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Abstract

In the fly Drosophila melanogaster, neuronal plasticity of synaptic terminals in the first optic neuropil, or lamina, depends on
early visual experience within a critical period after eclosion [1]. The current study revealed two additional and parallel
mechanisms involved in this type of synaptic terminal plasticity. First, an endogenous circadian rhythm causes daily
oscillations in the volume of photoreceptor cell terminals. Second, daily visual experience precisely modulates the circadian
time course and amplitude of the volume oscillations that the photoreceptor-cell terminals undergo. Both mechanisms are
separable in their molecular basis. We suggest that the described neuronal plasticity in Drosophila ensures continuous
optimal performance of the visual system over the course of a 24 h-day. Moreover, the sensory system of Drosophila cannot
only account for predictable, but also for acute, environmental changes. The volumetric changes in the synaptic terminals of
photoreceptor cells are accompanied by circadian and light-induced changes of presynaptic ribbons as well as extensions of
epithelial glial cells into the photoreceptor terminals, suggesting that the architecture of the lamina is altered by both visual
exposure and the circadian clock. Clock-mutant analysis and the rescue of PER protein rhythmicity exclusively in all R1-6
cells revealed that photoreceptor-cell plasticity is autonomous and sufficient to control visual behavior. The strength of a
visually guided behavior, the optomotor turning response, co-varies with synaptic-terminal volume oscillations of
photoreceptor cells when elicited at low light levels. Our results show that behaviorally relevant adaptive processing of
visual information is performed, in part, at the level of visual input level.

Citation: Barth M, Schultze M, Schuster CM, Strauss R (2010) Circadian Plasticity in Photoreceptor Cells Controls Visual Coding Efficiency in Drosophila
melanogaster. PLoS ONE 5(2): e9217. doi:10.1371/journal.pone.0009217

Editor: Paul A. Bartell, Pennsylvania State University, United States of America

Received November 6, 2009; Accepted January 20, 2010; Published February 15, 2010

Copyright: � 2010 Barth et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Max-Planck-Society, a BMBF Biofuture grant to R.S. (FKZ 0311855), and a Deutsche Forschungsgemeinschaft grant to
M.B. http://www.bmbf.de/, http://www.dfg.de/, http://www.mpg.de/. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rstrauss@uni-mainz.de

¤a Current address: Max-Planck-Institute for Biological Cybernetics, Tuebingen, Germany
¤b Current address: Department of Neurobiology, Ruprecht-Karls-Universitaet Heidelberg, Interdisciplinary Center for Neurosciences at the University of
Heidelberg, Heidelberg, Germany
¤c Current address: Johannes Gutenberg-University Mainz, Institute for Zoology III - Neurobiology, Mainz, Germany

Introduction

The light response of photoreceptor cells and/or the neuronal

computation of their output functions are often modulated so as to

optimize vision under varied and changing light conditions.

Underlying mechanisms range from structural changes of the

light-sensitive cells over differences in conductance of photorecep-

tor membranes, or in synaptic signal transduction, up to altered

levels of post- to presynaptic feedback modulation. One well

described example for the first mechanism is provided by the

horseshoe crab, Limulus polyphemus, in which the sensitivity of

photoreceptor cells in the lateral eye is controlled by structural and

physiological changes in the receptors [2]. Turnover of photore-

ceptor membranes, shape of quantum bumps, or temporal

response properties are among the well-orchestrated mechanisms

that serve to increase the chance of an incident photon to strike a

rhodopsin molecule. These mechanisms increease signal to noise

ratio and thereby visual sensitivity.

Neuronal computational mechanisms, like those in the verte-

brate retina [3], enable animals to optimize visual behavior. For

instance, compensation for the delayed visual response of the eye

to the trajectory of a moving object occurs in the retina rather in

the visual cortex. The neuronal flexibility of retinal ganglion cells

ensures that the retina encodes the invariant features of objects

regardless of changing ambient lighting, and thus provides the

organism continuously with optimal visual information.

