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Abstract
The genome and its nucleotide precursor pool are under sustained attack by radiation, reactive oxygen
and nitrogen species, chemical carcinogens, hydrolytic reactions, and certain drugs. As a result, a
large and heterogeneous population of damaged nucleotides forms in all cells. Some of the lesions
are repaired, but for those that remain, there can be serious biological consequences. For example,
lesions that form in DNA can lead to altered gene expression, mutation, and death. This perspective
examines systems developed over the past 20 years to study the biological properties of single DNA
lesions.

1. Introduction
Twenty years ago, the field of site-specific mutagenesis by DNA lesions was at the transition
between its infancy and early adolescence. At that time, the Editor of this journal asked one of
us to write a perspective (1) that became the first article published in Chemical Research in
Toxicology. Now that the field has reached maturity, the Editor has once again asked us to take
stock of it. He has asked us to look back and assess the accomplishments of the entire field and
then to look forward to see what might be expected as we gaze down the path ahead. The
perspective is not meant to be a comprehensive review because, indeed, the field is now of
such size that it is best reviewed in a fragmented way (see, for example, ref 2). Rather, we look
back with 20/20 hindsight to identify past milestones that, in our opinion, have pushed the field
ahead technologically or conceptually. As shown in Figure 1, advancements made by synthetic
chemists, molecular biologists, and biophysicists have made possible the testing of hypotheses
regarding lesion genotoxicity, mutagenicity, and repair. We apologize in advance to those who
have made important contributions that did not fit into the boxed areas in Figure 1, which we
describe below, or were not mentioned. We have been very selective and, at times, seemingly
arbitrary in our choice of topics. Lastly, we look ahead and make guesses as to the new areas
in which this field could contribute in the future.

Site-specific lesion mutagenesis, bypass, or repair experiments use site-specifically modified
oligonucleotides or genomes to monitor the fates of a chemical lesion situated at a known
position within DNA or RNA. The fates studied are those evident after the lesion has been
encountered by a polymerase (e.g., mutation and bypass) or repair protein (e.g., suppressed
mutation and toxicity) in vivo. This field began as a logical offshoot of the fields of
carcinogenesis and drug development, fields in which DNA damage is often a central concern.
Most carcinogens and many drugs are or generate electrophilic intermediates that damage many
sites in DNA. The resulting DNA lesion or adduct population is often so vast that it is difficult
to determine with certainty which specific chemical modification of DNA was responsible for
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mutagenic or lethal events. Consequently, about a quarter of a century ago, workers started
engineering the genomes of viruses and plasmids to contain, at specific genome sites, the DNA
adducts caused by genotoxins. The genomes were replicated in cells, and the output progeny
was analyzed to determine the type, amount, and genetic requirements for mutagenesis by the
specific lesions. The objectives of the work were 2-fold: first, to rank order the toxicity and
mutagenicity of DNA lesions and, second, to pinpoint the specific lesions that gave rise to the
mutational spectra observed in the wake of DNA damage to tissues. In this perspective, we
describe the advances made by groups concerning the synthesis of site-specifically modified
oligonucleotides, as well as the methodology to track specific lesions of interest in vitro and
in vivo.

2. Synthesis of Oligonucleotides Containing Site-Specifically Modified Bases
2.1. Synthesis of Modified Phosphoramidites

The current state of the art in DNA synthesis allows one to envision building an entire genome
containing the damage of interest through solid-phase chemical synthesis (3,4). However,
because machine synthesis has not yet achieved the speed and accuracy that natural DNA
replication can provide, from a technical and purity standpoint, it is easier to tap into an existing
genome by splicing in a short piece of purified and characterized DNA containing the damage
of interest located at a unique site. The first oligodeoxynucleotide containing site-specific
damage contained O6-methyldeoxyguanosine in a tetramer made by manual solution-phase
phosphotriester chemical synthesis (5). Today, thanks to the chemistry of the Caruthers’ group
(6–8) and the instrumentation of Ogilvie (9) and Hood (10), automated solid-phase DNA
synthesis using phosphoramidites has become the industry standard, and many
phosphoramidites containing biologically interesting base modifications are now
commercially available. The discovery of new chemical reactions, such as the Buchwald–
Hartwig palladium-catalyzed cross-coupling aryl amination reaction (11–14), provides a route
for synthetic chemists in the field of chemical toxicology to make DNA adducts stemming
from industrial and dietary mutagens. Much pioneering work in the field was and continues to
be performed by synthetic chemists, who work out conditions whereby the modified base in
the phosphoramidite containing the customized damage is stable to not only the reagents
involved in chemical synthesis but also to those involved in deprotection of the oligonucleotide.
A short list of notable chemists in the modified DNA phosphoramidite field, who have made
oligonucleotides with an emphasis on solving biological problems, is presented below.

Francis Johnson has made DNA containing 8-oxo purines (15), 8-aminoguanosine (16),
ethano- and ethenocytidine (17,18), ethenoguanosine (19), synthetic abasic sites (with Arthur
Grollman) (20), guanosine adducts of acrolein (21), amino-naphthalene and aminofluorene
(22), benzo[a]pyrene (23), the dietary mutagen PhIP (24), and tamoxifen (with Shinya
Shibutani) (25). Shinya Shibutani has made DNA using guanine phosphoramidites bearing
methyl, phenyl, ethyl, and tamoxifen adducts (25–29). Lawrence Marnett has made the
deoxyguanosine malondialdehyde adduct (30). Lawrence Sowers has made DNA with
pyrimidines oxidized at the C5-methyl or C5 ring positions (31–34). Jean Cadet has made DNA
containing the 5′,8-cyclopurines (35), cyanuric acid (36), and the thymidine oxidation products
5-hydroxy-5-methylhydantoin (37), 5-carboxyuridine (38), and thymidine glycol (39).
Shigenori Iwai synthesized oligonucleotides containing both stereoisomers of thymine glycol
(40–42), as well as pyrimidine (6-4) pyrimidone, Dewar, and cyclobutane pyrimidine dimers
(43–46). The incorporation of radical precursors into DNA by Bernd Giese at the C4′ sugar
position (47–50) and by Marc Greenberg at the C1′ and C4′ sugar positions (51–54) and at the
corresponding C5-methyl, C5, and C6 pyrimidine ring positions (55–62) has furthered our
understanding of the products and mechanism of how site-specific radical formation may lead
to DNA strand breaks, sugar and base damage, tandem lesions, and cross-links, which may
themselves be used for further biological studies. Marc Greenberg has also made DNA
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containing bona fide formamidopyrimidine (FAPY) guanine and adenine lesions (63,64),
oxidized abasic sites (65,66), and dihydro-5-hydroxythymidine (67). Thomas Harris has made
the DNA acrolein adducts of guanine (68) and epoxybutene adducts at N1 of inosine (69).
Carmelo Rizzo has made deoxyguanosine lesions containing etheno and hydroxyethano
damage (70), as well as the C8 and N2 derivatives from the dietary mutagen IQ (71,72). John-
Steven Taylor has made the cis- and trans-syn photoproduct lesion between vicinal and
nonadjacent thymidines (73–76). We have made DNA containing 5-hydroxy derivatives of
cytidine and uridine (77) and the complex psoralen-thymidine monoadduct (78). Paul Hopkins
has used a phosphoramidite strategy for making DNA interstrand cross-links between
guanosines joined together by a common exocyclic nitrogen (79). Donald Jerina has made
DNA bearing polycyclic aromatic hydrocarbon adducts of adenosine and guanosine (80–84)
and, with the late Anthony Dipple, studied the effect of sequence context and stereochemistry
on mutagenicity (85–92). The late Bea Singer was successful in making ethano-
deoxyadenosine (93) and hydroxymethyl-etheno-deoxycytidine (94), and she, along with
Dezider Grunberger, contributed enormously to the scholarly foundation of the field of
alkylation chemistry of nucleic acids (95).

