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We derive simple analytical expressions for the error and computational efficiency of simulated
tempering �ST� simulations. The theory applies to the important case of systems whose dynamics at
long times is dominated by the slow interconversion between two metastable states. An extension to
the multistate case is described. We show that the relative gain in efficiency of ST simulations over
regular molecular dynamics �MD� or Monte Carlo �MC� simulations is given by the ratio of their
reactive fluxes, i.e., the number of transitions between the two states summed over all ST
temperatures divided by the number of transitions at the single temperature of the MD or MC
simulation. This relation for the efficiency is derived for the limit in which changes in the ST
temperature are fast compared to the two-state transitions. In this limit, ST is most efficient. Our
expression for the maximum efficiency gain of ST simulations is essentially identical to the
corresponding expression derived by us for replica exchange MD and MC simulations �E. Rosta and
G. Hummer, J. Chem. Phys. 131, 165102 �2009�� on a different route. We find quantitative
agreement between predicted and observed efficiency gains in a test against ST and replica
exchange MC simulations of a two-dimensional Ising model. Based on the efficiency formula, we
provide recommendations for the optimal choice of ST simulation parameters, in particular, the
range and number of temperatures, and the frequency of attempted temperature changes.
�doi:10.1063/1.3290767�

I. INTRODUCTION

Molecular dynamics �MD� and Monte Carlo �MC� simu-
lations are powerful tools to explore the configuration space
of molecular systems. However, for many systems the sam-
pling efficiency is limited by the slow rate of interconversion
between different conformational basins on the energy sur-
face. To accelerate the conformational sampling, a variety of
extended ensemble schemes have been developed. Among
the most widely used ones are simulated tempering �ST�,1,2

replica exchange Monte Carlo �REMC�,3,4 and replica ex-
change molecular dynamics �REMD�.5,6 Replica exchange is
also known as parallel tempering. These extended ensemble
methods aim to establish an equilibrium between canonical
systems at different temperatures �or, more generally, sys-
tems with different Hamiltonians7�, an idea that can be traced
back to the seminal papers by Bennett,8 and Swendsen and
Wang.9 By coupling simulations at a low temperature of in-
terest with simulations at high temperatures where the relax-
ation is fast, one hopes to transfer the improved sampling
efficiency at the higher temperature down to the lower
temperature.

In ST simulations,1,2 the reference thermostat tempera-
ture is itself a dynamic variable. At fixed intervals along an
otherwise regular MD or MC simulation, attempts are made
to change the current reference temperature Ti to a trial tem-
perature Tj picked from a discrete set �e.g., Ti�1 in a series of
temperatures T1 ,T2 , . . . ,TN�. These attempted temperature
changes are accepted with a criterion designed to maintain

detailed balance for canonical distributions. In a long run
�assuming mixing in the resulting Markov chain�, canonical
distributions will be obtained at each of the temperatures Ti.
In REMD �Refs. 5 and 6� and REMC,3,4 MD and MC simu-
lations of N identical molecular systems are performed in
parallel. Each replica is thermostatted at a different tempera-
ture Ti to establish corresponding canonical distributions.10

With a given frequency, one attempts to exchange the con-
figurations of replica pairs, i↔ j �typically i↔ i�1�. These
replica exchanges are accepted with a probability that con-
serves the respective canonical distributions. ST and REMD
have been proven particularly useful to enhance the sampling
of biomolecular systems.5,6,11–15

Key questions in ST, REMD, REMC, or other extended
ensemble simulations are as follows: �1� How large is the
possible gain in computational efficiency, �2� for which
simulation parameters can this maximum gain be realized,
and �3� how do the different methods compare with respect
to their efficiency gains? We have previously developed a
simple analytical formula for the efficiency gain in REMD
and REMC simulations16 for the important case that the slow
dynamics of the system of interest can be described by two-
state transitions. Here, we derive a formula for the error and
computational efficiency of ST simulations. The formula ap-
plies to systems with two-state dynamics at long-time scales
�with an extension to the multistate case being discussed�.
For the sake of concreteness, we will frequently refer to two-
state protein folding, but the theory is general. We measure
the error in the estimator of an equilibrium property by its
variance over repeated simulations. The computational effi-a�Electronic mail gerhard.hummer@nih.gov.

THE JOURNAL OF CHEMICAL PHYSICS 132, 034102 �2010�

0021-9606/2010/132�3�/034102/9/$30.00 132, 034102-1

http://dx.doi.org/10.1063/1.3290767
http://dx.doi.org/10.1063/1.3290767


ciency is then defined as the rate with which the variance in
the estimator decreases with length of the simulations.

