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Abstract: Quantitative prediction of protein–protein binding affinity is essential for understanding
protein–protein interactions. In this article, an atomic level potential of mean force (PMF)

considering volume correction is presented for the prediction of protein–protein binding affinity.

The potential is obtained by statistically analyzing X-ray structures of protein–protein complexes in
the Protein Data Bank. This approach circumvents the complicated steps of the volume correction

process and is very easy to implement in practice. It can obtain more reasonable pair potential

compared with traditional PMF and shows a classic picture of nonbonded atom pair interaction as
Lennard-Jones potential. To evaluate the prediction ability for protein–protein binding affinity, six

test sets are examined. Sets 1–5 were used as test set in five published studies, respectively, and

set 6 was the union set of sets 1–5, with a total of 86 protein–protein complexes. The correlation
coefficient (R) and standard deviation (SD) of fitting predicted affinity to experimental data were

calculated to compare the performance of ours with that in literature. Our predictions on sets 1–5

were as good as the best prediction reported in the published studies, and for union set 6, R 5

0.76, SD 5 2.24 kcal/mol. Furthermore, we found that the volume correction can significantly

improve the prediction ability. This approach can also promote the research on docking and

protein structure prediction.

Keywords: structure-derived statistical potential; potential of mean force; knowledge-based

potential; protein–protein interactions; prediction of binding affinity

Introduction

Protein–protein interactions participate in an extremely

wide range of life processes, including cellular metabo-

lism of matter and energy, signal transduction, and so

on. Thus, understanding protein–protein interactions

is a very important issue in biology. However, satisfac-

tory solutions to many problems in this field have not

been obtained yet, including predictions of protein–

protein affinity and protein–protein structure. All of

them require a precise energy function. Many efforts

have been made to develop such functions but the

achieved accuracy still need to be improved in prac-

tice.1–3 In this article, we focus on structure-derived

statistical potentials to predict protein–protein affinity.

Structure-derived statistical potentials have been

widely applied not only in protein structure prediction

and design but also in protein complexes studies, such

as protein–ligand affinity prediction (the ligand can be

protein, peptide, DNA, RNA, or other molecules),

mutation-induced changes in protein stability, and
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rational drug design.4–13 In those approaches, the

potential is extracted by statistically analyzing known

three-dimensional structure data of biomolecules.

Therefore, they were also termed knowledge-based

potentials. One kind of them, potential of mean force

(PMF), is derived from the statistical mechanics of

simple liquids,14–16 which converts particle pair distri-

bution of distance into distance-dependent potential

function. PMF has been frequently used in affinity pre-

diction and structure scoring, because its physical

meaning and function curve are similar to those of the

‘‘true’’ energy potential, which in principle can be

derived from fundamental analysis of the forces

between particles,10,17 such as quantum chemical

calculations. Therefore, PMF was also called as

energy-like potential or quantity.

Volume correction must be considered when PMF

is applied in protein systems. It is one of the key fac-

tors that can improve the precision of prediction and

the reasonableness of potential function. Since PMF

was introduced into the studies of protein systems, the

understanding and the application of volume correc-

tion (or frequency correction) have undergone a series

of development.

Sippl18 observed the frequency of the alpha-C of a

residue pairs and normalized it with the average fre-

quency over all residue pairs. Then, the normalized

frequency was transformed into potential directly

without considerations of the frequency correction.

This traditional PMF approach was the mainstream

method in early researches.19,20

Subsequently, some approaches to calculate PMF

are based on the radial distribution function (RDF) in

the statistical mechanics of simple liquids.14–16 In

those approaches, the frequency was normalized in the

manner of dividing occurrence numbers in a sphere

volume without any correction. However, the occupied

volume in a more complex system, such as in a protein

system, is not a whole sphere. Therefore, when nor-

malizing the occurrence frequency of atom pairs, the

whole sphere volume is not a good indicator of the

actual occupied volume. For example, Bahar and Jer-

nigan21 considered the theoretical basis of PMF as the

RDF. They normalized the occurrence numbers with

the numbers in a whole sphere volume (4pr2dr). They
further analyzed in detail the distribution tendency of