2.2. Postsynthetic Modification of DNA Bearing a Convertible Nucleoside
In contrast with the preceding section dealing with phosphoramidites that are fully equipped
with their lesion, Mark Matteucci (96), Gregory Verdine (97–100), Peter Swann (101–103),
Constance and Thomas Harris (104–107), and Roger Jones (108) pioneered the convertible
nucleoside approach to site-specifically replace the exocyclic groups of DNA bases
postsynthetically with a variety of N-, O-, and S-substitutions. The phosphoramidites
containing postsynthetically displaceable leaving groups are commercially available, and
researchers in the field can now, in many cases, easily gain access to their modified base of
interest by simply displacing the leaving group in the postoligomerized oligonucleotide with
an amine, alcohol, or thiol, rather than having to do a total synthesis of each phosphoramidite
of interest (e.g., displacement of the O6-guanine leaving group with methanol will give the
carcinogenic lesion O6-methyldeoxyguanosine) (102). Skilled synthetic chemists are still
needed for the construction of complex nucleophiles containing specific stereochemistry, and
the Harris’ have employed this umpolung technique to make several aromatic and aliphatic
DNA lesions (109–114). Indeed, they made such diverse purine adducts as the polycyclic
aromatic hydrocarbon benz[a]anthracene (105), styrene oxide (104), butadiene diol epoxides
(109), and interstrand cross-links (115) in quantities large enough for Michael Stone to obtain
NMR structures (116–120). This postsynthetic route was perhaps the only way to obtain DNA
containing the malondialdehyde adduct of adenosine, which Carmelo Rizzo has made in
addition to the guanosine adducts of malondialdehyde and trans-4-hydroxynonenal (121,
122). We have used this technique to make a furfuryl-N2-deoxyguanosine adduct (123) and,
using a nonconventional convertible nucleoside, 5-guanidino-4-nitroimidazole (124). Isao
Saito and Jean Cadet have used one-electron oxidation chemistry on DNA to postsynthetically
convert 8-methoxyguanosine to 2-aminoimidazolone (125) and 5-hydroxyuracil to isodialuric
acid (126), respectively. Using radical precursors, Jean Cadet and Yinsheng Wang have made
C8-guanosine-pyrimidine DNA intrastrand cross-links (127,128). Traditional convertible
nucleosides have also been used to isotopically label the exocyclic groups for NMR studies
(129,130).

2.3. Postsynthetic Modification of DNA Bearing 8-Oxo-guanosine
While not a convertible nucleoside in the umpolung sense, one can view 8-oxoguanosine (and
possibly even guanosine) as an “Achilles heel” convertible nucleoside, in that its low oxidation
potential will attract damage to its position when an oligonucleotide is exposed to oxidizing
agents. This potential liability is sometimes exploited in that one can choose the oxidant that
will form the largest percentage of a sought-after specific lesion and then fish out their lesion
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of interest by HPLC or capillary gel electrophoresis purification. Cynthia Burrows was able to
gain control over the DNA product distribution of 8-oxoguanosine conversion to
spiroiminodihydantoin and guanidinohydantoin by an iridium oxidant using temperature and
pH (131). Steven Tannenbaum modulated the distribution of DNA products from 8-
oxoguanosine conversion by varying the concentration of peroxynitrite oxidant (132), and this
site-specific oxidation technique was used to make oligonucleotides containing oxaluric acid,
oxazolone, and cyanuric acid (133). Using photochemical oxidation, Nicholas Geacintov
converted a DNA oligonucleotide containing a single guanine to one containing 8-nitroguanine
(134). Conversion of a normal base within an oligonucleotide is not limited to guanine and its
analogues, since site-specific transformations can be performed using base-specific chemistry,
given that the base or reaction site is unique within the oligonucleotide; for example, we have
converted an oligonucleotide containing a single thymine to one containing thymine glycol
using permanganate oxidation (135), and John-Steven Taylor has converted vicinal thymidines
to their (6-4) and Dewar photoproducts using 254 nm irradiation (136).

2.4. Postsynthetic Modification of DNA by Direct Reaction with Electrophile
In certain cases, one can circumvent the need for modified phosphoramidites by allowing an
oligonucleotide to react directly with the electrophilic carcinogen or model compound to obtain
the desired adduct, which has been performed in high yield with some polycyclic aromatic
hydrocarbons. Nicholas Geacintov took this approach to make adenosine adducts of benzo[c]
phenanthrene, and guanosine lesions of methylchrysene (137,138) in quantities large enough
for NMR solution structures to be obtained by Dinshaw Patel, with molecular modeling by
Suse Broyde (139,140). Likewise, the preparation of the relatively stable exo-8,9-epoxide of
aflatoxin B1 using dimethyldioxirane, devised by Thomas Harris (141), allowed him to make
enough of the N7-guanosine adduct (142) for Michael Stone to solve the NMR solution
structure (143). Robert Fuchs used the direct reaction technique to synthesize C8-
acetylaminofluorene adducts of guanosine, as well as an intrastrand cisplatin ApG adduct
(144,145); we and Stephen Lippard made the cisplatin GpG adduct (146). Using DNA
containing only one guanosine or adenosine, Shinya Shibutani has made tamoxifen adducts of
guanosine and quinone-derived estrogen adducts of guanosine and adenosine (147–151). Ashis
Basu used DNA containing a single guanosine to make C8-aminopyrene and nitropyrene
lesions (152,153) and targeted adduction of mitomycin C to a specific location (154). Edward
Loechler made a nitrogen mustard interstrand cross-link (155), and Paul Hopkins made
interstrand cross-links from the anticancer agent BCNU, cisplatin, and nitrous acid (156–
158).

