identified and purified by immunofluorescent
staining of isolated nuclei of FXTAS frontal cortex. In addition, proteins such as tau and α-
synuclein, which were not found in immunohistochemical analysis of FXTAS brains, were
also not present in isolated nuclei of FXTAS frontal cortex in this study.

Molecular correlates of FXTAS
Before the discovery of FXTAS, premutation carriers were generally regarded as clinically
unaffected [41–44]. No alterations in FMR1 mRNA or FMRP levels could be detected using
semiquantitative reverse transcription-PCR and immunohistochemistry [45–48]. Despite these
findings, reports of learning disabilities [43,49,50] and psychiatric dysfunction [11,16,51–
56] in both male and female premutation carriers raised suspicions that carriers may exhibit
molecular abnormalities due to the premutation expansion in the FMR1 mRNA [57]. The
clinical observations warranted a more quantitative investigation of FMR1 mRNA and FMRP
levels in carriers. Tassone et al. used quantitative fluorescence PCR to demonstrate that relative
FMR1 mRNA levels in premutation carrier blood leukocyte samples were up to tenfold higher
than that of control individuals [58]. In addition, immunocytochemical staining of premutation
lymphocytes revealed a reduction in FMRP-positive staining, indicating a reduction in FMRP
production. Other studies also revealed a reduction in FMRP levels in blood leukocytes of
some premutation carriers with cognitive deficits [59]. Kenneson et al. developed a slot-blot-
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based assay to measure FMRP levels in cell lysate and demonstrated significantly diminished
FMRP levels in carriers that negatively correlated with repeat number; however, despite
reduced FMRP levels, the carriers overexpressed FMR1 mRNA, which resulted in a positive
correlation between repeat number and FMR1 message levels [60].

Several possible mechanisms for FMR1 message overexpression have been put forward. One
feedback mechanism suggests that the cell attempts to compensate for reduced levels of FMRP
by increasing the amount of available FMR1 transcript [61]. Alternatively, expansion of CGG
repeats may change the distances between potential factor-binding sites, leading to a more open
promoter that could favor increased access of transcription factors. Another suggested
mechanism is that increased stability of the premutation FMR1 transcript may be the cause of
the message overexpression. After measuring primary transcription and stability of FMR1
mRNA, Tassone et al. determined that the mechanism of elevated FMR1 transcript levels
results from increased transcription at the FMR1 locus and not from increased stability [62].
Reduced translational efficiency of premutation alleles has been shown to result from a reduced
association of the premutation mRNA with polysomes [63]. This decline in translation
efficiency parallels increasing CGG repeat length. Other studies have considered the effect of
strong secondary or higher order structures to impede ribosome entry or scanning of the 5′
UTR of FMR1 mRNA [64]. In addition, changes in FMRP may result from altered cellular
localization of the transcripts carrying expanded repeats. It is possible that large fractions of
the expanded transcripts are sequestered in the nuclear inclusions, and are therefore not
accessible to the ribosomes; however, as of yet there is no evidence for this hypothesis.