the occurrence numbers of residue pairs in protein

systems with increasing distance and compared it with

the occurrence numbers in a whole sphere (Fig. 2 in

Ref. 21, the tangent in this figure corresponds to the

distribution of numbers in a whole sphere). Form this

figure, we can get the hint of correcting the distribu-

tion of the occurrence numbers in a whole sphere with

a function to obtain the better approximation to the

distribution in protein systems. Mitchell et al.22 found

that the factor of a whole sphere (4pr2dr) gives an

average potential that is weakly repulsive over the

entire distance range with no attractive region at

typical interaction distances. They thought that this

abnormality is due to the occupied volume of atoms in

protein complexes deviating significantly from r2

proportionality.

Imperfections in the aforementioned studies show

that in systems as complicated as proteins, the occu-

pied volume is not proportional to a whole sphere. In

contrast to in simple liquids system, the normalized

frequency of atom pairs (or residue pairs) can work

well15 using f(r) ¼ N(r)/volume(r), here occupied vol-

ume is a whole sphere: volume(r) ¼ 4pr2dr.
Since then to obtain the real occupied volume in

protein systems, the volume correction has been devel-

oped along two ways, one of which is based on correc-

tion functions and the other on structural statistics.

The first way corrects occupied volume with a certain

function to get the better approximation than a whole

sphere volume 4pr2dr. Zhou and Zhou23 established

DFIRE approach, which corrected volume with ra. The

exponent a is a constant, whose empirical value was

first found equal to 1.5723 and refined to 1.6124 subse-

quently. DFIRE was applied in the affinity prediction

of protein complexes later.25 In this article, we tested

our approach on the test set from DFIRE. Shen and

Sali26 went a step further. They analytically derived a

statistical potential termed DOPE for decoy discrimi-

nation of single protein structure. The DOPE corrects

volume with a correction factor of ra(r). The effective

exponent a(r) is a function of interparticle distance r,

which results in a more flexible application.

It should be noted that these approaches above

corrected volume with a uniform factor to all atom

types. In other words, they used the same correction

factor for distinct atoms. But in fact, each of the atom

types is different on occupied volume. Therefore, a dis-

tinct volume correction should be used for each of the

atom types.

This problem is naturally solved by the second

type approach of volume correction, which acquires

the volume correction factors directly from statistics to

structures. This type of approach, unlike the first one,

is independent of a certain function form to correct

occupied volume. Moreover, in contrast to the first

way, it is able to distinguish different atom types sur-

rounded by distinct environments, by generating a

unique volume correction for each atom type. There-

fore, a more accurate correction can be acquired.

Muegge and Martin27 corrected the volume based on

structural statistics. In their approach, each atom type

is treated with a different volume correction. Their

approach performed well in the prediction of protein–

ligand binding affinity. However, the implementation

of their approach is very complicated in practice,

which obstructed its popularity.

The approach presented in this article belongs to

the second type of approach, but we circumvented the

complicated step of volume correction process. The

volume correction was achieved using a novel and very
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simple frequency correction. More reasonable poten-

tials were obtained, and the prediction to protein–

protein binding affinity on six test sets from five

literatures also showed good performance of our

approach.

Results and Discussions

Details of the pair potentials
Three pair potentials chosen as representative exam-

ples are shown in Figure 1. These potentials are back-

bone–backbone (B-B) potential 1-1, backbone-side

chain (B-S) potential 7-4, and side chain–side chain

(S-S) potential 8-6. The potentials calculated by

Eq. (2), that is, our approach, are represented by the

solid curve. For comparison, the potentials from Eq.

(1), that is, the traditional approach, are represented

by the dashed curve. The numbers 1-1, 7-4, and 8-6

are labels of atom pairs, whose atom types are defined

in Table III.

For pair potentials 1-1 and 7-4 from traditional

approach (dashed curves in Fig. 1), repulsion at all dis-

tances can be observed. Potential 8-6 from traditional

approach is very similar to that from improved

approach; the two curves share a normal shape with-

out strong repulsion at all distances.