The main result of this paper is that the relative effi-
ciency of a ST simulation compared to a regular MD �or
MC� simulation of the same duration tsim, run at the tempera-
ture Tm of interest alone, is

�m =
�MD

2

�ST
2 = �

i=1

N

Qi

�m
+ + �m

−

�i
+ + �i

− �1�

independent of the property of interest. In the ST simulation,
the system spends a fraction Qi at each of the N temperatures
T1 ,T2 , . . . ,TN, with �i=1

N Qi=1. Equation �1� is valid for sys-
tems whose slow dynamics can be described by two-state
transitions, and in the asymptotic limit of long simulation
times tsim. The lifetimes of the system in its two long-lived
�unfolded and folded� states at temperature Ti are �i

+�1 /ki
+

and �i
−�1 /ki

−, where ki
+ and ki

− are the corresponding �fold-
ing and unfolding� rates. A ST simulation is more efficient
than a MD simulation of the same duration at temperature Tm

if �m�1.
We can interpret Eq. �1� for the relative efficiency of

ST simulations as the ratio of the net reactive fluxes given
by the number of folding and unfolding transitions per unit
time in the ST simulation, and in the MD simulation:
2tsim / ��m

+ +�m
− � is the expected number of two-state transi-

tions in MD and �i2Qitsim / ��i
++�i

−� in the ST simulation.
Remarkably, Eq. �1� is essentially identical to the efficiency
formula obtained by us for REMD �Ref. 16� on a different,
more involved route. We will show that this is no coinci-
dence: The derivation followed here for ST can be adapted
for replica exchange. Practically, the equivalence of the effi-
ciency formulas means that at least asymptotically for two-
state systems and ignoring any issues of computational over-
head, ST and REMD have the same efficiency.

To illustrate and test the efficiency formula, we perform
MC simulations of a two-dimensional �2D� Ising system at
zero magnetic field. Below the critical temperature of the
infinite system, a finite spin system will only slowly inter-
convert between the “up” and “down” states of the net mag-
netization, if only single spin flips are attempted in the MC
sampling. We show that the slow sampling of the net mag-
netization of a finite system is accurately captured by our
theory. We also show that Eq. �1� quantitatively reproduces
the observed gains in efficiency from using ST, and that the
large predicted gains in efficiency can indeed be realized for
the 2D Ising system with its thermally activated transition in
magnetization. In conclusion, we discuss procedures to ac-
celerate the sampling of temperature space and strategies to
optimize the choice of parameters.

II. THEORY

A. Rate model of simulated tempering

Building on our recent work on REMD,10 we will ana-
lyze the statistical error and efficiency of ST simulations for
the important case of systems whose dynamics at long times
is governed by a single slow exponential relaxation process.
Even though complex molecular systems normally have

multiple states, and thus a broad spectrum of relaxation pro-
cesses, at sufficiently long times the relaxation to equilibrium
is often dominated by a single slow exponential process. The
folding of small “two-state” proteins is a specific example,
with measured relaxation times that range from microsec-
onds to seconds.

For such systems, a reduced two-state description cap-
tures the long-time dynamics. For the sake of concreteness,
here we will refer to protein folding and unfolding as the
slow processes, but the results are general. In the following,
we assume that the interconversion between the same two
states U and F dominate the relaxation at low and high tem-
peratures �but we note that this may not always be the case�.
In the absence of ST temperature changes, we assume that
the interconversion between the folded and unfolded states
Fi and Ui, respectively, at each of the temperatures Ti follows
first-order kinetics,

Ui�
ki

−

ki
+

Fi �i = 1,2, . . . ,N� . �2�

At temperature Ti, the equilibrium folded and unfolded popu-
lations are pi=ki

+ / �ki
++ki

−� and qi=1− pi, respectively.
In ST simulations,1,2 one periodically attempts to change

the simulation temperature from Ti to Tj. These changes are
accepted with a probability that maintains detailed balance
with respect to a canonical ensemble at each temperature. If
E=E�x� is the energy of a configuration x, a change from
temperature Ti to Tj is accepted with probability

pacc�Ti → Tj� = min�1,eE/kBTi−E/kBTj+f j−f i� , �3�

where kB is Boltzmann’s constant. Here we assume that the
generation probabilities for changes Ti→Tj and Tj→Ti are
identical. If x is a purely configurational coordinate of the
system, as in typical MC sampling, E is the potential energy;
in contrast, if x is a position in phase space, as in MD simu-
lations, E is the total energy. Alternatively, in ST combined
with MD simulations, one can also use the potential energy E
in the acceptance criterion, combined with either rescaling
momenta or redrawing them from a Maxwell–Boltzmann
distribution at the new temperature Tj upon acceptance. The
f i are constants that determine the fraction Qi of time spent at
temperature Ti in long runs,

Qi =
efiZi

� j=1
N ef jZj

, �4�

where Zi=�dxe−E�x�/kBTi is the partition function at Ti and
0�Qi�1 with �i=1

N Qi=1. Note that otherwise the Qi are
arbitrary, determined by the specific choice of ST simulation
parameters. In practice, the coefficients f i can be gradually
optimized to achieve a targeted distribution, e.g., Qi=1 /N.
These optimization strategies are typically based on the av-
erage energies at the different temperatures.2,17 Here, we will
instead solve the N−1 coupled linear equations
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Qi�
j=1

N

Qj
obsgj = Qi

obsgi �5�

for gi=exp�f i
new− f i

old� with g1=1, Qi
obs is the observed frac-

tion at Ti in a preliminary run with weight factors f i
old, and

f i
new are the new weight factors for subsequent runs.