2.5. Utility of DNA Bearing Isotopically Labeled and Atomically Mutated Bases
Oligonucleotides containing modifications not directly related to natural or environmental
damage can also have a deep impact on the field of biological chemistry in general. Although
undamaged, the phosphoramidites made by Roger Jones containing specifically placed
multiple heavy isotopes have great utility in solving NMR solution structures of DNA (159–
161), in investigating the mechanism of DNA base transformation by oxidative damage
(162), and in acting as internal standards for mass spectrometry (163). Natalia Tretyakova has
used these products to determine the reactivity (hotspot formation) of bases in varying sequence
contexts toward DNA alkylating agents (164–169), as well as to quantify the amount of inter-
vs intrastrand DNA cross-links formed by bifunctional alkylating agents (170). Thomas Spratt
has made phosphoramidites containing atomically mutated bases to study the mechanism of
DNA repair by alkyltransferases (171,172) as well as DNA replication (173,174), while Eric
Kool has replaced individual atoms of bases to gain insight into the steric vs hydrogen-bonding
requirements of biological processes, such as DNA replication (175–180), DNA recognition
by mismatch repair complexes (with Peggy Hsieh and Thomas Kunkel) (181,182), and DNA
repair by Fpg and MutY (with Shelia David) (183).
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3. In Vitro Studies Using Site-Specifically Modified Oligonucleotides
3.1. DNA Purification, Characterization, and Curvature Assay

Once the site-specifically modified oligonucleotides have been made, they are purified by one
or several methods. Oligonucleotides are usually resolved based on charge using anion-
exchange HPLC and an increasing ammonium acetate salt gradient or based on hydrophobicity
using reversed-phase HPLC and an ion-pairing agent, such as triethylammonium acetate, with
an increasing acetonitrile organic gradient. Denaturing high-percentage polyacrylamide gel
electrophoresis resolves oligonucleotides based on their mass-to-charge ratio, but practically
speaking, smaller failure sequences migrate faster, as is also seen for anion-exchange HPLC.
After desalting and characterization by mass spectrometry and/or HPLC of the nucleosides or
bases generated from an enzymatic or acid chemical hydrolyzate, respectively, the
oligonucleotides can be used directly for biophysical studies, such as NMR, crystallographic,
or melting temperature analyses to extract thermodynamic parameters on the helical stability
of a lesion. Donald Crothers pioneered yet another biophysical method, which uses the ligation
of properly phased DNA duplexes to measure DNA curvature, as bent DNA migrates more
slowly through a nondenaturing gel (184,185); he and Stephen Lippard used this to determine
that cisplatin GpG intrastrand cross-links bend DNA 40° toward the major groove (186). While
Nicholas Geacintov used the assay to show the stereochemical influence of benzo[a]pyrene-
N2-guanine derivatives on DNA bending (187–189), the Stone, Hopkins, and Harris groups
have used this assay to measure DNA bending induced by propanoguanine opposite a 2 bp
deletion, mechlorethamine-N7-guanine interstrand cross-links, and alkane-N2-guanine
intrastrand cross-links, respectively (190–192).

3.2. Cocrystal Structures of DNA Lesions with Replication and Repair Proteins
NMR solution studies of DNA lesions, such as the recently investigated ring-opened aflatoxin-
N7-guanine FAPY adduct by Stone and the Harris’ (193), are informative in providing data
on equilibrating isomers, which are valuable for the structural interpretation behind observed
mutational spectra (194). However, the majority of structural studies using site-specifically
modified oligonucleotides and DNA polymerases or repair proteins have been obtained using
X-ray crystallography, which has shed light on mechanism. Tom Ellenberger’s cocrystal
structures of DNA containing 8-oxoguanine or a thymine dimer with bacteriophage T7 DNA
polymerase reveal how a lesion can be accurately or inaccurately replicated or act as a lethal
replication block (195–197); his structure of DNA containing 1-azaribose with AlkA suggests
a large 66° induced DNA bending, with base flipping and SN1-type mechanisms during repair
(198). Ellenberger’s structures of the human AlkA homologue AAG bound to 1-azaribose or
ethenoadenine lesions maps out a route for base flipping and excision, providing insight into
the mechanism of discrimination between damaged and normal bases (199,200). Sylvie
Doublié and Susan Wallace captured stalled complexes of bacteriophage RB69 replicative
DNA polymerase with abasic sites in the active and exonuclease sites, and their structure with
thymine glycol shows the C5-methyl destacking the 5′-base, providing a rationale for why the
lesion is not highly mutagenic and why adenine can be inserted opposite the glycol but cannot
be extended further (201–203). Samuel Wilson’s cocrystals of pol β with DNA containing 8-
oxoguanine, abasic sites, and benzo[c]phenanthrene-N2-guanine in gapped structures provides
mechanistic data on dNTP insertion and deoxyribose phosphate lyase repair (204–206). Lorena
Beese’s cocrystal of DNA bearing benzo[a]pyrene-N2-guanine with the high-fidelity
Bacillus DNA polymerase shows that the adduct situated in the minor groove greatly distorts
the contacts between the DNA and the polymerase (207); additionally, her structural snapshots
of O6-methylguanine with the polymerase reveal how an opposing C and T can evade
proofreading, and her structures, obtained with Paul Modrich, of MutSα bound to O6-
methylguanine:T, G:T, G:U, and a one base loop shows all lesions to be recognized similarly
by the complex (208,209). Gregory Verdine’s cocrystal structures of DNA containing 8-
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oxoguanine with hOGG1 or catalytically inactive MutM, of trapped DNA repair intermediates
with MutM or EndoIII, and of engineered adenine-MutY and other DNA–protein disulfide
cross-links provide a framework for understanding how lesions are recognized, the step by step
process by which excision of the lesions occurs during repair, as well as how a repair enzyme
can find a single lesion on a vast landscape of unmodified DNA (210–218). John Tainer’s
cocrystal structures of DNA containing uracil and abasic sites with human uracil-DNA
glycosylases show how the enzyme can flip the base out of the helix and into the active site,
by insertion of an amino acid residue from the minor groove with phosphate backbone
compression, and how base excision repair is initiated (219,220). His structure of endonuclease
IV complexed with an abasic site, obtained with Richard Cunningham, reveals a 90° DNA
kink, with both the abasic site and its partner flipped out of the helix, thus promoting specific
insertion and endonucleic cleavage of the abasic site within the active site pocket (221); a
kinked DNA structure was also seen with the APE1 structure (222). John Hunt’s crystal
structure of 5′-T(1-methyldeoxyadenosine)T-3′ with AlkB shows the alkylated base to be
flipped out and also provides a rationale for binding and repair of 1,N6-ethenoadenine, due to
a small packing void adjacent to the 1-methyl group (223).