The solid curves in Figure 1 represent the poten-

tials from our improved approach as previously men-

tioned, have classic picture of nonbonded atom pair

interaction as Lennard-Jones potential. They exhibit

strong repulsion at short distances, followed by one or

several valleys with local minimums, representing the

interaction preference at certain distances. When the

distance between atom pairs is increased, the values of

potentials trend zero, which means the atom pairs

have very little interaction at such a long distance.

In short, strong repulsive interactions can be

observed at all distances in B-B and B-S potentials

from traditional approach (dashed curves in Fig. 1).

Corresponding to our results, the potentials calculated

from other traditional approaches in literatures also

exhibit similar curves.21,22 However, in potentials from

improved approach, this strong repulsion is weakened

(solid curves in Fig. 1). These potentials from

improved approach are more reasonable and show a

classical picture of nonbonded atom pair interaction as

Lennard-Jones potential. This indicates better accord-

ance of our approach with acknowledged theories.

In traditional approach, the abnormal repulsions

at all distances of B-B and B-S potentials can be

attributed to the shortage of observed frequency of

atom pairs. The main reason for the shortage is the

less exposure of the backbone atoms than the side

chain atoms in protein–protein interface. As the space

around backbone atom cannot be filled with atoms of

the other chain, observed frequency of B-B and B-S

atom pairs remains low.

Binding affinity prediction of

protein–protein complexes for six test sets

To evaluate the prediction ability of our approach to

the affinity prediction of protein–protein complexes,

we collected as much test data as possible from the lit-

erature of binding affinity prediction and discarded

none of them. Because there have not been an authori-

tative benchmark of test sets for binding affinity pre-

diction of protein–protein complexes, we collected test

data from published studies, which predicted protein–

protein binding affinity using various approaches not

just PMF. Then, we compared prediction ability of

their methods with ours according to linear correlation

between predicted affinity and experimental data. It

should be noted that we discard none of the test data

in the literature, because the correlation coefficient (R)

could be significantly increased artificially by an addi-

tional restriction of included test data.

Finally, affinity predictions on six test sets (Table I)

were done. The potentials for predictions were trained

from 127 PDB entries (Table II). A total of 47 atom types

for all the heavy atoms of the 20 amino acids were

defined (Table III). Finally, 86 protein-protein complexes

Figure 1. Examples of potential. 1-1 is backbone-backbone (B-B) potential, 7-4 is backbone-side chain (B-S) potential, and

8-6 is side chain-side chain (S-S) potential. The numbers in 1-1, 7-4, and 8-6 represent the atom types defined in Table II.

The solid curves represent the potentials from improved approach, and the dashed curves represent the potentials from

traditional approach.
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(Table IV) were predicted. Test sets 1–5 come from five

published articles. Test set 6 is the union set of sets 1–5,

which means it contains all nonrepeated data of the first

five sets. For all the six test sets, we evaluated prediction

ability using linear correlation coefficient (R) and stand-

ard deviation (SD) of fitting predicted affinity to experi-

mental data, and then, we compared R and SD of our

prediction with the linear correlation results reported in

the literatures. The criterion of the better prediction

should be larger R and smaller SD in absolute value con-

temporaneously. All of the literatures reported R,

whereas only two of them reported SD yet. The results

are presented in Table I and Figure 2.

Test set 1 (Table I) contains 15 protein–protein

complexes from Ref. 28. In this literature, the affinity

is described as the sum of solvation terms based on

atomic solvation parameter (ASP) and an energy term

to account for the loss of translational and rotational

entropy. For the polar and apolar solvation compo-

nents, the correlation coefficients (R) are 0.63 and

0.77, respectively. When they revised their function by

adding the two terms together weighted by two newly

introduced free parameters, a and b, the correlation

extends to 0.96. And, no SD values were reported in

the literature. In our prediction, R ¼ 0.91 and SD ¼
1.98 kcal/mol (Fig. 2).