RNA-mediated neurodegeneration model for FXTAS
A threshold in triplet repeat mutation length in FMR1 defines two molecularly distinct diseases.
The presence of elevated FMR1 mRNA carrying repeats in premutation carriers along with the
absence of FXTAS in older adults with FXS led to the proposal of RNA-mediated toxicity
mechanism that describes the contribution of premutation RNA to FXTAS pathogeneisis
[11,65,66]. Several clues regarding the molecular mechanisms involved in FXTAS come from
the RNA gain-of-function model for myotonic dystrophy (DM), a typically adult-onset,
dominant, muscle disorder caused by an abnormal expansion of a CUG triplet repeat present
in the 3′ untranslated region of a protein kinase gene, DMPK [67]. In DM1 cells, mRNA
transcripts with expanded CUG repeats are sequestered in nuclear RNA foci [68] along with
decreased DMPK protein levels [69]. Expanded CUG repeats in DMPK mRNA can form
hairpins that are thought to block the export of the RNA from the nucleus [70]. An RBP,
MBNL1, can colocalize with the DM RNA foci [71]. Ultimately, disruption of MBNL1 leads
to downstream misregulated splicing of MBNL1 targets that result in DM pathology [72]. The
RNA toxicity model has been demonstrated in a DM mouse model expressed a transgene with
expanded CTG repeats in the DMPK gene that resulted in myotonia [73,74]. A similar
mechanism leading to FXTAS pathology has been recently tested (Figure 1). The proposed
mechanism for RNA pathogenesis for FXTAS states that CGG-repeat-containing FMR1
transcripts recruit RNA binding and other proteins that accumulate as intranuclear inclusions.
The sequestration of these proteins is thought to prevent them from performing their normal
functions that would lead to downstream alterations in cellular function. The observation of
expanded FMR1 RNA transcripts in the FXTAS inclusions of a 70-year-old male who died
with FXTAS helped to further support for the RNA toxicity hypothesis [75].

The major parallels between FXTAS and DM are the induction of intranuclear inclusions and
nuclear foci as a result of expanded repeat RNA. If these aberrant structures are responsible
for pathology, what are the proteins that might be altered in abundance by them? Attempts to
define proteins in the inclusions in FXTAS have revealed a number of candidates (Table 1).
Among these, is a mammalian ortholog of the Drosophila protein muscleblind, MBNL1.
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Interestingly, MBNL1 is present in both FXTAS intranuclear inclusions [40] and DM nuclear
foci suggesting at least a potentially parallel mechanism for FXTAS pathogenesis. A major
caveat to the parallel with DM is demonstrated by considering different clinical features of
FXTAS and DM. DM is a multisystemic disease that can present at any age from birth to old
age. The major pathologies observed in DM are muscle wasting and myotonia, which are not
observed in FXTAS. Although DM1 neuronal nuclear foci have been observed, it is uncertain
whether the foci directly contribute to the neuronal dysfunction [76]. In DM muscle, there is
evidence to support the direct involvement of RNA foci in disease pathogenesis through
mechanisms that involve sequestration of MBNL1 and other proteins resulting in misregulation
of genes that undergo alternative splicing [72,77]. MBNL1 is an RBP that functions as regulator
of alternative splicing. In the case of DM1, human brain samples exhibited splicing
misregulation with reversion to fetal isoforms of NMDAR1, APP and Tau genes [76]. The
altered splicing that results from misregulation of MBNL1 may lead to the mental retardation
and other cognitive defects observed in some DM patients. Changes in alternative splicing have
not been described for FXTAS; however, the cellular and murine models of FXTAS provide
adequate tools for investigation of CGG-mediated splicing alterations.

Evidence for an RNA-mediated neurodegeneration mechanism for FXTAS
pathology
Cellular models

Garcia-Arocena et al. demonstrated that expanded CGG repeats expressed in untranslated
mRNA are toxic to cells and can induce inclusion formation [78]. In this study, human neural
cells transfected with green fluorescent protein (GFP) reporters possessing FMR1 5′UTR with
88 CGG repeats, not only exhibited cytotoxicity and inclusions but also changes in nuclear
morphology and nuclear lamin structure. Handa et al. performed microarray analysis on RNA
from cells transfected with plasmids expressing transcribed but untranslated premutation
length CGG repeats upstream of FMR1 [79]. The microarray studies revealed upregulation of
genes required for apoptosis, which were validated by quantitative-PCR, demonstrating that
premutation CGG repeat RNA is toxic to cells.