3.3. In Vitro Lesion Replication Studies
In many cases, the well-characterized DNA or RNA can be used directly or is ligated into a
larger construct for in vitro lesion replication or repair studies. Such replication studies
(mutagenicity and bypass) are straightforward, since the extension of an annealed 5′ 32P-
labeled primer past a template lesion in the presence of nucleotide triphosphates and the
polymerase under investigation can be monitored by PAGE resolution of 32P-labeled extension
products. This method can also be used to determine the ability of a polymerase to incorporate
modified nucleotide triphosphates. Myron Goodman established a gel assay for determining
the kinetic parameters for the efficiency of nucleotide insertion (Vmax/Km) opposite a base,
which determines the preference of different DNA polymerases for normal or modified dNTPs
opposite normal or modified template bases (224–227). This advance led he and Roger
Woodgate to show the relative impact of pol III, pol IV, pol V, and accessory proteins in trans-
lesion synthesis (TLS) past photodimers and abasic sites, which led to a model for SOS lesion-
targeted mutagenesis (228,229). Graham Walker and we used such an assay to determine that
Escherichia coli pol IV and its mammalian orthlogue, pol κ, are more efficient in accurate TLS
past the model nitrofurazone-derived lesion N2-furfuryl-dG than past an undamaged template
base (123). Using a variety of lesions and DNA polymerases, the Guengerich laboratory has
performed several presteady-state (rapid quench) experiments, in addition to steady-state
measurements, kinetic model fitting, and obtaining crystallographic data on lesion-
polymerase-dNTP ternary complexes, to determine how individual steps in polymerization
contribute to dNTP incorporation opposite the lesion, such as nucleotide binding,
conformational change, phosphodiester bond formation, the efficiency of base pair extension,
and the contribution of accessory proteins (230–244). Grollman and Shibutani, in addition to
determining the traditional steady-state kinetic parameters for nucleotide incorporation,
devised an ingenious in vitro method allowing for PAGE resolution of base substitutions and
frameshift deletions resulting from trans-lesion extension of a labeled primer by DNA
polymerases in the presence of equimolar triphosphates, thus screening for mutation frequency
and specificity in a single-tube reaction (245–257). Indeed, Shibutani’s two-phase 20% PAGE
modification allowed him to find the miscoding specificities of oxidized and alkylated purines
by a variety of E. coli and mammalian DNA polymerases (26–28,147,149,151,258–263).

3.4. In Vitro Lesion Repair Studies
Repair studies performed in vitro are straightforward when a base excision mechanism is
involved, since a cleavage event (either direct or induced chemically from the newly generated
abasic site) can be followed easily by denaturing PAGE resolution of bands from a 5′ 32P-
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labeled substrate. However, lesions repaired by a direct reversal mechanism, such as O6-
methylguanine by Ada or Ogt and 1-methyladenine by AlkB, will not produce cleavable
substrates. In this case, the amount of alkylated and dealkylated oligonucleotide can be
quantified by integration of peaks following reversed-phase HPLC resolution of the
oligonucleotides and by mass spectrometry (using appropriate controls or standards). One can
enzymatically induce cleavage of the repaired, dealkylated DNA if the lesion is situated in a
restriction endonuclease site (264), which allows one to follow repair by PAGE resolution
of 32P-labeled bands (265). Additionally, Anthony Pegg and F. Peter Guengerich showed that
oligonucleotides containing or lacking O6-alkylguanine can be resolved by PAGE, provided
that they are small enough (266).

Susan Wallace has melded in vitro bypass and repair techniques with in vivo analysis to
determine the sequences (hotspots) surrounding 8-oxoguanosine that are most likely to be
mutagenic and refractory to repair (267). The lesion is flanked by randomized bases, traversed
by a DNA polymerase, and digested with MutM (weeding out nonmutagenic 8-oxoG:C
pairings), and lesion-bearing strands that survived are PCR amplified and cloned into a vector
to determine the nature of the mutation by sequencing; a similar study was done for abasic sites
(268). Richard Wood, Peter Robins, and Tomas Lindahl devised an assay to monitor the repair
and resynthesis of covalently closed DNA-damaged plasmids in vitro using mammalian
cellular extracts and [α-32P]-dNTPs (269), which was used to measure site-specific repair and
resynthesis of cisplatin intrastrand DNA cross-links, photoproducts, 2-acetylamino-
fluoreneadducts,and5′,8-cyclodeoxynucleoside lesions(270–275). A comparable assay that
achieves a similar goal was devised by Aziz Sancar and colleagues (276).

4. In Vivo Lesion Replication and Repair Studies
Lesion mutagenesis, bypass, and repair studies performed in vitro are unequivocal in that one
knows exactly which polymerase or repair protein causes the observed effect. One issue,
however, with this approach is that one can force a result that may not be biologically relevant;
it is important to interpret results with the caveat that there are multiple DNA repair enzymes
and multiple bypass polymerases within a cell, all competing for the same lesion. Accordingly,
the most direct way to discern which protein may be the most relevant in lesion processing
(and validating in vitro results) would be to place a site-specific lesion into a genome, which
is allowed to be replicated and repaired in wild-type cells and, in parallel, in cells knocked out
or down for, and/or induced for, specific polymerases or repair proteins. Methods for generating
such site-specific genomes are described below.

4.1. Construction and Utility of Site-Specifically Modified Double-Stranded Vectors
Most studies on site-specific lesion replication and repair within cells involve the construction
of double-stranded or single-stranded vectors bearing the lesion, the choice of which depends
on the particular problem that one wishes to address. Double-stranded vectors are ideal for
monitoring nucleotide excision repair (NER) or base excision events, since many repair
systems require duplex DNA and one has control over what is placed opposite the lesion.
However, numerous studies using duplex genomes have shown that many DNA lesions are
blocks to DNA replication, strongly favoring the replication of the nonadducted strand and the
reduction of mutation signal. Thomas Kunkel has advanced the fields of both protein
engineering and site-specific lesion mutagenesis by devising a method for generating single-
stranded M13 viral template strands containing uracil by growing phage in dUTPase and uracil-
DNA-glycosylase-deficient E. coli (277). After priming with a mismatched (or lesion-bearing)
oligonucleotide to program the mutation, extension occurs using T7 DNA polymerase to avoid
displacement of the original primer (278), and T4 DNA ligase seals the nick prior to
transformation into a uracil-DNA-glycosylase-proficient strain; replication in this strain
generates abasic sites in the template strand, thus giving the newly synthesized mutagenic (or
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lesion-bearing) strand a competitive advantage in growth (279). Many groups have made
double-stranded genomes bearing uracils in the nonlesion strand as a strategy for selective
amplification of signal from the nonuracilated, lesion-bearing strand (280–290). Indeed, the
Marnett laboratory showed that the uracilated (+) strand is 4 orders of magnitude less able to
replicate than a nonuracilated (+) strand (284). For TLS and direct reversal of damage studies
by methyltransferases, Gary Pauly and Robert Moschel ensured signal from the lesion strand
by ligating into their vector a small duplex DNA in which several uracils oppose the lesion-
bearing strand, with the generation of a gap after in vitro degradation of the uracils (287,288).
Starting with an unmodified duplex plasmid and one containing randomly incorporated uracils,
Robert Fuchs constructed a heteroduplex with the lesion in the nonuracilated strand and then
degraded the entire opposing strand to obtain single-stranded modified genomes (286).

The synthesis of double-stranded genomes containing lesions may seem straightforward at first
glance. Indeed, why not just digest a double-stranded vector with two restriction
endonucleases, remove the small excised piece, and ligate a site-specifically modified duplex
containing compatible ends? In practice, however, problems plagued this “traditional cloning”
approach. Site-specific genetic studies rely on material that is homogeneous, and the common
problems one encounters with traditional cloning would be unacceptable; these problems
include concatemerization of the ligation components and poor ligation efficiency due to small
overhangs. In response to the need for high-quality site-specifically modified genomes, the
gapped duplex method was developed and validated. We were able to ligate a 4-mer containing
O6-methylguanine into a duplex vector by denaturing a mixture of two related duplex genomes
that had been linearized at different locations and that differed only by the size and sequence
of the complementary oligonucleotide to be inserted, followed by reannealing and ligating the
tetramer into the 4-base gap (264). Dephosphorylation of the genome linearized distally from
the insert site allows for the removal of the complementary wild-type strand and the analysis
of single-stranded genomes, while omission of this step generates duplex vectors. We also used
a duplexing strategy whereby a single-stranded circular DNA is annealed with the
complementary strand from a related linearized duplex to form the gap, into which the modified
oligonucleotide is ligated (291).