In the fruit fly, Drosophila melanogaster, and in other insect species,

the first optic neuropil, or lamina, is a potential site for such

adaptive neuronal coding. It was reported that visual stimulation

early in adult life increases the size of both optic lobes in Drosophila

melanogaster [1] and certain brain regions [4], suggesting that visual

experience during a critical period is involved in fine-tuning the

development of neuronal circuitry. Specifically, the lamina is

largest in flies reared in constant light (LL) and smallest in those

reared in constant darkness (DD; see also Fig. 1a). These gross

morphological changes are accompanied by corresponding

volume differences in photoreceptor cell terminals [3]. In addition

to this earlier investigation, we now studied also the frequency of

presynaptic ribbons [5] and extensions of epithelia glial cells [deep

and shallow capitate projections; 6,7] into or onto the photore-

ceptor cell terminals. Altogether, the results of this investigation

lead to the assumption that not only is the volume of
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photoreceptor cell terminals highly modifiable, but so is the

whole neuronal architecture of the lamina of Drosophila

melanogaster.

Early visual experience has been shown to be of major

importance for the development of the visual system in Drosophila

melanogaster, larger flies and other insect species [8]. Yet, different

light levels at day and night pose another challenge for most

animals. Considering the neuronal plasticity we have described

before, Drosophila with its major activity peaks during the daylight-

transition phases at dawn and dusk provides a valuable model

system to study the circadian neuronal mechanisms of visual

system- and visual behavior adaptation. In Drosophila, there is

already evidence for rhythmic size changes in the first optic

neuropil where the axons of the large monopolar cells L1 and L2

swell at the beginning of both day and night and shrink during the

courses of day and night, respectively [9]. Moreover, L2 shows

daily changes in the morphology of its dendritic spines, and are

most pronounced at the beginning of the night [10]. Recently,

circadian remodeling in the axonal terminals of the PDF circuit

has been shown, with higher complexity during the daytime [11].

Further support comes from the housefly Musca domestica where

there is evidence for circadian structural changes in its visual

system [12]. The impact of the circadian changes on the

behavioral output of these animals remained, however, unclear.

In this paper we studied the response of the first optic neuropil

to circadian variations in light levels and then tested their

behavioral relevance. We used a simple, well-described visually

guided behavior in Drosophila melanogaster by recording the rudder-

like deflections of their abdomen in response to visual stimulation

[13] at varying light intensities. By studying Drosophila clock

mutants and a mutant defective in the phototransduction cascade,

we unraveled some of the underlying cellular and molecular

mechanisms, enabling us to describe a system of circadian and

developmental neuronal plasticity together with its behavioral

implications.

Materials and Methods

Fly Stocks and Rearing
The following fly strains were raised on cornmeal medium at

25uC: wild-type Canton-S (WT CS), period (per01), timeless (tim01), no

receptor potential A (norpAP24) and per01; Rh1(-180)-per21/+. The

latter were crossed into a per01 background.

In experiments designed to study changes in lamina volume,

flies were kept in 12:12 h light-dark (LD)-conditions as larvae and

pupae and, upon eclosion, were kept for 4–6 days under one of the

following conditions: constant light (LL), cycling light/dark (LD),

constant darkness (DD). In the experiment designed to study the

behavioral effects of constant light and darkness in adulthood (e.g.

Fig. 2), flies were kept in constant light throughout larval and

pupal stages and, upon eclosion, were kept for 4 days under one of

the following conditions: LL, DD or DD2LL2 (two days darkness

followed by two days light). Illumination by full-spectrum

fluorescent light was provided with an average intensity of about

500 cd/m2 flickering at 20 kHz.

Quantification of Optomotor Turning Responses
Optomotor turning responses were measured in tethered,