Animal models
Fly models—Jin et al. developed a series of transgenic Drosophila to test the role of CGG
in RNA as a toxic agent [66]. The authors made use of the Gal4-upstream activation sequence
system to drive expression of expanded, untranslated riboCGG repeats upstream of the coding
sequence for the EGFP reporter gene and demonstrated that ribo-CGG was sufficient to cause
degeneration of neurons in the fly eye [66]. This model provided the first in vivo evidence for
RNA toxicity in an animal model. The riboCGG induced neurodegeneration was neuron
specific, dose sensitive and directly dependent on CGG repeat length. A repeat length of 90
CGGs was sufficient to cause neurodegeneration of photoreceptors. In addition, the flies
developed inclusions that were positive for ubiquitin, Hsp70 chaperone and the proteasome.
The finding that Hsp70 could suppress the riboCGG-mediated neurodegeneration of the fly
eye [66] made this model particularly useful for the discovery of other genetic modifiers (see
section ‘Genetic and chemical modifiers of CGG-mediated phenotypes in FXTAS models’).

Murine models
Knock-in mouse models of FXTAS: Oostra & Usdin mice—The Oostra group at
Erasmus University, Rotterdam, The Netherlands, created a knock-in mouse model that
replaced the eight endogenous murine CGG repeats with an expanded repeat of human origin
(∼100 repeats) [80]. This model exhibited up to 3.5-fold more Fmr1 mRNA in the brain
compared with controls. The mice developed intranuclear ubiquitin-positive inclusions in
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several neuronal cell types [81], but not in Purkinje neurons of the cerebellum. An increase in
both the number and size of the inclusions was correlated with the age of the animals. As in
human post-mortem samples, the inclusions in this model were positive for Hsp40, Rad23B
and the 20S catalytic core complex of the proteasome. These mice demonstrated cognitive
decline, neuromotor and behavioral disturbances that were assessed by a battery of tests [82].
Possibly the most significant piece of evidence to support the RNA-mediated toxicity model
for FXTAS was that these mice displayed no alterations in FMRP levels, as assessed by western
blot, despite elevation in Fmr1 mRNA levels [81]. Animals derived from the original knock-
in with CGG repeat expansions greater than 200 triplets have now been developed after many
generations of selecting offspring with longer repeats. Repeats of this length would result in
FXS in humans. Interestingly, these mice do not develop molecular or phenotypic
characteristics of FXS, and no methylation is observed at the Fmr1 locus. Elevated Fmr1
mRNA levels were only observed in the lower range for premutation alleles and Fmrp levels
were reduced in the upper premutation range in these animals [83]. Loss of the intranuclear
inclusions was observed in animals with greater than 200 triplets [83], which raises the question
of the relevance of inclusions to disease pathology.

A second knock-in mouse model that has small serial ligated, short stable CGG•CGG repeat
tracts knocked into exon 1 of the endogenous murine Fmr1 gene was created by the Usdin
group at the NIH [84]. This model exhibited genetic and pathophysiological changes that were
similar to human FXTAS but not observed in the previous mouse model. For example, the
Usdin knock-in repeats were found in rare cases to expand to a full mutation-sized repeat
without evidence of methylation in a single generation. In addition, this model has Purkinje
neuron pathology in the form of abnormal calbindin staining, swollen axonal torpedos and
Purkinje neuron cell loss. A correlation between the repeat number and the Fmr1 mRNA levels
was also observed.