Test set 2 (Table I) contains eight protein–protein

complexes from Ref. 29. In this literature, they used a

method constructed from molecular surface preferen-

ces. For set 2, R ¼ 0.74 and SD ¼ 1.5 kcal/mol were

reported. In our prediction, R ¼ 0.89 and SD ¼ 1.19

kcal/mol.

Test set 3 (Table I) contains nine protein–protein

complexes from Ref. 30. In this literature, they used a

Table I. Linear Correlation Between Experimental Binding Affinity and Predicted Affinity for Six Test Sets

Test set Ref.a No. of complexes

R SD

Oursb Literaturec Oursb Literaturec

1 a 15 0.91 0.96d 1.98 NAe

2 b 8 0.89 0.74 1.19 1.5
3 c 9 0.83 0.70 1.40 2.0
4 d 21 0.85 0.75 2.31 NAe

5 e 82 0.73 0.73 2.23 NAe

6 f 86 0.76 – 2.24 –

a a, Ref. 28; b, Ref. 29; c, Ref. 30; d, Ref. 31; e, Ref. 25; f, union set of sets 1–5.
b The results from our approach.
c The results from literature.
d In the literature, for the polar and apolar components, the correlation coefficient is 0.63 and 0.77, respectively. When the two
terms are added together and weighted by two free parameters a and b, the correlation extends to 0.96.
e NA, no available standard deviation (SD) was reported in the literature.

Figure 2. The predicted binding affinity by improved approach fitting with experimental data for six test sets. The linear

correlation coefficient (R) and standard deviation (SD) were calculated. The results of the statistical analysis are given in Table I.
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method based on MJ potential. For set 3, R ¼ 0.70

and SD ¼ 2.0 kcal/mol were reported. In our predic-

tion, R ¼ 0.83 and SD ¼ 1.40 kcal/mol (Fig. 2).

Test set 4 (Table I) contains 21 protein–protein

complexes from Ref. 31, in which the method is based

on ASP. R ¼ 0.75 with no SD value was reported in

the literature. In our prediction, R ¼ 0.85 and SD ¼
2.31 kcal/mol (Fig. 2).

Test set 5 (Table I) contains 82 complexes from

Ref. 25 predicted by DFIRE, which is the only test set

predicted by PMF method. Our prediction performed

equally well as the literature in term of correlation

coefficients (R ¼ 0.73).25 The SD of our prediction is

2.23 kcal/mol. The literature did not report the SD.

Test set 6 contains all data in sets 1–5, adding up

to 86 complexes. The R and the SD of our prediction

are 0.76 and 2.24 kcal/mol, respectively. It is particu-

larly worth noting that although set 6 contains more

test data (86) than set 5 (82), but in our predictions

R ¼ 0.76 of set 6 is better than R ¼ 0.73 of set 5. The

reason is that these test sets were extracted from pub-

lished articles directly and have not been refined. For

example, test set 5 contains 20 OppA-peptide com-

plexes, whose peptides have highly similar sequences,

resulting in a biased prediction toward this type of

complexes. Test set 6 contains more data, which partly

balance out this effect.

A good test set served as a benchmark should be

nonredundant or at least with restricted numbers of

similar complexes. However, until now, there is no au-

thoritative test set served as benchmark for binding af-

finity prediction of protein–protein complexes. We plan

to build such a benchmark in our future studies.

Overall, test sets 1, 2, 3, and 4 contain less test

data, so predictions can easily obtain good linear

correlation (Table I) as in both our predictions and

literature. Moreover, for all test sets except set 1, corre-

lations of our prediction are better than report in the

literature. Nevertheless, the meaning of the correlation

for small test set should not be overestimated, as it is

unstable. If one or a few test data in these small sets are

changed, the correlation (R and SD) might be signifi-

cantly changed. Therefore, performance on the four

sets may not say much about prediction ability. For test

set 5, a larger set, our prediction obtained as good cor-

relation as literature (0.73). For set 6, which contains

all data in sets 1–5, our prediction obtained even better

R (0.76) than for set 5 (0.73).