stationary flying animals by recording the rudder-like deflections

of the abdomen. Graded bending of the abdomen toward the

intended side is one component of the natural flight steering

behavior [13,14]. It is consistently found under open-loop

conditions in which the steering maneuvers of the fly do not alter

its visual stimulation. To achieve stationary flight, test flies were

Figure 1. Experience-dependent plasticity in the lamina of wild-
type Drosophila melanogaster. a, Autofluorescence profiles of the lamina
neuropil (La) from adult flies reared for four days in constant darkness (DD)
or constant light (LL; flies were fixed at ZT 6). Note the gross morphological
size changes of the laminae. b, Electron-micrographs of distal lamina
sections of flies sectioned at day and night. Six synaptic terminals of
photoreceptor cells (R) converge on to two Large Monopolar Cells (L),
forming the so called cartridge. Scale bar, 1 mm. c, Significant differences
between LL- (white columns) and DD-flies (black columns) were found for
lamina volume, cross-sectional area of the photoreceptor terminals (1/6
hatched in b), circumference of the membrane surrounding these terminals
(1/6 dotted line in b) and presynaptic T-bars residing on this membrane.
Spacing between neighboring synapses was statistically indistinguishable.
Finally, in LL-flies more shallow capitate projections were found, whereas in
DD-flies more deep capitate projections invaded the photoreceptor
terminals. Number of presynaptic T-bars and capitate projections were
counted per section. Error bars denote s.e.m. values.
doi:10.1371/journal.pone.0009217.g001
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mounted to a piece of 0.2 mm diameter tungsten wire under cold

anesthesia (+4uC) in a stream of dry air. A droplet of light-sensitive

glass glue (Loctite) on the tip of the wire was applied from above in

the gap between the fly’s head and thorax and cured with 30 s of

UV irradiation.

The tethered fly was suspended in the center of a cylindrical

projection screen. The abdomen was illuminated with red light

(which is invisible to Drosophila) and viewed from above through a

black-and-white CCD-camera with macro optics and a red filter to

suppress background illumination. Two photovoltaic cells each

with a rectangular aperture were attached to the screen so that the

long axis of their active areas coincided with the lateral edges of

the abdomen. When the fly deflected its abdomen towards one

side while turning, the bright image of the abdomen against a dark

background increased the illumination of the photovoltaic cell on

the inner side of the intended turn and at the same time the dark

background decreased the illumination of the cell on the other

side. A differential amplifier generated a combined electrical signal

from the two cells that corresponded in magnitude and sign to the

fly’s turning. Details of the apparatus are described elsewhere [13].

A grid consisting of about 27 seven degree wide, equally spaced,

black bars on a light background was projected from below onto

the cylindrical screen and rotated with constant speed (contrast

frequency: 2.6 Hz) around the fly. Flies were stimulated with both

counter-clockwise (CCW) and clockwise (CW) rotation of the

stripes and the net turning response was computed.

Tissue Sectioning and Lamina Volumetry
Circadian changes in lamina volume were measured using

techniques described previously [1]. Briefly, 10–20 flies were

sacrificed and prepared for histology at three hour intervals

throughout a 24-hour period. After fixation, serial frontal cross-

sections of lamina were visualized with fluorescence microscopy

and measured the full length of the structure. (e.g. Fig. 1a) Area

measurements and volume reconstructions were performed by an

experimentally blind observer using a custom computer program

kindly provided by R. Wolf and M. Heisenberg, Univ. Wuerzburg

[15]. Statistical analysis see below.

Electron Microscopy
At the appropriate age and time, flies were etherized,

decapitated, their proboscis removed, and the head dissected.

One half of each head was processed so that only one eye per fly

was sectioned and analyzed. Tissue was fixed in a cacodylate-

buffered glutaraldehyde-paraformaldehyde primary fixative, osmi-

cated and embedded in Epon. Embedded eyes were oriented to

allow tangential sectioning of the lamina. In an attempt to collect

only sections from the distal side of the lamina, semithin sections

were cut until the first cartridges within the lamina neuropil could

be seen after which ultrathin 65 nm sections were made.

Quantification of Histological Sections
Cartridges were viewed in the electron microscope and single