Transgenic mouse model of FXTAS
Purkinje neuron-specific trangenic model of FXTAS—Both knock-in mouse models
suggest a direct involvement of riboCGG in neuropathology; however, it remained unclear
which part of the expanded rCGG transcript was necessary or whether FMRP plays a role. Our
group developed transgenic mouse models to explore the molecular requirement for CGG-
mediated neurodegeneration observed in FXTAS. The mice expressed 90 CGG repeats in the
5′ untranslated region (UTR) of either the Fmr1 gene or reporter gene EGFP under the
regulation of the Purkinje neuron-specific promoter, L7/Pcp2 [85]. As controls L7Fmr1 and
L7EGFP lines were also created without expanded repeats. We found that mice with CGG-
containing transcripts outside the context of Fmr1 are sufficient to cause Purkinje neuron
neurodegeneration and behavioral anomalies in our models. The presence of large and frequent
Purkinje neuronal inclusions is unique to our models. This model has provided the first
evidence in a mammalian system that rCGG outside the context of Fmr1 was sufficient to cause
neurodegeneration, as only CGG-containing repeat mice exhibited significant Purkinje neuron
cell loss compared with wild-type or L7Fmr1 mice. In additon, detailed examination of
Purkinje neurons in transgenics revealed axonal swellings. Ubiquitin-positive inclusion
formation was observed in mice expressing L7CGG90Fmr1 or L7CGG90EGFP transgenes
suggesting that inclusion formation is not directly correlated to Fmr1 levels but rather,
expression of expanded CGG repeats. Purkinje neuronal inclusions in our rCGG-containing
transgenics also stained positive for antibodies against Rad23B, Hsp40 and the 20S core subunit
of the proteasome, as assessed by immunohistochemical analysis. Our transgenics also
exhibited a decline in motor-learning abilities as assessed by the accelerating rotarod.
L7CGG90Fmr1 mice developed an age-dependent decline in rotarod walking since mice at 40
weeks performed worse than mice at 20 weeks, while L7Fmr1 transgenics showed no age
effect-related decline in rotarod performance. Each of the animal models has different
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neurological phenotypes, which strongly suggests differences in CGG repeat length, RNA
expression and proteins levels may play an essential role in FXTAS pathology (Table 2).

Yeast artificial chromosome transgenics—Our group also developed yeast artificial
chromosome (YAC) transgenic mice carrying a premutation-sized CGG repeat within the
entire human FMR1 gene in order to study instability of the FXS repeat [86]. While they are
not as well characterized as the models previously described, the YAC transgenics develop
significant pathology but lack detectable intranuclear inclusions. In particular, Purkinje
neurons show accelerated degeneration and neuropathology in the form of axonal torpedoes
as animals age (Figure 2). These animals overexpress the human RNA and protein; whether
differences result from human versus mouse overexpression is a factor remains unknown.
Interestingly, SCA1 transgenic mice expressing ataxin-1 with 82 glutamine repeats develop
ataxia and Purkinje cell degeneration [87,88] in the absence of nuclear inclusions [89]. These
studies suggest that inclusion formation may not be required for disease pathogenesis.
However, conditional SCA1 transgenics [90], as well as a conditional mouse model of
Huntington's disease (HD) expressing 94 CAG repeats upstream of the lacZ promoter under
the regulation of a Tet inducible promoter [91] can recover from polyglutamine-induced
inclusions. It would be of interest to determine whether similar inducible models of FXTAS
pathogenesis show the ability to recover.

Genetic & chemical modifiers of CGG-mediated phenotypes in FXTAS models
Our group and others made use of the transgenic fly model by performing biased genetic screens
that uncovered RBPs capable of modifying the neurodegenerative eye phenotype in the fly
(Table 3). For example, overexpression of RBP, Purα, suppresses the riboCGG-mediated
neurodegeneration in the Drosophila eye [92]. Jin et al. found Purα in both the riboCGG-
induced fly inclusions as well as human FXTAS sup–mid temporal cortex inclusions [92].
However, Iwashashi et al. did not detect Purα in human FXTAS inclusions purified from the
cerebral cortex [40]. In addition, Purα-positive inclusions have not been observed in either the
Oostra knock-in [WILLEMSEN R, ERASMUS UNIVERSITY, PERS. COMM.] nor our Purkinje neuron-specific
transgenics. The reasons behind the differences in inclusion protein content from human to
human or from human to mouse and fly are unclear; however, it is not difficult to imagine that
inclusions from one brain region to the next will not mirror exactly in protein content, as gene
expression varies from region to region; the same can be said for species to species gene
expression differences. In addition, variations in technique to assess inclusion protein
compositions may yield different results.