The volume correction is very important for the
prediction of binding affinity

We found that the introduction of volume correction

makes the pair potentials more reasonable and results

in great improvement on prediction ability for the

binding affinity of protein–protein complexes.

Above in Figure 1, we have shown that B-B potential

1-1, B-S potential 7-4 from traditional approach without

volume correction have strong repulsive interactions at

all distances (dashed curves in Fig. 1). But, in potentials

from our approach considering volume correction, this

strong repulsion is weakened and the attractive valley

appears (solid curves in Fig. 1). A classic picture of non-

bonded atom pair interaction as Lennard-Jones potential

was shown. It represents that volume correction can

obtain more reasonable potential. In comparison, S-S

potential 8-6 already has reasonable shape and has not

large change after volume correction.

Correct understanding to the interactions of B-B

and B-S atom pairs is very important for the binding af-

finity prediction, because B-B and B-S atom pair inter-

actions make a large percentage contribution in pro-

tein–protein interactions. We analyzed the percentage

contribution of B-B, B-S, and S-S pair based on 127

protein–protein complexes in the training set. The

components of B-B, B-S, and S-S make up 23.5, 50.1,

and 26.4% of the total interaction pairs, respectively.

Therefore, if inaccurate estimates of B-B and B-S pair

potentials are used to predict binding affinity, the

results will be affected significantly. Figure 3 shows the

prediction for 86 protein–protein complexes in test set

6. The traditional approach without volume correction

obtained linear R ¼ 0.07 and SD ¼ 3.45 kcal/mol.

Meanwhile, our approach considering volume correc-

tion obtained R ¼ 0.76, SD ¼ 2.24 kcal/mol. Above

showed the introduction of volume correction is very

important for the improvement of prediction ability.

A web server for the binding affinity prediction

of protein–protein complexes
We developed a web server PPEPred (http://

www.bioinfo.tsinghua.edu.cn/�suyu/ppepred/) for the

binding affinity prediction of protein–protein (protein–

peptide) complexes from three-dimensional structure

data, based on the approach in this article. The parame-

ters a and b for the prediction in Eq. (6) are 0.007850

and �4.491 kcal/mol from the linear fitting to test set 6.

The inputs of PPEPred server are the structure name,

two chains name, and user needs to upload the struc-

ture data of Protein Data Bank (PDB) file or user file in

PDB format. The output is the affinity of this complex.

The web server is free and open to everyone.

Materials and Methods

Potential of mean force
Traditional approaches of PMF were widely applied in

the studies of protein structure and protein–protein

interaction. Here, the traditional potential between

two atoms of type i and type j with distance r can be

described by the function:

AijðrÞ ¼ kBT ln
qijðrÞ
qxxðrÞ ; (1)

where kB is the Boltzmann constant and T is the abso-

lute temperature. qij(r) is the normalized frequency
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between atom pairs of type i and type j, and qxx(r)

represents average normalized frequency covered all

atom pairs, which are defined in Eq. (4). Other tradi-

tional approaches consider qij(r) and qxx(r) as density

in a whole sphere volume (4pr2dr). Both of them can

obtain similar results in calculation.

However, there are some problems with tradi-

tional approaches mentioned earlier. qij(r) and qxx(r)

have distinct distribution, corresponding the average

density in calculating the RDF in the theory of simple

liquids. But, qij(r)/qxx(r) ignored the distinct distribu-

tion between them. To get more reasonable potential,

this deviation ought to be corrected in an improved

approach.