To model ST with a kinetic model with 2N states, we
allow changes in the temperature along the simulation trajec-
tory. Here, we focus on the case of very frequent temperature
change attempts �which will result in the highest possible
efficiency gains�. In this limit of fast ST, we can use a rate
model also for changes in the temperature in ST, not just for
the two-state transitions of the system,

Fi�
ri+1
−

ri
+

Fi+1 and Ui�
si+1
−

si
+

Ui+1 �i = 1,2, . . . ,N − 1� . �6�

In the kinetic model, the rates ri
+ and ri+1

− �si
+ and si+1

− � for
temperature changes in a folded �unfolded� structure should
satisfy detailed balance to maintain the proper equilibria,

ri
+ = r�Qi+1pi+1/Qipi�1/2,

ri+1
− = r�Qipi/Qi+1pi+1�1/2,

�7�
si

+ = r�Qi+1qi+1/Qiqi�1/2,

si+1
− = r�Qiqi/Qi+1qi+1�1/2,

where r is a constant rate that will be chosen large enough to
ensure frequent temperature changes. To model an actual
simulation, the rate coefficients can be estimated from the
acceptance probabilities pacc, given the folding state of the
system, and the time intervals �t between attempted changes
of a certain type, e.g., si

+= pacc�i→ i+1 �U� /�t�i→ i+1�. In
our ST implementations, we will also consider non-nearest-
neighbor transitions, for which temperature change rates can
be estimated by analogy. Similar master-equation descrip-
tions resulting in simple first-order kinetic models have pre-
viously been used to model replica exchange
simulations.16,18–21

B. Error and efficiency of MD and ST simulations

Calculating equilibrium properties is the main goal in
both MD, MC, and ST simulations. We accordingly define
the computational efficiency of the simulations as the rate
with which the statistical error in the estimate of the property
of interest decreases with the simulation time. Following our
earlier work on the efficiency of REMD simulations,16 we
note that for simulation times tsim long compared to the over-
all longest relaxation time of the system, the central limit

theorem implies that the error in the estimate Ā of the exact

mean 	A
 of any property A decreases as var�Ā�=c / tsim,

where var�Ā� indicates the variance about the true mean in
multiple simulations of the same duration tsim. The constant c
depends on the simulation method �MD versus ST�. Note

that we do not consider the approach of Ā to equilibrium for
a given �“nonequilibrium”� initial condition. This approach

to the true mean 	A
 occurs asymptotically as 1 / tsim, faster
than the decrease in the statistical error �tsim

−1/2�.
The ratio of the variances of the estimators from MD and

ST simulation methods allows us to compare their respective
efficiencies. Even though we explicitly consider only the
case of two-state protein folding, the results apply generally
to systems with two metastable states that interconvert
slowly compared to the relaxation processes within each
state. Importantly,16 in the two-state case the relative compu-
tational efficiencies will not depend on the particular prop-
erty A. In such systems, A will quickly relax to the average
values 	A
F and 	A
U in folded and unfolded states F and U,

respectively. If those averages differ, then var�Ā���	A
F

− 	A
U�2var�s̄�, where s indicates the folding state with s=1 if
the system is folded, and s=0 if it is unfolded, such that
	s
i= pi at temperature Ti. It thus suffices to compare the
convergence of estimates of the fraction folded, 	s
1, at the
temperature T1 of interest.

For regular MD �and, by analogy, MC� simulations, one
finds either directly16 or from the theory of statistical errors
in single-molecule experiments22,23 that the estimator s̄, de-
fined as the fraction of time spent in the folded state in a
simulation of duration tsim has a variance of

�MD
2 �tsim� � var�s̄� =

2

tsim

p1�1 − p1�
k1

+ + k1
− =

2

tsim

k1
+k1

−

�k1
+ + k1

−�3 �8�

at the temperature T1 of interest. Equation �8� applies in the
asymptotic limit of tsim	 �k1

++k1
−�−1.

For ST simulations, we consider the limit of very fre-
quent temperature changes �r large�. In this fast ST limit, the
different temperatures will be visited frequently before a
change in the folding state occurs at any one of the tempera-
tures Ti. We can thus describe the kinetics of the folding state
with effective folding and unfolding rates,

keff
+ = �

i=1

N

ki
+p�i�U� ,

�9�

keff
− = �

i=1

N

ki
+p�i�F� ,

where p�i �U� and p�i �F� are the probabilities of being
at temperature Ti, given that the system is unfolded
and folded, respectively. From Bayes’ theorem, p�i �U�
= p�U � i�p�i� / p�U� with p�U � i�=qi, p�i�=Qi, and p�U�
=�i=1