Although there is conflicting data regarding the presence of Purα in inclusions, the protein may
still play a role in FXTAS pathology as Purα directly interacts with riboCGG repeats in vitro
and in vivo [92]. Interestingly, Purα-null mice develop many of the hallmark features of human
FXTAS. Similar to humans with FXTAS, Purα-null mice exhibit loss of neurons in the
cerebellar granular layer as well as the Purkinje cell layer and develop tremor upon motion
[93]. Even Purα-heterozygous mice develop neurological features, suggesting that
haploinsufficiency is problematic, at least in the brain. Purα has been implicated in dendritic
RNA transport and translation [94,95]. The RNA-toxicity model of FXTAS would suggest that
sequestration of Purα into inclusions or even alterations in the Purα protein levels may lead to
alterations in RNA transport or translation of Purα targets.

In another biased screen for RBPs that modify the transgenic fly neurodegenerative phenotype,
Sofola et al. observed that overexpression of two additional RBPs, hnRNPA2/B1 and
CUGBP1, could suppress the riboCGG-induced eye neurodegeneration and hnRNPA2/B1
could interact directly with the riboCGG repeats [96]. CUGBP1 has been implicated in the
pathology of DM1. CUGBP1 steady-state levels are increased in DM1, which induces
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downstream misregulated alternative splicing events. Sofola et al. demonstrated CUGBP1
could interact with rCGG repeats via hnRNPA2/B1 in vitro [96].

Several studies indicate that riboCGGs can fold into hairpin and tetraplex structures that could
reduce the efficiency of translation of premutation FMR1 mRNA. The reduced translational
efficiency of premutation RNA results from its reduced association with polysomes [63].
Interestingly, hnRNPA2 can mediate the nonenzymatic destabilization of quadruplex forms of
(CGG)n in both DNA and RNA [97]. Khateb et al. demonstrated, using an in vitro translation
assay, that premutation repeats in the promoter region of a construct expressing the firefly
reporter gene could reduce its translational efficiency [98]. In addtion, a similar effect was
demonstrated in vivo; however, in the presence of overexpressed hnRNPA2, not only could
the cell more efficiently translate the premutation RNA but also diminish the production of
excess premutation RNA in vivo.

Ofer et al. recently demonstrated that TMPyP4, a quadruplex ribo-CGG destabilizing
porphyrin, on its own and in cooperation with overexpressed hnRNPA2, can significantly
increase the efficacy of translation of premutation RNA in vivo making it an attractive candidate
for FXTAS therapeutics [99]. Although the mechanism that allows TMPyP4 to increase
efficiency of premutation mRNA translation and diminish excess premutation RNA
accumulation is unknown, it may be useful to decrease RNA toxicity in carriers affected by
FXTAS. According to the RNA toxicity model, if hnRNPA2/B1 is sequestered to the
cytoplasmic inclusions in flies, it may serve to enhance translation of premutation RNA,
thereby maintaining the levels of FMRP in the cell. Since hnRNPA2/B1 can be found in both
the nucleus and the cytoplasm, sequestration of hnRNPA2/B1 to human FXTAS nuclear
inclusions may hamper its cytoplasmic functions and lead to reduced translation of FMR1
mRNAs.

All of these observations taken together have led to the hypothesis that the neurodegeneration
and inclusion formation observed in FXTAS are the result of a RNA-mediated toxicity caused
by the increased expression of expanded ribo-CGG containing mRNA. A significant
correlation between CGG repeat length and the frequency of intranuclear inclusions, in both
neurons and astrocytes of human premutation carriers, further supports these models. In
addition, intranuclear inclusions can be induced in primary progenitor cells and established
cell lines when premutation-sized CGG repeats fused to FMR1 are expressed in these cells
[78]. Given the high prevalence of fragile X premutation carriers in the general population and
their risk for developing clinical features of FXTAS, it is essential to understand the molecular
mechanisms of FXTAS, and further analysis of the pathogenic effects of ribo-CGG in all of
the models is essential for determining the mechanism of FXTAS.