Up till now, all the improved approaches cor-

rected the deviation based on the average density on

volume, named as volume correction. But, in compari-

son with the simple liquid systems, proteins are

extremely complicated soft matter. In protein systems,

these approaches were deduced in an extremely

complicated manner, and the steps of implement also

contain many details in practice, such as the approxi-

mation in acquiring the distributions of atom volume

and adopting diverse width of bins at different distan-

ces in statistics.25–27

On the contrary, in our approach, we directly cor-

rect the volume effect based on frequency, which can

achieve the same goal of correction and largely sim-

plify the process of implement in practice. The

improved approach of PMF in our work is given by:

AijðrÞ ¼ kBT ln
qijðrÞ
qxxðrÞ fcor; (2)

where kB is the Boltzmann constant and T is the abso-

lute temperature. qij(r) and qxx(r) are the normalized

frequency of atom pairs, which are defined in Eq. (4).

fcor is the correction factor, derived from smoothing

qxx(r)/qij(r) ranging from 0 to 12 Å, by a moving win-

dow of 3.5 Å width with bin of width 0.1 Å.

To obtain the stable potentials in statistics, we

considered the potentials only when the total occur-

rence number of atom pairs was larger than 1000. If

the total occurrence number of atom pairs of type

Figure 3. The binding affinity prediction to test set 6. The linear correlation coefficient (R) and standard deviation (SD) were

calculated. (A) Prediction from traditional approach. (B) Prediction from improved approach considering volume correction.

Table II. The 127 PDB Entries for Training Potentials

12gs 1a09 1a14 1a1n 1a2c 1a2k 1a2x 1a2y 1a3b 1a3r
1a46 1a4w 1a5g 1a5s 1a61 1a9e 1ab9 1abo 1abr 1abw
1agd 1ak4 1an1 1aqc 1aqd 1aqv 1avw 1axd 1axi 1bd2
1bhf 1bj1 1bnd 1brb 1brc 1bt6 1dkz 1dzb 1e4x 1e96
1eay 1eer 1efn 1efu 1exf 1fdl 1flt 1gbb 1gc1 1gg2
1gl1 1got 1gua 1gux 1gzs 1h0d 1h2s 1he1 1hwg 1ikf
1ir3 1itb 1jhg 1jhl 1kip 1lck 1ld9 1lfd 1mct 1mel
1mlc 1nmc 1oak 1oby 1obz 1oey 1oga 1ogt 1ohz 1okk
1okv 1ol5 1osp 1osz 1qew 1qja 1qls 1qo3 1rst 1rsu
1scn 1sfi 1shd 1sib 1slg 1slu 1sm3 1smf 1spp 1taf
1tbg 1tec 1tx4 1tze 1upt 1uzx 1vad 1wej 1www 1x11
1ycs 1zfp 2cbl 2fib 2h1p 2hrp 2jel 2prg 2seb 2tgp
2trc 2vaa 3cyh 3nse 3sgb 3sic 5csm
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i and type j was smaller than 1000, we set Aij(r) ¼ 0.

That is, we ignored the contribution of a particular

pair type if it had not sufficient data in statistics.

Later, we show how to obtain the normalized

frequency qij(r) and qxx(r) statistically.

First, according to statistics, we obtain Nij(r), the

occurrence numbers of atom pairs ij at a certain

distance r, in a training database of protein–protein

complexes, ranging from 0 to 12 Å at 0.1 Å intervals

(but the occurrence numbers in which atom pairs dis-

tance is below 2.5 Å were set zero as unrealistically

short for heavy atom pairs):

NijðrÞ ¼
X

p

dðrij � rÞ

NxxðrÞ ¼
X

i

X

j

X

p

dðrij � rÞ; ð3Þ

where d(x) is d function, which is equal to 1 if its

argument is zero, and zero otherwise. The subscript

p designates that the summation cover all protein–

protein complexes in the training database. The sub-

script i and j designate that the summation cover all

atom pairs.

Then, we normalize the occurrence numbers to

get the relative frequency:

qijðrÞ ¼
NijðrÞP
r
NijðrÞ

qxxðrÞ ¼ NxxðrÞP
r
NxxðrÞ ; ð4Þ

where the summation is on atom pairs ranging from 0

to 12 Å.

Scoring and fitting experimental binding affinity

The scoring function to a protein–protein complex is

defined as the summation over all atom pair interac-

tions of the protein–protein complex:

score ¼
X

r<rcutoff

AijðrÞ; (5)

where rcutoff is the cutoff distance between atoms i and

j. Here, 12 Å is used.