cartridges were photographed at 11.5006magnification on 80-mm

negative film. Negatives were scanned (Snapscan 600, Agfa) into

Adobe Photoshop and then processed for final morphometric

analysis in IpLab. Processing was done blindly so that the observer

did not know the rearing history of the fly at the time when lamina

sections were measured. Within each cartridge cross-section we

measured the membrane circumference and surface area of each

photoreceptor cell terminal (R1-6) and counted the presynaptic

ribbons residing on the membrane. In an initial experiment, we

analyzed only those presynaptic ribbons [5] that were sectioned in

an exact transverse plane and showed pedestral and platform

(Fig. 3b). The sections were then analyzed a second time and

synapses that were obliquely sectioned were counted. There was a

strong positive correlation between the counts obtained using the

two criteria. In subsequent experiments, we therefore did not

differentiate between oblique and transverse sections. For each

cartridge, we determined the number of synapses contained in a

single section. For each cartridge, the ratio between the number of

Figure 2. Sensitivity and dynamic range of optomotor behavior
depends on early visual experience. a, The optomotor response: A
tethered female fly attempts to follow the rotation of a periodical
pattern of 27.7u width at 2.6 Hz contrast frequency and thereby deflects
its abdomen. Flies were stimulated by both counter-clockwise (CCW)
and clockwise (CW) rotation of the cylinder and the behavioral net
response was calculated [13]. b, Optomotor responses were maximal at
about 10 cd m22 ( = 100%) for all tested fly groups. At low light
intensities behavioral responses of flies reared in DD4- or DD2LL2-
conditions (two days darkness followed by two days light) were
statistically indistinguishable, with both displaying a higher optomotor
sensitivity than LL4-reared flies. Flies were kept under LL-conditions
before eclosion. c, The stimulus was restricted in the azimuth direction
to various angular ranges of the flies’ frontal visual field. With increasing
area of frontal stimulation the optomotor responses of LL-reared flies
increased continuously in a fine-graded manner, whereas the opto-
motor response of DD-reared flies saturated already at 45u of stimulated
azimuth (n = 8 to 11 flies per condition). The dynamic range (D.R.),
computed as the quotient of the optomotor response at 360u
stimulation versus that at 30u–60u, was therefore higher in LL-flies
than in DD-flies.
doi:10.1371/journal.pone.0009217.g002
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Figure 3. Day/night structural changes of photoreceptor cells and capitate projections. a, Typical cross-sectional profiles of cartridges at
the distal lamina. At ZT 7 the axonal profiles reach their largest cross-sectional area, in the middle of the night (ZT 17) they are smallest. Scale bar,
1.0 mm. b, Examples of presynaptic ribbons of tetrad synapses (arrows; arrowheads, capitate projections). Scale bar, 0.5 mm. c, The analysis of
photoreceptor cell area, membrane circumference and residing presynaptic T-bars shows robust changes during the 24-hour cycle (mean size 6
s.e.m. of 40–55 photoreceptor cells; about 10 cartridges per fly; nZT1 = 5, nZT7 = 5, nZT12 = 5, nZT17 = 6, nZT0 = 5 flies were analyzed for each point of
time). d, Capitate projections of epithelial glial cells (arrowheads) were distinguished based on their position relative to the photoreceptor terminal.
Shallow capitate projections (above) embrace the axon on its surface, deep capitate projections (below) extrude deep into the photoreceptor cell
terminal. Small arrows indicate synaptic vesicles inside the photoreceptor cell axon. Scale bar, 0.1 mm. e, Shallow capitate projections were found to
be most abundant during day times, deep ones during night times. Fitting the data to 24-hour sine-waves revealed that the two curves were in anti-
phase by about 12 h.
doi:10.1371/journal.pone.0009217.g003
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synapses and the circumference of the photoreceptor membrane

was used to determine the average spacing between synapses. This

method provides an indirect comparison of different test groups. In

order to quantify the number of synapses and their spacing on a

two-dimensional membrane surface, one would have to do serial

reconstructions of cartridge sections [16]. Finally, we counted the

invaginations of epithelial glia cells, deep and shallow capitate

projections [6,7], into or onto the photoreceptor cell terminals

(Fig. 3d). Because the section thickness influences the number of

visible synapses and capitate projections, we took great care to keep

this parameter as uniform as possible. Differences in absolute

numbers between comparable groups in different experiments

(compare e.g. Fig. 1 and 3) might derive from small variations in the

histological treatment between different experiments. Statistical
analyses. For each experimental group at least five flies were

sectioned (one eye of each fly) and analyzed quantitatively. Since

variations between flies appeared to be larger than within a given

animal, we analyzed on average 5–10 cartridges per fly. Samples of

one experimental group therefore contained on average data from

up to 50 cartridges, i.e. 300 photoreceptor cell terminals. Statistics

were performed using the STATISTICA program.