Conclusion
Considerable data are now available implicating fragile X premutation mRNA in disease
pathogenesis. While the cell, fly and mouse models have provided useful molecular and genetic
tools that will aid in our understanding of FXTAS disease progression, the precise mechanisms
involved remain obscure and need to be investigated further. Early events that lead to inclusion
formation and neuronal death are not understood. The relevance of inclusion formation in
neurodegeneration remains a mystery since FXTAS pathology is observed in animal models
that express greater than 200 CGG repeats and YAC transgenics expressing 90 CGG repeat
and human FMR1, but these rarely ever show inclusions. A reasonable suggestion for inclusion
formation would be to sequester pathogenic RNA; however, the protective versus harmful
effects of inclusion formation have been hotly debated in polyQ inclusions disorders [100].
The argument that inclusions have a role in neuronal dysfunction suggests that a key step in
the pathogenesis of various polyQ disorders result from aberrant interactions of misfolded
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protein with cellular proteins. The interaction would inhibit the sequestered proteins from
performing their normal activities and trigger a cascade of events that lead to neuronal
dysfunction and subsequently, inclusion formation. The argument for a neuroprotective role
for inclusions suggests they function to sequester misfolded proteins from the pool of correctly
folded proteins.

It is still unknown how the premutation and other pathogenic RNAs recruit RBPs and other
proteins into inclusions or whether these proteins play some role in the inclusions. The
downstream effects of sequestration of Purα, Hsp70, hnRNPA2/B1, MBNL1 and other as yet
unidentified proteins, are essential to our understanding of the consequences of their depletion
in cells. It is reasonable to suggest that, owing to the nature of the sequestered proteins,
alterations in proteasome degradation and changes in neuronal function may be to blame for
the clinical features of FXTAS. The variability of Fmr1 transcript expression in knock-in mice
with various repeat lengths may help us understand FXTAS penetrance and disease severity.
Understanding how and why cells form inclusions in response to expanded RNA, as well as
the nature of the inclusions will likely lead to new therapeutic approaches that will combat
neurodegeneration and improve cognitive and motor performance. Therapy could take many
approaches from gene delivery of genetic modifiers to prevent inclusion formation. One
example is provided by a study aimed at the RNA interference knockdown of premutation
CGG repeats in Drosophila that has already demonstrated that gene delivery can suppress ribo-
CGG-mediated neurodegeneration [101].

Future perspective
The future of FXTAS should focus on genetic modifiers of neurodegeneration and behavioral
anomalies. Additional studies that provide more insight into the roles of proteins such as
Purα, hnRNPA2/B1 and MBNL1 in intranuclear inclusions are necessary to determine the
alterations required for disease pathogenesis. In addition, the presence of these proteins in
inclusions may provide useful information regarding the downstream effects of protein
sequestration. Mouse models that employ a Tet ON/OFF or tissue-specific inducible system
for the expression of premutation CGG repeats would prove invaluable for the study of the
consequence of repeat expression on inclusion recovery, behavioral and cognitive rescue
studies, cell morphology and function. The differences between inclusion content as well as
an increased tolerance for expanded repeat length in mice must also be considered. As
previously mentioned, Purα and MBNL1 have not been observed in murine inclusions, which
may result in the use of different pathways for induction of inclusion formation between
humans and mice. In addition, differences in phenotypes between CGG-repeat knock-in and
Purkinje-specific CGG90 transgenic mice exist. The reasons for the variation in phenotypes
between the animal models are unknown; however, differences such as the developmental
timing of the expression of the CGG-containing transcript may account for the differences in
phenotype. Both knock-in models of FXTAS use the endogenous mouse Fmr1 regulatory
sequences, while our transgenics use a robust Purkinje neuron-specific promoter active after
birth, which may also account for the early inclusion phenotype observed in our transgenics.
The differences in onset or severity of the pathogenic and behavioral phenotypes observed in
our models may also be due to variations in the level of transgene expression due to positional
effects. Better understanding of parallel pathways between FXTAS and other noncoding
dominant repeat disorders may provide a useful insight into FXTAS pathogenesis.