Robert Fuchs’ use of gapped duplexes to generate lesions in the leading or lagging strand of
covalently closed duplex vectors showed that while C8-guanine-acetylaminofluorene (AAF)
adducts are 20-fold more mutagenic in the lagging than in the leading strand, 8-oxoguanine
exhibits no such preference (292,293). By crippling the nonlesion strand by UV irradiation of
one of the linearized plasmids prior to gapped duplex formation, Fuchs showed that the position
of AAF affects −2 deletions within the NarI site (294) and −1 deletions within the SmaI site,
where a delay of replication after accurate insertion of cytosine opposite the guanine lesion
may allow time for the formation of a slipped intermediate (295). Fuchs’ strand segregation
analysis assay uses genomes containing a 3–4 nucleotide insertion opposite the lesion, allowing
one to distinguish (in mismatch repair-deficient cells) TLS from damage avoidance pathways,
which circumvent lesion replication (296–299). Among other discoveries, Fuchs used this
assay to show that TLS increases from 1 to 70% when AAF is deacetylated (296) and that
AAF-induced −2 deletions in the sequence GCGAAFCX can vary 30–50-fold in E. coli,
depending on X (298). Lawrence Marnett placed a C:C mismatch 3 kb away from
malondialdehyde and cyclopropano guanine lesions and showed that the lesions are substrates
for NER by tracking template strand utilization (300). Masaaki Moriya and Arthur Grollman
used mismatches at multiple locations to delineate the various repair and replication processes
for 1,N6-ethenoadenine and γ-hydroxypropanoguanine by linkage analysis (301,302).

Another strategy for duplex genome construction uses primer extension on single-stranded
circular viral templates. Lawrence Loeb and Bea Singer extended primers by one nucleotide
using the dNTP of O4-methylthymine or N2,3-ethenoguanine, followed by further extension
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with normal dNTPs and ligation of the nick (281,303). Thomas Kodadek and Howard Gamper
used a primer bearing an internal psoralen lesion to obtain site-specifically modified duplexes
(304).

4.2. Construction and Utility of Site-Specifically Modified Single-Stranded Vectors
Single-stranded genomes are ideal for measuring lesion traversal and mutagenesis by
polymerases, since vector replication requires trans-lesion synthesis to occur. Such vectors are
also ideal for studying lesion repair by proteins that use a direct reversal of base damage
mechanism, such as Ada, Ogt, AlkB, and their eukaryotic counterparts, since repair prior to
replication yields a normal base that is neither mutagenic nor genotoxic. Such vectors are not
well-suited for addressing NER or base excision repair if the oligonucleotide or lesion is
excised with equal efficiency regardless of the opposing base inserted by the DNA polymerase,
since the mutation would have already been made permanent. However, repair data can be
gained if (i) another enzyme can remove the improper base opposite the lesion, giving the
polymerase a second chance for nonmutagenic dNTP insertion, and/or (ii) the lesion is excised
only when paired with a nonmutagenic base. This scenario describes the MutM/MutY “GO”
repair system that Jeffery Miller and Arthur Grollman discovered for 8-oxoguanine (305,
306); the paradigm may possibly exist for other lesions as well. The GO discovery is a classic
example combining in vitro experiments using site-specifically modified oligonucleotides with
an original in vivo observation of a mutator phenotype in repair-deficient cells (307,308).

A simple method devised by Christopher Lawrence and J. Eugene LeClerc has gained wide
acceptance for constructing site-specific lesions within single-stranded viral genomes. A
single-stranded circular viral genome is linearized by cleavage within a hairpin using a
restriction endonuclease, followed by annealing of a scaffold complementary to the cleaved
termini, into which a phosphorylated oligonucleotide containing site-specific damage is
ligated, with scaffold removal by heating in the presence of excess complement (309–311).
Lawrence and co-workers have used these genomes to study TLS past photodimers and an
abasic site in E. coli (309–315) and, with Roger Woodgate, explored the effect of Umu proteins
and proofreading on TLS past these lesions (316–318). We adopted this method for the rapid
construction of genomes containing highly unstable aflatoxin adducts using a uracilated
scaffold, which is removed under gentle conditions by the combined activities of uracil-DNA-
glycosylase and exonuclease III (319). Masaaki Moriya’s versatile shuttle phagemid pMS2
uses the methodology described above for genome construction (but with the scaffold annealed
prior to hairpin cleavage) and allows one to study TLS in mammalian (COS-7 simian kidney)
cells, as well as in E. coli, for a direct comparison of the cellular responses to a lesion in different
environments using the same experimental system (320); the scaffold oligonucleotide is
removed using the 3′ to 5′ exonuclease property of T4 DNA polymerase, which we have
adopted into our protocols, as we found it to be more effective and to nick DNA less than
exonuclease III. We also modified the hairpin cleavage construction technique by using two
scaffolds, each of which bridges one end of the cleaved vector and modified oligonucleotide
insert, but nothing opposes the lesion or its neighbors, thus providing identical ligation
efficiencies regardless of lesion bulk or local sequence context, and assurance of signal from
TLS events rather than from any residual scaffold (321).

While this perspective deals primarily with E. coli and mammalian studies, a method
circumventing the need for genome construction altogether was introduced for studying lesion
mutagenesis in yeast. On the basis of the discovery of the Sherman group (322,323), the single-
strand oligonucleotide-mediated yeast transformation method uses the electroporation of a
single-stranded 26–30-mer oligonucleotide into yeast cells to restore a frameshift allele and
has been used to study natural, unnatural, and oxidized abasic sites, uracil (which forms a
natural abasic site in vivo upon glycosylase repair), a TT photoproduct, and unnatural lesions
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(324–327). Sequencing of revertants provides mutation data, and assuming that modified and
unmodified control oligonucleotides integrate into the host chromosome equally, bypass data
can be obtained by colony counting.

4.3. Assays for in Vivo Mutagenesis, Bypass, and Repair of Site-Specific Lesions
Once the genomes have been synthesized, they are introduced into cells by electroporation,
calcium chloride, calcium phosphate, or lipofection methods. For lesion mutagenesis and repair
studies, the goal is to get as many initial independent events as possible for statistical
robustness, and it is our experience that electroporation is superior to the calcium method for
the transformation of E. coli.

The in vivo mutagenicity of a lesion is measured by assessing the percentage of each type of
base or frameshift mutation at the lesion site. The blocking power that a lesion has over the
polymerase that tries to copy past it within the cell (trans-lesion synthesis/lesion bypass) is
often scored as a decrease in survival, with genotoxicity measured as a decrease in the ability
to form plaques or colonies. All site-specific lesion repair studies performed in vivo involve
mutagenesis and bypass assays that indirectly monitor the event. Repair is inferred by a drop
in the mutation frequency or an increase in trans-lesion synthesis when genomes assayed in
repair-deficient cells are processed in their wild-type complement. A short list of groups
making significant contributions to our understanding of how site-specific lesions are
processed within cells is presented below.