N Qiqi �and analogous relations for p�i �F�� it follows that

keff
+ = 
/�1 − p� ,

�10�
keff

− = 
/p ,

where


 = �
i=1

N
Qi

1/ki
+ + 1/ki

− = �
i=1

N
Qi

�i
+ + �i

− �11�

and p= p�F�=keff
+ / �keff

+ +keff
− � is the net fraction folded irre-

spective of temperature. In the last expression, we substi-
tuted the lifetimes �i

�=1 /ki
� for the rates of interconversion.
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To estimate the sampling error, we define the estimator
x1 of p1�	s
1 �i.e., the fraction folded at the temperature T1

of interest� as x1= tF1 / �tF1+ tU1�, where tF1 and tU1 are
the times spent folded and unfolded, respectively, at tempera-
ture T1 during a simulation of duration tsim. In the following,
we will calculate the variance �ST

2 �var�x1��var�s̄� of x1

over repeated ST simulations of duration tsim.
In the limit of fast ST, we have effective two-state be-

havior with folding and unfolding rates keff
+ and keff

− , respec-
tively. We define tF and tU= tsim− tF as the total time folded
and unfolded in the simulation, irrespective of the tempera-
ture. Then, in the limit of fast ST, we have tF1= p�1 �F�tF and
tU1= p�1 �U�tU, i.e., perfect sampling of the fractions of time
spent at temperature T1 for given times tF and tU spent folded
and unfolded, respectively,

x1 �
tF1

tF1 + tU1
=

tFp�1�F�
tFp�1�F� + �tsim − tF�p�1�U�

. �12�

We further assume that the simulation time tsim is sufficiently
long compared to the characteristic time 1 /keff, where
keff=keff

+ +keff
− is the effective folding relaxation rate irrespec-

tive of temperature. We can then use the asymptotic
formula22,23 for the variance of tF and linear error propaga-
tion,

var�x1� = var�tF��
dx1

dtF



tF=	tF

�2

, �13�

where22,23

var�tF� =
2tsimp�1 − p�

keff
=

2tsimp2�1 − p�2



. �14�

After differentiating Eq. �12� with respect to tF, and substi-
tuting p�1 �F�p+ p�1 �U��1− p�= p�1�=Q1 and 	tF
= ptsim, we
find that


dx1

dtF



tF=	tF

=

k1
+k1

−

tsimp�1 − p��k1
+ + k1

−�2 . �15�

Substituting Eqs. �14� and �15� into Eq. �13� results in

var�x1� =
2

tsim


�k1
+k1

−�2

�k1
+ + k1

−�4 . �16�

Comparing this expression to the corresponding variance of
the estimator in a regular MD simulation at temperature T1,
Eq. �8�, we find that

var�x1� � �ST
2 =

�MD
2 k1

+k1
−

�k1
+ + k1

−�

=

�MD
2

�
i=1

N

Qi

�1
+ + �1

−

�i
+ + �i

−

. �17�

In the last expression, we used Eq. �11� for 
 and
k1

�=1 /�1
� for the rate coefficients. By rewriting Eq. �17� in

terms of the ratio of variances �MD
2 /�ST

2 for a more general
temperature of interest, Tm instead of T1, we obtain our main
result, Eq. �1�, for the relative efficiency of ST simulations
compared to MD simulations using the same computational
resources.

We note that one obtains the same result by using error
propagation, including covariances. Specifically, if one de-

fines covariances of the times spent folded and unfolded
irrespective of temperature as C��= 	t�t�
− 	t�
	t�
 with
� ,�� �F ,U�, then

var�x1� = �
�,�

�x1

�t�

C��

�x1

�t�

. �18�

With this procedure it is possible to extend the efficiency
analysis worked out above for two-state systems to systems
whose slow dynamics involves M �2 states. In the limit of
fast ST, one can again determine effective transition rates
K��

eff =�iK��p�i ��� from state � to �, averaged over the dif-
ferent temperatures Ti, analogous to Eq. �9�. From the result-
ing effective rate matrix Keff, the matrix of correlation coef-
ficients,

C�� = 	t�t�
 − 	t�
	t�
 , �19�

of the times t� and t� spent in states � ,� and � irrespective
of temperature ��=1,2 , . . . ,M� can be determined in the
asymptotic limit of large tsim as

C = 2tsim�a−1P − �Keff + aP�−1�P�, �20�

where P= �p1 , p2 , . . . , pN�T�1,1 , . . . ,1� is a projector onto
the equilibrium distribution, P� is a diagonal matrix,
P��� =
��p�, and a is a an arbitrary nonzero number with
dimensions of reciprocal time. Equation �20� corresponds
to Eq. �12� in Ref. 24, noting that ��� in that paper is related
to C�� through C��=−2tsimp����p� for ��� and
C��=2tsimp�����1− p��. If we define x�1= t�1 /��=1

M t�1 as the
estimator of the relative population p�� �T1� in state � at
temperature T1, then

�x�1

�t�

=
1

tsim
�
��

p���T1�
p���

−
p���T1�p���T1�

p��� � , �21�

where p��� is the fraction in state � averaged over all tem-
peratures. Substitution of Eqs. �20� and �21� into Eq. �18�
allows us to evaluate the variance of the estimator x�1 for a
system with more than two states.