The Drosophila model of FXTAS aids our understanding of the effect of varying levels of
CGG-transcript expression and phenotype severity as we have observed a correlation between
increased levels of CGG-transcript expression and RNA-mediated toxicity in the flies [SOFOLA

O, BAYLOR COLLEGE OF MEDICINE, UUNPUBLISHED DATA]. The fly has helped to uncover modifiers of the
neurodegenerative phenotype, and points to potential pathways involved in the disorder. The
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fly offers important advantages to the study of RNA-mediated CGG repeat toxicity, such as
the ability to perform rapid genetic screens for modifiers and to assess behavioral anomalies
quickly. These flies can be used to investigate drug and gene therapies for FXTAS. Although
the fly model of FXTAS may help us uncover additional modifiers of the neurodegenerative
phenotype, it is important to consider that the Drosophila inclusions were almost always
cytoplasmic, which is unlike those observed in patients or in mouse models. Therefore, the
composition of the inclusions and pathways involved in neurodegeneration may differ
significantly.

Studies that identify mechanisms for overexpression of CGG-containing FMR1 mRNA, as
well as downstream molecular mechanisms for expanded CGG-repeat FMR1 mRNA to trigger
downstream events leading to pathology, are required to understand of FXTAS disease
progression. A focus on defining the cell death mechanisms and markers of CNS toxicity will
help us understand the events that precede inclusion formation. Identification of genetic and
environmental risk and protective factors associated with the penetrance of FXTAS is required
to develop treatments for the disorder. FXTAS is a relatively new disorder; therefore, there is
clearly a need for additional animal models to increase our knowledge of disease pathology,
molecular mechanisms and drug treatment. One thing is clear, expanded CGG-repeat
containing mRNAs play an integral role in FXTAS pathology.

Executive summary

Background

• Premutation alleles of FMR1 are linked to fragile X-associated tremor/ataxia
syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency
(FXPOI).

• Approximately a third of premutation allele carriers will exhibit clinical features
of FXTAS.

• The radiological criterion for definitive FXTAS is increased T2 intensities
observed by MRI.

• This paper presents a number of observations/conclusions that provide evidence
for a pathogenic RNA gain-of-function mechanism for FXTAS.

Neuropathology: intranuclear inclusions

• The presence of ubiquitin-positive eosinophilic intranuclear inclusions throughout
the brain and spinal column are a major neuropathological hallmark of FXTAS.

• FXTAS is not associated with mutations or repeat expansion in FMRP.

Molecular correlates of FXTAS

• FXTAS patients display no signs of fragile X syndrome and vice versa.

• Premutation carriers have elevated levels of expanded CGG-containing FMR1
mRNA.

• Premutation carriers have normal to slightly reduced FMRP levels.

Evidence for an RNA-mediated neurodegeneration mechanism for FXTAS pathology

• Premutation length riboCGGs as RNA are toxic to cells.

• A fly model of FXTAS provided the first in vivo evidence of an RNA-toxicity
mechanism for FXTAS.
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• Two premutation CGG knock-in mouse models exhibit ubiquitin-positive
intranuclear inclusion formation and correlations between repeat length and
Fmr1 mRNA levels.

• CGG90Fmr1 and CGG90EGFP Purkinje neuron-specific transgenic mice exhibit
ubiquitin-positive intranuclear inclusions.

• FXTAS-like neuropathology observed in yeast artificial chromosome transgenics
suggest neuropathology is independent of inclusion formation.

Genetic & chemical modifiers of CGG-mediated phenotypes in FXTAS models

• The transgenic fly model of FXTAS and cellular models are useful tools to uncover
genetic and chemical modifiers.

Future perspective

• Modifiers of CGG-induced neurodegeneration may provide essential clues for
downstream events leading to FXTAS pathology.