Moriya and Grollman used a single-stranded vector bearing 8-oxoguanine to show a striking
increase in G to T transversions in MutY-deficient E. coli, thus confirming elements of the
“GO” system in vivo using site-specific mutagenesis (328). Their use of the pMS2/COS-7
system showed differential mutagenesis for propanoguanine, ethenocytosine, ethenoadenine,
and (with Nicholas Geacintov) benzo[a]pyrene-N2-dG adducts as a function of the host cell
and, for the latter, sequence context and chirality (329–332); differential oligonucleotide
hybridization to individual colonies using probe sets specific for all outcomes provides
mutation frequency and specificity, and positive clones can be further sequenced, if desired.
Moriya and Grollman engineered yet another vector containing many desirable design
elements, allowing for the study of lesions placed in the leading or lagging strand of plasmids
replicated extrachromosomally in human cells, as well as in E. coli (333,334). For mammalian
analysis, plasmids from antibiotic-resistant cells are harvested, treated with DpnI to destroy
genomes that have not replicated within the host, and can be treated with another restriction
endonuclease to inactivate progeny from the strand complementary to the lesion prior to
transformation into E. coli for mutational analysis. Because this region is mismatched,
omission of the endonuclease will allow the amount of replication from each strand to be
quantified, thus providing feedback on lesion-induced inhibition of replication. This versatile
system has been used to measure the response of ethenoadenine, α- and γ-
hydroxypropanoguanine (and related lesions), and a heptanone adduct of ethenocytosine
(333–337).

Shibutani’s use of the pMS2/COS-7 system allowed him to determine the mutagenicity of α-
tamoxifen-N2-guanine and estrogen-N2-guanine and -N6-adenine adducts (150,338,339). This
system allowed him and Grollman to explore, within mammalian cells, such diverse lesions
and topics as the effect of sequence context on the mutagenicity of N2-guanine adducts of
(acetyl)aminofluorene and C8-adducts of the cooked food mutagen PhIP; the mutagenicity of
N2-guanine adducts of acetylaminonaphthalene, benzo[a]pyrene, and 8-aminoguanine; and a
head-to-head mutagenic comparison of 8-oxoguanine vs 8-oxoadenine (257,340–347).

R. Stephen Lloyd evaluated the lethality (plaque forming or transforming ability) and
mutagenicity (by differential oligonucleotide probe hybridization) of many alkylated lesions,
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mainly obtained by the Harris’, using the M13/E. coli technique of Lawrence (348–357) and
the pMS2/COS-7 technique of Moriya (358–363). Some highlights found in E. coli were a
dramatic effect of chirality and sequence context on the lethality of α-styrene oxide-N6-adenine,
which is a block to pol III in vitro when in a 33-mer but much less so when in an intact M13;
the β-isomers are neither toxic nor mutagenic (348,350,355). The S,S stereoisomer of
butadiene-N2-guanine intrastrand cross-links is more mutagenic than the R,R isomer (354); the
N1 deoxyinosine adduct resulting from reaction of 1,2-epoxy-3-butene with deoxyadenosine
is 90% mutagenic, giving predominantly A to G mutations (356); DNA pol II appears
responsible for the mutations caused by butadiene-N6-adenine intrastrand cross-links (357);
and the butadiene-derived N3-deoxyuridine adduct is 97% mutagenic in COS-7 cells, giving
C to T and C to A mutations (363).

Hiroyuki Kamiya and Eiko Ohtsuka performed studies on the mutagenicity of several lesions
in the c-Ha-ras gene in mouse NIH3T3 cells (364–372), and later, Hiroyuki Kamiya and
Hiroshi Kasai studied the mutagenicity of 2-hydroxyadenine, the (6-4) T-T photoproduct, and
5-formyluracil in simian COS-7 cells (373–375).

Edward Loechler (376) and Ashis Basu (135,291,377) performed pioneering work in the early
days of site-specific mutagenesis while in this laboratory and have gone on to investigate other
lesions and biological problems in their independent careers. Loechler has looked at the
biological effects within E. coli of nitrogen mustard interstrand cross-links (378,379) and of
sequence context and stereochemistry of benzo[a]pyrene-N2-guanine adducts (380–389),
combining observations from his single adduct studies with molecular modeling (390–396).
Basu has investigated N2-guanine adducts of nitropyrene and mitomycin C and C8-guanine
adducts of nitropyrene and ammonia (154,397–401) in E. coli. He has also recently investigated
N7-guanine adducts of mitomycin C, tandem 8-oxoguanine/abasic site damage, 8-oxopurines,
bona fide ring-opened FAPY lesions, and C8-guanine adducts of nitropyrene in COS-7 monkey
cells (402–405).

The plot of mutation type and frequency across a gene is called a mutational spectrum.
Mutational spectra are usually nonuniform; that is, there are hot and cold spots (406). The
reasons for this nonuniformity are not fully understood at the biochemical level, but several
reasonable possibilities exist as follows: (i) At any given site, the formation of an adduct may
be influenced by neighboring bases. (ii) Adducts in some contexts may be repaired better than
in others. (iii) Polymerases may misreplicate adducts more or in a qualitiatively different
manner in one context than in others. (iv) A mutation may be more easily selected or detected
in some contexts than in others (perhaps because a particular mutant grows better than other
clones). The tools of lesion-specific mutagenesis lend themselves well to help quantify the
relative contributions of the four possibilities listed above, and one should be cognizant of the
risk of generalizing a result obtained in only one sequence context.

Indeed, one of the more interesting applications of genomes containing specific DNA lesions
has been the collection of studies aimed at determining the effect of local sequence context on
the ways that DNA polymerases or repair proteins recognize lesions. While a comprehensive
analysis on sequence context effects is beyond the scope of this perspective, we note a few
studies of interest. Wallace generated consensus sequences for hotspot mutagenesis of 8-
oxoguanine using randomized flanking bases and in vitro selection (267), and Grollman and
Shibutani explicitly generated consensus sequences for acetylaminofluorene and
aminofluorene mutagenesis in vivo by constructing individual genomes containing nearly half
of the possible 16 nearest neighbors flanking the C8-guanine lesions, and transfecting these
into mammalian COS-7 cells; progeny plasmids were treated with S1 nuclease to eliminate
signal from unprocessed input DNA prior to their introduction into E. coli for mutant screening
by 32P-probe hybridization (344). Our group was interested in finding out if consensus
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sequences existed in vivo for O6-methylguanine mutagenesis by the DNA polymerase or if
such sequences existed that made the lesion refractory to repair by the methyltransferases Ada
and Ogt. We took a nearest-neighbor approach in constructing the requisite 16 individual
genomes but quickly realized that processing the data from five cell strains in duplicate would
require the analysis of 160 samples. We concluded that a high-throughput method was needed
that would allow analysis of the entire output population from each sample. Such a method
would obviate the need to sequence over 16000 individual clones or count even more plaque
hybridization spots requiring several probe sets to encompass all contexts for mutant
identification (312,348). The REAP procedure, which has become widely used in the field,
was developed to address the need for such a high-throughput method. This method is described
below.