C. Relation to REMD and REMC

Equation �1� is identical to our previous result for the
relative efficiency of REMD simulations16 if we identify
Qi=1 /N. In REMD simulations, the different temperatures
indeed have equal weights by construction. As a conse-
quence, REMD and ST have the same computational effi-
ciency for the systems studied here in the asymptotic limit of
long simulations, and if the sampling of temperature space is
uniform in ST. However, the methods are only equivalent in
the limits of fast temperature changes in ST, and fast replica
exchanges in REMC and REMD simulations �and for a large
number of replicas�.

The efficiency result for REMD simulations was derived
by us on a very different route. Specifically, in Ref. 16 we
studied the global relaxation dynamics of the total number
n�t� of folded replicas at time t, requiring us to estimate the
first nonzero eigenvalue of a large rate matrix. In the follow-
ing, we sketch a rederivation of the efficiency formula for
REMD �and, by analogy, REMC� simulations following the
route in the present paper.
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In REMD and REMC simulations, every replica is sta-
tistically equivalent.25 So if we follow each replica, as it
travels through temperature space, we have in effect the
same dynamics as we have here for a single ST run �except
that in REMC and REMD, Qi=1 /N is fixed�. In particular, if
temperature changes are fast compared to folding and un-
folding, the folding dynamics can be described with the ef-
fective rates in Eq. �10�. As a consequence, in a REMD
simulation of duration tsim /N �which is N times shorter than
a MD or ST simulation using the same resources�, the vari-
ance in the estimator x from an individual replica will be N
times larger than that in Eq. �17�. However, in the limit of a
large number of replicas, the estimators from different repli-
cas are statistically independent. As a consequence of the
central limit theorem, the variance in the estimator x ob-
tained by pooling all N replicas is thus reduced by a factor N,
and we arrive at Eq. �17� also for REMD, with Qi=1 /N. We
note, however, that in the case of replica exchange the effi-
ciency formula is only approximate �because of the assump-
tion of statistical independence of the estimators�, even in the
limit of fast replica exchange, whereas it is exact for ST in
the fast limit. We note further that in REMC and REMD, one
gets weights Qi different from 1 /N simply by running more
replicas at a certain temperature.

As an interesting note, we showed in Ref. 16 that
the estimators of all typical observables in a REMD
simulation �and, in particular, the total number of folded
replicas� relax at long times with a characteristic rate
�i=1

N �ki
++ki

−�qipi /�i=1
N qipi. This rate is different from the re-

laxation rate predicted for ST, keff=keff
+ +keff

− . However, keff

should give the relaxation of the estimator evaluated for an
individual replica in REMD �or REMC�, as it performs its
random walk through temperature space.

III. RESULTS

A. Error and efficiency in simulated tempering

To test Eq. �1� for the efficiency, we have performed MC
simulations of a 2D Ising model with Hamiltonian,

H = �
�i,j�

�i� j . �22�

The sum extends over all distinct pairs �i , j� of neighboring
spins �i= �1 on a periodic square lattice of size K�K. In a
canonical ensemble with Boltzmann factor exp�−H /T� and
partition function ���i�

exp�−H /T� �with kB=1 in this sec-
tion�, in the absence of an external magnetic field, and below
the critical temperature Tc=2 / ln�1+21/2��2.3 for the infi-
nite system, finite 2D Ising models exhibit bistability
with respect to their reduced magnetization m=�i�i /K2. At
sufficiently low temperatures, m fluctuates between m�−1
and 1.

The dynamics of this interconversion between up and
down states of m will depend on the chosen MC move set. If
in the MC sampling the move set is restricted to flips of
single spins, the relaxation time of m will be long, measured
in units of MC steps �one attempted move per spin� or MC

passes �one attempted move for each of the K2 Ising spins�.
The reason is that intermediate states with m�0 are ener-
getically unfavorable.

The inset in Fig. 1�a� shows the magnetization m�t� for a
trajectory segment at T=2 of a 2D periodic Ising systems
with 12�12 spins obtained from a regular MC simulation
with single spin flips. From the decay of the autocorrelation
function of m�t� at temperatures between 2 and 2.45 we have
determined the relaxation time ��T�. The Arrhenius plot of
��T� in Fig. 1�a� shows that the relaxation time grows expo-
nentially with 1 /T at low temperatures. As a consequence,
sampling of 	m
 with naive MC is challenging at low tem-
peratures. The slow interconversion rate of the up and down
states of m at low temperatures is also reflected in a high
barrier at m=0 in the free energy profile F�m� /T=−ln p�m�,
where p�m� is the probability density of m �Fig. 1�b��.