• Understanding the role of FXTAS inclusion formation and elucidating inclusion
protein composition may help us understand the molecular mechanism of FXTAS.
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Figure 1. RNA toxicity model in a premutation cell
Via unknown mechanisms, increased transcription of premutation alleles of the FMR1 gene
leads to elevated levels of FMR1 mRNA. The excess RNA is thought to exert its toxic effect
on the cell via sequestration of RNA-binding proteins, ubiquitin, proteasome components and
other unknown proteins, which would lead to abnormal regulation of cellular processes
normally regulated by the sequestered proteins. Sequestration of proteins into intranuclear
inclusions may lead to downstream neurodegeneration. In addition, sequestration of the toxic
RNA into intranuclear inclusions could be a mechanism that the cell uses for survival.
Premutation RNA exported to the cytoplasm may be translated normally. Reduced FMRP
levels may result from, first, interactions of RNA-binding proteins in the cytoplasm with the
expanded RNA, which could block ribosome entry; second, complex RNA structures due to
expanded CGG repeats; third, reduced translation owing to nuclear sequestration of RNA-
binding proteins required for translation; and/or last, reduced translation due to sequestration
of premutation RNA in the inclusion.
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Figure 2. Expanded CGG repeats in a yeast artificial chromosome transgenic model using human
FMR1 lead to neuropathology with very few nuclear inclusions
(A) Infrequent ubiquitin-stained inclusions seen in hippocampus, CA3, mammilary nucleus
and hypothalamus. (B & C) Cerebellar pathology including axonal torpedos (B, swellings)
and empty baskets (C, Purkinje neuron loss).
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Table 1
Protein components of CGG-induced inclusions identified by various methods

Model Candidate protein Category Ref.

Humans, mice
and flies

Ubiquitin Ubiquitin–proteasome system [66,81,84,102,103]

Humans 11S regulator to 20S proteasome Ubiquitin–proteasome system [40]

Mice and flies 20S proteasome Ubiquitin–proteasome system [40,66]

Mice Homolog of yeast gene Rad23A DNA repair and ubiquitin–
proteasome system

[104]

Mice Homolog of yeast gene Rad23B DNA repair and ubiquitin–
proteasome system

[102,104]

Humans H2B histone family Histone family [40]

Humans Similar to H2A histone family, member
Z

Histone family [40]

Humans HIST I H4D protein Histone family [40]

Humans H2A histone family A (L) Histone family [40]

Humans H2A histone family, member Q (O) Histone family [40]

Humans Neurofilament 3 Intermediate filament [40]

Humans and mice Lamin A/C Intermediate filament [40,78,84]

Humans Vimentin Intermediate filament [40]

Humans Internexin neuronal intermediate
filament

Intermediate filament [40]

Humans NEFL protein Intermediate filament [40]

Humans Glial fibrillary acidic protein (GFAP) Intermediate filament [40]

Humans β5-tubulin Microtubule [40]

Humans Tubulin, α6 Microtubule [40]

Humans Tubulin, alpha and ubiquitous Microtubule [40]

Humans Myelin/oligodendrocyte glycoprotein β3 Myelin-associated protein [40]

Humans 2′,3′-cyclic nucleotide 3′-
phosphodiesterase (CNPase)

Myelin-associated protein [40]

Humans Myelin basic protein Myelin-associated protein [40]

Humans Muscleblind-like 1 RNA-binding protein [40]

Humans Heterogenous nuclear ribonucleoprotein
A2/B1

RNA-binding protein [40]

Humans and flies Purα RNA-binding protein [92]

Humans αβ-crystallin Stress-related protein [40,78]

Humans and flies Hsp70 Chaperone [40,66]

Humans Hsp27 Chaperone [40]

Mice Hsp40 Chaperone [81,102]
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Table 3
Genes that modify the RNA-mediated neurodegeneration caused by the fragile-X
premutation riboCGG repeat in Drosophila melanogaster

Gene Protein present in fly inclusions Ref.

Hsp70 Yes [66]

Purα Yes [92]

Cugbp1 No [96]

hnRNPA2/B1 No [96]

riboGCC repeats N/A [101]

N/A: not applicable.
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