4.4. REAP Assay for Determining the Mutation Frequency and Specificity of Lesions
To overcome the obstacles described above, the approach that we took to obtain the base
composition at the lesion site after biological processing involved incorporating our lesion of
interest into the cleavage site for a type IIS restriction endonuclease, an enzyme that cleaves
with surgical precision a fixed distance away from its recognition sequence. After restriction
endonuclease cleavage of the progeny, the newly exposed 5′-phosphate associated with the site
that had contained the lesion is postlabeled with 32P. The radiolabeled DNA is then trimmed
down to a small size by another restriction endonuclease, gel purified, and digested to 5′-
dNMPs, which are resolved by TLC and quantified by PhosphorImagery to obtain the mutation
frequency and specificity. The Restriction Endonuclease And Postlabeling determination of
mutation frequency (REAP) assay has evolved over the years to its present state, which is
depicted in Figure 2 and described in detail with protocols in ref 407. Although Figure 2 depicts
progeny from single-stranded DNA being analyzed, the use of PCR to amplify the region that
had contained the lesion allows the assay to determine the mutation frequency and specificity
of lesions from both single-stranded and double-stranded DNA genomes, which have been
passaged through both E. coli or mammalian cells. Indeed, the REAP assay can extract data
from lesions that have been absorbed intrachromosomally, and mutation data from RNA
genomes containing RNA lesions can be obtained after reverse transcription of the lesion site.
In addition to point mutations obtained by sampling from the entire progeny population, the
nonphenotypic REAP procedure permits simultaneous statistically robust analysis of
frameshifts.

Since its inception, the REAP assay has been used to define the coding specificities of over 50
lesions encompassing alkylative and oxidative damage, as well as unnatural atomically mutated
bases; the lesions that have been published are shown in Figure 3 (321,408–425). Using REAP,
a number of large scale projects have been completed, and the results of those studies are
highlighted as follows. First, REAP was used to define with high precision and accuracy the
error frequency of the replicative DNA polymerase of E. coli as it attempts to copy O6-
methylguanine (408); the polymerase nearly always reads the lesion as if it were an adenine
regardless of sequence context. Repair, however, is highly sequence-dependent, with some
sequences [e.g., 5′-A(O6-methylguanine)-3′] displaying conspicuously sluggish repair.
Second, the high-throughput nature of the method allowed a host of guanine oxidation products
to be analyzed in parallel, leading to the conclusion that these products are more highly
mutagenic than 8-oxoguanine (409,411,413,414). Similarly, the ability to study many lesions
at the same time allowed characterization of the substrate requirements of the DNA repair
enzyme AlkB, which was found to play a powerful protective role against certain alkylated
bases, including etheno- and ethano-adenine lesions (412,415,417). Third, the use of REAP
with a multiplexed set of cell strains in which various polymerases were expressed in
combinations allowed a detailed picture to be constructed of the genetic requirements for lesion
replication fidelity of a large array of oxidized DNA bases (419). Fourth, the method has been
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used to probe the fidelity of replication of a set of gradually expanded nonpolar thymine
analogues (where both oxygens are simultaneously replaced by H, F, Cl, Br, or I); these studies
provide basic data that help explain which structural features of normal DNA bases are critical
determinants of replication fidelity and evolutionary adaptability (416).

While designed primarily for the generation of in vivo results on lesion mutagenicity, an in
vitro version of REAP can be a powerful tool to assess lesion integrity after genome
construction or after exposure to specific chemical or enzymatic environments (412). After a
scaffold is annealed opposite the lesion in a single-stranded genome (duplex genomes would
need no such scaffold), the material is fed into the assay at the BbsI digestion step, with the
ultimate resolution and quantification of the original modified 5′-dNMP from its 5′-dNMP
conversion, degradation, or contamination products. As one example, REAP was used to study
the Dimroth rearrangement of 1-methyladenine to 6-methyladenine (412). One can envision
such an in vitro assay for monitoring the direct reversal repair of alkylated oligonucleotides,
such as O6-methylguanine by Ada, Ogt, or O6-methylguanine-DNA-methyltransferase or 1-
methyladenine by AlkB or its human homologues. By tracking the strand opposite the lesion,
one may eventually obtain point and frameshift mutations induced by chosen DNA
polymerases.

4.5. CRAB Assay for Determining the Polymerase Bypass Efficiency of Lesions
The ability to measure mutagenesis in vivo is only half the story. Indeed, lesions that are not
mutagenic to the cell can still be extremely toxic (412,417). Traditional experiments measure
the ability of a lesion to hinder DNA replication by a reduction in plaque or colony formation,
with respect to a nonlesion control, after immediate plating of transformed cells. Oftentimes,
however, the transfection efficiency of cells, be they E. coli, mammalian, or yeast, is variable
in practice. To address this problem, the Competitive Replication of Adduct Bypass (CRAB)
assay was developed (Figure 2), in which a lesion-bearing genome is mixed with a nonlesion
internal standard genome prior to transfection. In the initial version of the assay, plaques from
lesion-induced point mutations would be dark or light blue, while the internal standard would
be clear (412). A drop in blue plaques with respect to clears would indicate blocks to trans-
lesion replication. The work also showed that such survival assays based on immediate plating
of the transformation mixture can underestimate the blocking power of a DNA lesion; indeed,
a lesion can be a block to replication, but if it is eventually traversed prior to host destruction
of the vector, a colony (nonblocking “digital” signal) will form. Analysis of progeny after
growth of the mixture in liquid culture, where both lesion and internal standard genomes can
compete, gives a truer dynamic “analog” signal for lesion bypass determination. Two
limitations of the phenotypic version of this assay were that many plaques had to be counted
manually, and lesions that generate frameshifts would artificially decrease the bypass signal.
To overcome these obstacles, the CRAB assay for determination of lesion bypass quickly
evolved to its present state, depicted on the left-hand side of Figure 2 (407). Salient points are
(i) that the proportion of signal from lesion and competitor genomes grown in liquid culture is
obtained using REAP methodology but with primers that amplify lesion and competitor
progeny equally; (ii) the stored progeny from one sample can be analyzed for both bypass and
mutagenesis; (iii) the same input mixture containing lesion and competitor is used for an entire
panel of repair- and polymerase-deficient and -proficient cell strains, instilling confidence that
signal changes result from cellular variables and not from variations in the input formulation;
(iv) the input asymmetry of lesion to competitor provides a reproducible, quantifiable signal
for strongly blocking lesions, while an equal mixture would do so for nonblocking lesions.