In addition to the regular MC simulations, we have also
performed ST simulations at temperatures Ti=2+ �i−1� /20,
i=1,2 , . . .. We have run simulations for N=2 �T1=2 , T2

=2.05�, N=3 �T1=2 , T2=2.05, T3=2.1�, etc., up to N=10
�with T1=2 and T10=2.45�. The weight factors f i determining
the relative populations Qi of the different temperatures
in the ST runs are adjusted by solving Eq. �5� such that
Qi=1 /N. After every MC pass, we randomly pick a trial
temperature Tj �j=1,2 , . . . , i−1, i+1, . . . ,N� different from
the current temperature Ti, and accept the change from Ti to
Tj according to Eq. �3�.

From each of the simulations, we estimated the average
magnetization m̄ at the lowest temperature, T=2, as the
simple mean of the instantaneous magnetization along the
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trajectory. In the limit of perfect sampling, m̄ converges to
the exact limit 	m
=0. From multiple ST simulations of the
same duration �number of MC passes between tsim=105 and
5�106� we have determined the variance of the estimator m̄
and confirmed that it scales as �2�m̄�=cN / tsim for both regu-
lar MC �N=1� and ST simulations �N�1�. The coefficients
cN are determined from a fit, with c1 being the coefficient
that determines the rate of convergence for regular MC, c2

for ST with two temperatures, T1=2 and T2=2.05, etc. As
shown in Fig. 2, the fitted coefficients cN are in excellent
agreement with the theoretical predictions from Eq. �8� for
regular MC, and Eq. �17� for the ST simulations.

Figure 3 plots the relative computational efficiencies
�1=c1 /cN of the ST simulations compared to a regular MC
simulation at temperature T=2, with the ci obtained from
fits. Also plotted is the relative efficiency gain �1 predicted
from Eq. �1� using the life times �i

++�i
−=4��Ti�, where ��Ti�

is the relaxation time of the magnetization m at temperature
Ti plotted in Fig. 1�a�. We find that the relative efficiencies of
sampling in the actual ST and MC simulations is accurately
predicted by Eq. �1� up to an upper temperature of TN=2.3
�with N=7 temperatures, resulting in an efficiency gain of a
factor of �30�. For upper temperatures TN�2.3, Eq. �1�
slightly overestimates the efficiency gain. At these high tem-
peratures, the magnetization is barely bimodal �Fig. 1�b�,
with a low barrier of only �1kBT in the free energy profile
along m�, and both the assumption of two-state dynamics and
fast temperature change begin to break down.

A comparison of the normalized autocorrelation func-
tion of the magnetization C�t� from simulations and
theory further demonstrates the quantitative accuracy of
the kinetic model of ST �Fig. 4�. We find that C�t�
= 	�m�t��m�0�
 / 	�m2
 with �m�t�=m�t�− 	m
, as obtained
from the ST simulations, matches the theoretical prediction
of C�t��exp�−�keff

+ +keff
− �t� with keff

� defined in Eq. �9�. The
correlation functions are calculated from the time series of
m�t� irrespective of the instantaneous temperatures in the ST
simulations. Figure 4 shows that the magnetization relaxes
exponentially with a rate of keff, with only small deviations
even at a high upper temperature of T9=2.4.

B. Comparison to replica exchange Monte Carlo

For comparison, we have also run REMC simulations
with replicas at the same temperatures as in the ST simula-
tions. Figure 3 shows that the resulting efficiency gains for
sampling the magnetization at T1=2 are nearly identical to
those of the ST simulations, and again in full agreement with
Eq. �1� up to an upper temperature of TN=2.3.

C. Effect of tempering protocol

To test the influence of slowing down the sampling of
the different temperatures Ti �i.e., the diffusion in tempera-
ture space�, we have also performed ST simulations in which
temperature changes are only allowed with neighboring tem-
peratures �j= i�1� instead of picking the trial temperature Tj

randomly from the whole temperature range. For upper tem-
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peratures TN�2.3, the efficiency gains are identical to those
in ST simulations with random choice of the trial tempera-
ture Tj �not shown�; for higher temperatures TN, the effi-
ciency gains fall below the theoretical limit of Eq. �1� and
those in ST simulations with faster sampling of temperature
space. We found that for TN=2.45, the relaxation time of the
temperature in the ST simulations with neighbor switching is
comparable to the relaxation time of the magnetization at TN.
As a consequence, the assumption of fast temperature change
is no longer valid, explaining the reduced gain in efficiency.
In essence, with temperature relaxation being slow, transi-
tions between positive and negative magnetizations at a high
temperature have a high probability of reverting before the
ST system “cools down” to the temperature of interest.

D. Effect of the number of temperatures

A somewhat surprising prediction from the efficiency
formula equation �1� is that for a fixed temperature range T1

to TN, and with a given distribution of temperatures �e.g.,
uniform�, the efficiency gain �m will approach a constant in
the limit of large N.16 This means that even though the frac-
tion Qm of time spent at the target temperature decreases as
1 /N, the sampling efficiency �m is predicted to be unaf-
fected. However, Eq. �1� applies only in the limit of fast
temperature change, which may not be the case for large N,
depending on the tempering protocol used. If temperature
changes are only performed between nearest neighbors in
temperature, then for large N the mean first passage time �in
units of attempted temperature changes� to diffuse from a
high temperature TN to a low temperature T1 will scale as N2.
Specifically, for uniform weights Qi=1 /N, we can estimate
the relaxation time of the temperature from the correspond-
ing time for diffusion on a finite interval,

�T �
N2�t

10pacc

, �23�

where �t is the time between attempted temperature changes
in the same direction �e.g., up�, and pacc is the average prob-
ability of acceptance. Here we assume pacc to be independent
of temperature and the state of the system and p�Ti �F� to be
roughly constant. We found Eq. �23� to be an excellent
approximation for the relaxation time of the temperature
�Fig. 5�.