To relate the score above to an absolute binding

affinity, we fit it to binding affinity in a linear manner:

DGbind ¼ a scoreþ b: (6)

The training set

The Brookhaven Protein Data Bank32 was used to get

the training data set in deriving the potential. We

included only X-ray structures of protein–protein and

protein–peptide complexes with resolutions better

than 2.5 Å. Based on these criteria, 438 entries were

yielded. To eliminate the structure similarity, we fur-

ther filtered these entries based on molecular informa-

tion in PDB entry and the cited literature in REMARK,

with the aid of the molecule graph software (RasMol).

For the same structure, we only reserved the entry of

the best resolution. Finally, the training set contained

178 interfaces (in Supporting Information) from 127

PDB entries (Table II).

Table III. Atom Type Definition for Heavy Atoms of
the Standard Amino Acids

Atom type Type definition

1 Ca (all amino acids, except Gly)
2 Gly-Ca

3 N (all amino acids, except Pro)
4 C (all amino acids)
5 O (all amino acids)
6 Val-Cc1, Val-Cc2, Leu-Cd1, Leu-Cd2,

Ile-Cc2, Ile-Cd, Thr-Cc

7 Leu-Cc, Ile-Cc1, Gln-Cc, Lys-Cc,
Lys-Cd, Glu-Cc, Arg-Cc

8 Cb (all amino acids, except
Pro, Ser, Thr, Cys)

9 Met-Sd
10 Pro-N
11 Phe-Cc, Tyr-Cc

12 Phe-Cd1, Phe-Cd2, Phe-Ce1, Phe-Ce2,
Phe-Cf, Tyr-Cd1, Tyr-Cd2, Tyr-Ce1, Tyr-Ce2

13 Trp-Cc

14 Trp-Ce2

15 Ser-Cb

16 Ser-Oc, Thr-Oc

17 Thr-Cb

18 Asn-Nd2, Gln-Ne2

19 Cys-Sc
20 Lys-Nf

21 Arg-Cf

22 Arg-Ng1, Arg-Ng2

23 His-Cc

24 His-Cd2

25 His-Ne2

26 His-Ce1

27 Asp-Cc, Glu-Cd

28 Asp-Od1, Asp-Od2, Glu-Oe1, Glu-Oe2

29 Cys-Cb

30 Met-Ce

31 Tyr-Cf

32 Pro-Cd

33 Asn-Cc, Gln-Cd

34 Asn-Od1, Gln-Oe1

35 Lys-Ce

36 Arg-Ne

37 Arg-Cd

38 His-Nd1

39 Trp-Ne1

40 Tyr-Og

41 OXT (the extra oxygen at the carboxyl terminal)
42 Pro-Cb

43 Pro-Cc

44 Met-Cc

45 Trp-Ce3, Trp-Cf2, Trp-Cf3, Trp-Cg2

46 Trp-Cd1

47 Trp-Cd2
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Atom type definition for heavy atoms of the
standard amino acids

We defined 47 atom types for all the heavy atoms of

the 20 amino acids (Table III). The definition of atom

type is based on its physicochemical property, connec-

tivity, and environment, derived from 40 atom types

in Ref. 33. To obtain more details of interactions, it

would be better that we define as many atom types as

possible. On the other hand, to obtain statistically suf-

ficient data, we could not define too many atom types.

Therefore, the number of atom types was a compro-

mise between the two considerations.

Conclusions
We present a novel PMF considering volume correc-

tion. In the prediction of protein–protein binding af-

finity, six test sets were tested and good performance

was shown. This approach circumvents the compli-

cated step of volume correction process and is

extremely easy to implement in practice.

In this article, our approach is used to predict

protein–protein binding affinity. But in respect of

methodology, the statistics and calculation of this

approach do not specialize in protein–protein com-

plexes. Therefore, it can be applied to other fields, in

which traditional approaches of PMF have been widely

applied, such as protein–ligand docking and protein

threading in structure prediction. It is expected to

have a good performance.
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