A number of discoveries have been made using the CRAB assay for lesion bypass in vivo. As
a first example, the replication of a series of bases possessing small alkyl functionalities
provided a detailed picture of the features of lesion structure that allow polymerase bypass in
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vivo and indicate that some are well-repaired (412). These studies complemented the REAP
results described above. In addition, replication of lesion-containing genomes in cells with
known defects in repair (e.g., AlkB) or altered replication states (e.g., different SOS
polymerases expressed) defined substrates for repair and for specific polymerases. It was
found, for example, that certain replication-inhibiting etheno lesions, which form as a
consequence of inflammation, are good substrates for AlkB in vivo (415); hence, the absence
of AlkB results in severe genotoxicity. As a second example, it was demonstrated that the
potent replication block of 1,N6-ethanoadenine, a major adduct formed by the antitumor agent
BCNU, is relieved in AlkB-proficient E. coli (417). This discovery led to in vitro
characterization of the mechanism of the “repair” reaction, which was found to be unique. The
repair enzyme, using an oxidative route, converted the highly toxic cyclic adduct into a linear
chain that was apparently readily bypassed in vivo.

In vitro biochemical studies, such as that of AlkB on ethanoadenine, nicely complement in
vivo findings, especially for lesion repair. The unsaturated derivative of ethanoadenine, 1,N6-
ethenoadenine, is a case in point. Using ESI-TOF mass spectrometry on site-specifically
modified oligonucleotides treated with AlkB, it was possible to observe the accumulation of
intermediates and product along the pathway of 1,N6-ethenoadenine repair by the enzyme. As
was the case with ethanoadenine, it was possible to delineate the reaction path, which involved,
in this case, direct reversal of base damage by epoxidation of the etheno double bond, followed
by epoxide hydrolysis to form a glycol, which is removed as glyoxal, with restoration of the
adenine within the oligonucleotide (415). Yinsheng Wang has recently adopted and adapted
the CRAB and REAP assays, using a mass spectrometry platform for quantifying the
genotoxicity and mutagenicity of a guanine-cytosine intrastrand cross-link in E. coli (128).

5. Future Directions
5.1. Intrachromosomal Probes for Mutagenesis

To look to the future, it behooves us to reflect on the past, picking up on areas that were pursued
incompletely or neglected. Site-specific mutagenesis of DNA lesions has been performed
mostly using an extrachromosomal approach, whereby an oligonucleotide is ligated into a
single- or double-stranded vector containing an origin of replication, which is replicated
independently of the host genome. Many important discoveries have been made using
extrachromosomal probes; however, these vectors generally replicate more quickly than host
chromosomes. They may, therefore, underestimate the effect of DNA repair on damage within
a host chromosome, since the vector lesion site encounters a DNA polymerase more quickly,
reducing time for repair, which is measured as an increase in lesion bypass (toxicity) and/or a
decrease in mutation. On the other hand, mammalian chromosomes have a compacted
nucleosome structure, which may shield the lesion from repair, and data from the more repair-
accessible vector may overestimate the effect of DNA repair on damage within a host
chromosome. Also, it may remain unknown if there are differences between a vector and a
host chromosome in the interaction of a lesion with the DNA polymerase holoenzyme and its
accessory proteins. For reasons detailed above, intrachromosomal probes may be the most
biologically relevant system to study replication and repair of DNA lesions. We and the
Guengerich laboratory performed such experiments by transfecting vectors containing site-
specific O6-methylguanine, O4-methylthymine, or 1,N2-ethenoguanine lesions into Chinese
hamster ovary cells deficient in methyltransferase or nucleotide excision repair, whereby the
vector could not replicate within the host unless it integrated into the host chromosome (426–
428). Intrachromosomal analysis of mutations should be a more widely used tool.
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5.2. RNA Repair of Site-Specific Lesions in Vivo
The discovery that 1-methyladenine in RNA can be repaired by AlkB suggests an intriguing
question and poses a significant research opportunity (429,430). Some human transcripts are
both long in size and long-lived temporally; examples include those coding for the muscle
protein titin (34,350 amino acids) or for the β-and γ-globin transcripts, which have half-lives
between 17 and 80 h, depending on induction (431,432). After the large energy commitment
to make such transcripts, it would be disadvantageous if chemical damage rendered an RNA
species unreadable or misreadable. It seems reasonable to assume that the cell may use RNA
repair as a defense against RNA adducts. An in vivo system in which RNA lesions site-
specifically incorporated into biologically active RNA species would allow the hypothesis that
RNA repair exists as a physiologically relevant process to be tested.

5.3. Kinetics of Site-Specific Lesion Replication and Repair in Vivo
The biological studies to this point on DNA lesions have defined the mutagenic and toxic
properties of lesions. In the future, once the properties of the lesion are established, one could
use the lesion as a probe to define the properties of biological systems, such as the kinetics of
replication and repair, in vivo. For example, a lesion of predefined mutagenicity and toxicity
could be introduced at several sites in a genome, and each site would be ever more distal to an
origin of replication. Lesions distal to an origin or downstream from an impediment such as a
second lesion or a secondary structural element might be expected to show lower mutation
frequencies and lower toxicities than lesions that are more proximal to the origin, due to the
increased time that they have for being repaired prior to being replicated. Using the highly
quantitative methodology that now exists, the timing and hence the kinetics of replication and
repair could be clocked in vivo by using mutagenic and toxicity end points. Such studies would
help to establish a more detailed, granular image of the responses of cells to stress than exists
at present.

5.4. Translational Aspects of Site-Specific Mutagenesis Studies
In any field, it is critical to identify where possible the translational elements that relate most
directly to improvement of the human condition. Lesions of anticancer drugs kill cells, but they
also can cause mutations that can engender second tumors in cancer patients treated with
chemotherapy. Studies of lesion mutagenesis have helped and can continue to help the drug
development process, as shown in studies by Yarema et al. (433,434). Additionally, in work
by Loeb and co-workers, lesions of established mutagenicity have been used to dope the
nucleotide precursor pool of cells attempting to replicate HIV. The viral genomes accumulated
mutations at an accelerated pace that apparently caused the virus to exceed the error threshold
for viability. This work led to a novel antiviral therapy and opened a field termed “lethal
mutagenesis”. Finally, lesion-specific mutagenesis has and will continue to be of central
importance to field workers who need biomarkers predictive of carcinogenic risk. For example,
the work of Thomas Kensler and John Groopman that established the aflatoxin-N7-guanine
adduct in urine as an excellent biomarker for hepatocellular carcinoma risk in human
populations benefited from and is mechanistically anchored to genetic studies showing that the
aflatoxin adducts are indeed progenitors of the types of genetic change that occur in people
with clinical disease (194,435).

Twenty years ago, it would seem out of the question to process more than a few lesions of
interest in vivo, yet alone in different sequence contexts and different cell strains. The progress
described herein has increased the productivity of the field by several orders of magnitude, and
fundamental discoveries on how cells respond to damage are being made at a staggering rate.
It is clear that this field is robust and has a bright and dynamic future. It will be exciting to see
what the next 20 years have in store.
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Figure 1.
Evolution for understanding polymerase and repair contributions to lesion mutagenesis and
bypass.
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Figure 2.
REAP assay for determining the mutation frequency and specificity of lesions (right) and
CRAB assay for determining the replication blocking power of lesions (left).
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Figure 3.
Lesions analyzed by the REAP and CRAB assays.
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