For large N with only nearest-neighbor temperature ex-
changes the assumption of fast temperature change will be
violated. We tested this prediction by performing simulations
with a fixed temperature range, but covered with different
numbers N of uniformly spaced temperatures. For T1=2 and
TN=2.4 with nearest-neighbor exchange, we found a signifi-
cant gain in efficiency when using only N=3 or 5 tempera-
tures ��1�53� instead of 9 ��1�30�, but still somewhat
lower than what is obtained by picking the trial temperature
Tj at random from N=9 uniformly spaced temperatures ��1

�59�. In contrast, global temperature changes,
i→1,2 , . . . , i−1, i+1, . . . ,N, result in much faster tempera-
ture relaxation �Fig. 5�. In practice, one should monitor and

optimize the rate of temperature relaxation �e.g., from the
autocorrelation function of T�t�� and compare it to the rate of
relaxation of the two-state process. Fast temperature change
is essential to achieve the maximum possible efficiency.

E. Effect of temperature weights

According to Eq. �1�, the computational efficiency can
be increased by giving higher weights Qi to temperatures Ti,
where �i

++�i
− is small and the system crosses frequently be-

tween the states. Typically, these will be the higher tempera-
tures. We have tested Eq. �1� for nonuniform Qi by running
ST simulations of the Ising system with linearly increasing
weights, Qi= i /� j=1

N j. We again find excellent agreement be-
tween the predicted and observed gains in efficiency up to
about N=7 with an upper temperature of T7=2.3 �data not
shown�. For higher upper temperatures, the gains are some-
what below those predicted, as with uniform weights. Over-
all, using a linear bias toward higher temperatures results in
gains �35% higher than those for uniform weights. Gains
from increasing the weight of the higher temperatures were
previously observed in simulations by Zhang and Ma.26

F. Accelerated tempering protocol

We have also tested a scheme to speed up the tempera-
ture relaxation. Instead of first picking the temperatures Tj

from 1,2 , . . . , i−1, i+1, . . . ,N �or from j= �1� and then ac-
cepting a change from Ti to Tj according to Eq. �1�, we
choose the temperatures Tj at random according to their
probability for a given conformation with energy E,

p�Tj�E� =
exp�− E/kBTj + f j�

�k=1
N exp�− E/kBTk + fk�

. �24�

To sample Tj from this distribution, we calculate the cumu-
lative distribution Pj =�k=1

k p�Tk �N�, with P0=0 and PN=1.
We then draw a random number r with uniform distribution
between 0 and 1. The new temperature Tj is determined such
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that Pj−1�r� Pj. Care has to be taken to avoid over-/
underflows in the numerical calculation, e.g., by adding a
suitable constant to all energies E. As an alternative, one can
also repeatedly apply the standard ST temperature change
protocol for a fixed configuration of energy E, and with de-
tailed balance properly enforced.

In simulations of the Ising model with N=10 tempera-
tures, and T1=2 and T10=2.45, the efficiency gains from this
protocol over picking trial temperatures at random are neg-
ligible ��1�58 in both cases, compared to �1=88 from Eq.
�1��. We conclude from this result �and similar results from
simulations run with attempted temperature changes after ev-
ery attempted spin flip� that the gradual breakdown of the
two-state assumption is primarily responsible for the actual
efficiency being slightly lower than predicted for upper tem-
peratures TN�2.3.

IV. CONCLUDING REMARKS

We have derived an analytical expression for the relative
computational efficiency of ST simulations over regular MC
or MD simulations. The expression, Eq. �1�, applies to the
important case that the slow dynamics of the system can be
described by the relaxation between two metastable states,
and is derived under the assumption that the temperature
change in ST is fast compared to the transitions between the
two states. We also sketch an extension to systems requiring
more than two states. In our efficiency calculation, we have
not considered the possibility of reweighting the data col-
lected at the different temperatures. Combining data from all
temperatures, for instance, by using the weighted histogram
method,27,28 can further enhance the sampling efficiency at
the temperature of interest, in particular if ST is not in the
fast limit; but gains should be minimal if ST is fast with
respect to the property of interest.

We have tested the expression for the efficiency gain
against MC calculations of the magnetization in a 2D Ising
model. We have found that Eq. �1� predicts the efficiency
gains quantitatively. Only at the highest upper temperatures
TN considered, the observed sampling efficiency gains are
somewhat below those predicted. The reasons for this drop
are, on the one hand, that the assumption of fast temperature
change is increasingly violated at high TN �where the relax-
ation between up and down magnetizations becomes faster
than the relaxation from high to low temperatures�; and, on
the other hand, that the two-state assumption for the magne-
tization breaks down as the temperature TN exceeds Tc.

Interestingly, the formula equation �1� for the efficiency
gain in ST simulations is essentially identical to that derived
previously on a very different route for REMD and REMC
simulations. However, in the limit of fast exchange and a
large number N of replicas, we have shown that the equiva-
lence of the two approaches follows from simple statistical
arguments. As an interesting consequence, in the asymptotic
limit running multiple ST simulations in parallel without
communication is as efficient as running REMD or REMC
simulations with communication for replica exchange. This
makes ST particularly useful for distributed computing.15

Our analytical result for the efficiency gain in ST
simulations has practical implications in the setup of ST
simulations as follows.

A. Temperature range T1 to TN

As in REMC and REMD simulations,16 one should
cover a range of temperatures Ti, where the sum of relaxation
times �i

++�i
− is smaller than �m

+ +�m
− at the temperature of

interest, Tm. In this way, the more frequent transitions �cor-
responding to a higher reactive flux� at the higher tempera-
tures result in improved sampling at the lower temperatures
of interest. To further maximize �m with respect to T1 and
TN, the strategies discussed in Sec. II.E of our previous
work16 for REMD and REMC can be adapted.

Importantly, because the sum of lifetimes �i
++�i

− enters
the efficiency formula equation �1�, not the relaxation rate
ki

++ki
−, ST, REMC, and REMD are not as powerful to en-

hance the sampling of entropy dominated processes such as
protein folding as they are for enthalpy dominated transi-
tions. Over a fairly broad range of temperatures, the folding
rate of proteins is often found to be nearly constant or even
slowing down with increasing temperature. Despite the ac-
celeration of the enthalpy dominated unfolding process at
high temperatures, the efficiency gain is limited by the unac-
celerated folding process, resulting in long lifetimes of the
unfolded state.

B. Temperature weights

Traditionally, one attempts to find weight factors f i to
ensure equal sampling Qi�1 /N for all temperatures. From
the perspective of sampling efficiency, equal weighting is not
optimal. Based on Eq. �1�, it is advantageous to give higher
weights to temperatures Ti at which �i

++�i
− is smaller than

�m
+ +�m

− at the temperature of interest, Tm. In typical problems,
one would thus want to give a disproportionally high weight
to the higher temperatures. However, any optimization of the
target weights Qi has to consider that the relaxation in tem-
perature space should be fast, as discussed next.

C. Temperature relaxation

In addition to choosing the optimal temperature range, it
is important to ensure that temperature relaxation is fast
compared to the relaxation of the system state at any given
temperature �as has been found before for REMD �Refs. 16
and 19–21��. Temperature relaxation can be accelerated by
spacing the temperatures Ti more narrowly �if the acceptance
of temperature changes is low�, by making more frequent
temperature change attempts, by using nonlocal temperature
change moves �that must, however, satisfy detailed balance,
e.g., by picking the trial temperatures Tj at random�, or by
picking temperatures Tj according to Eq. �24�. Alternative
implementations of ST,14,29,30 often related to approaches in
REMD and REMC simulations,31 may also help enhance the
sampling of temperature space, and in turn configuration
space.

There has been some discussion in the literature of the
optimal frequency of attempted temperature exchanges, in
particular, in the context of replica exchange
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simulations.21,32,33 On formal grounds, and consistent with
other studies,21,26,33 we conclude that it is optimal to attempt
temperature changes in ST, and temperature exchanges in
REMC and REMD, as frequent as possible �as long as the
computational cost of the exchange itself can be ignored�.
However, in practical implementations it is important that
exchanges maintain a proper Boltzmann distribution. This is
a particular concern in MD simulations, where one should
use proper thermostats10 and integrators that evaluate posi-
tions and momenta at the same time step, such as velocity
Verlet,34 for proper rescaling �or redrawing� of the momenta.

D. Number N of temperatures

Interestingly, for a large number of temperatures N
spaced according to a given distribution in a fixed range T1

to TN, the efficiency gain becomes independent of N, as long
as the temperature change is fast. As a consequence, there is
no loss in sampling efficiency from increasing the number N
of temperatures, as long as the temperature relaxation rate
does not suffer. However, circumventing the N2 scaling of
the temperature relaxation time for large N will require non-
local temperature changes �such as the use of Eq. �24��.

In summary, we have shown that ST can substantially
enhance the sampling efficiency over regular MC and MD
simulations, as measured by a decrease in the simulation
time required to achieve a certain statistical accuracy. In the
limit of fast temperature change, this gain is largest,
and equivalent to that in REMD and REMC simulations cov-
ering the same temperatures. Achieving high computational
efficiency in ST simulations requires a careful selection of
the simulation parameters, a process that can be guided by
the analytical expression Eq. �1� for the maximum gain
achievable.
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