Statistical Tests for Circadian Patterns
Volumetric and behavioral data were fitted to a sinusoidal

function (custom computer program by R. Wolf and M. Reif,

Univ. Wuerzburg) followed by a least-square regression analysis to

estimate whether the distribution of data better fits a sinusoidal

curve or a flat line through the average of the data points (paired t-

test). Subsequently, the data were fitted to sine waves of varying

frequencies in order to determine the frequency with the best fit.

In the corresponding figures (Fig. 3, 4, 5) we only present the best

fit sine wave function.

Figure 4. Structural plasticity of the lamina is controlled by the parallel action of a circadian clock and a phototransduction-
dependent mechanism. a, Lamina volumes of adult wild-type CS (WT CS) flies kept under LL, LD, or DD conditions during adult life. All flies had
experienced 12:12 LD cycles throughout larval and pupal development. The lamina volume oscillated in a circadian manner around a mean value
which was larger in light-experienced flies than in dark-reared flies (F(2,1699) = 156.7, p,0.0001, ANOVA). Sinusoidal-function fitting revealed a best
fitting period of 23.7 h for LL (F(1,563) = 17.5, p,0.0001) and DD (F(1,515) = 5.6, p,0.05) lamina volume oscillations and 24.0 h for LD (F(1,621) = 34.2,
p,0.0001). ‘Circadian Time’ (for LL and DD) ZT 0 = light on, ZT 12 = light off; for LL- and DD-flies read ZT as ‘Circadian Time’. b, Calculated amplitude
deviations from the respective mean lamina volumes of all data points in a. Light experience significantly modified the time course of the circadian
lamina-volume oscillations. This is most apparent at ZT 9, where LL reared flies showed the highest volume and DD reared flies the lowest volume. c,
Lamina volumes of 10 to 15 adult mutant male flies per point of time kept under LL, LD or DD conditions. Circadian volume oscillations of the lamina
were absent in the two clock mutants per01 and tim01 reared under LL- or DD-conditions. LD-reared animals displayed an increase in lamina volume
during the day and a rapid decrease at night. The blind norpAP24 mutant displayed a robust circadian rhythm of lamina volumes. Under all rearing
conditions the mean lamina volume rested at the DD-level of wild-type flies. d, Rescue of circadian lamina-volume oscillations in per01-mutants by the
transgenic expression of PER-protein exclusively in photoreceptor cells R1-6 using per01; Rh1(2180)-per21/+ flies. LD-reared R1-6-rescue flies
displayed lamina-volume oscillations which were statistically indistinguishable in amplitude and time course from those of WT CS flies. Constant LL -
or DD-conditions delayed the subjective day peaks by several hours in R1-6-rescued animals compared to wild-type flies. These observations are
consistent with a previously described delay of the PER-protein cycle under DD-conditions in animals of the same genotype. For genetic reasons, in
this experiment female flies were used. They were raised under LD-conditions up to their second day of adulthood before being reared for two more
days in LL, LD or DD (n = 8 to 10 per point of time). Note that the overall lamina volume in females is higher than in males.
doi:10.1371/journal.pone.0009217.g004
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Results

Visual Experience-Dependent Plasticity of the Lamina
and Behavioral Correlates Thereof

Volume differences in the lamina due to rearing in different

light conditions have been reported before [1]; they find their

counterpart in corresponding changes in cross-sectional profiles of

photoreceptor cell terminals in the lamina [1]. Since these findings

build a cornerstone of the present study, again, figures of lamina

profiles and cross-sections from the lamina are shown in Fig. 1a

and b. We have now extended this previous investigation on the

effects of visual experience on photoreceptor cell terminal size at

the distal lamina by measuring experience-dependent changes in

synaptic frequency of tetrad synapses and glia cells at the electron

microscopic level. As in this earlier study [1] the cross-sectional

area of photoreceptor cell terminals was significantly larger (about

40%) in LL-flies than in DD-flies (F(1,604) = 79.8; p,0.0001; t-

test). This increase of axon cross-sectional area was reflected by a

17% increase in membrane circumference (Fig. 1c). In addition,

the number of synapses (presynaptic T-bars; see also Fig. 3b)

residing on the membrane increases at about the same rate

(22.5%), resulting in a significant difference in synaptic frequency

between LL- and DD-flies (F(1,137) = 7.2; p,0.01; Fig. 1c).

Synaptic spacing, calculated as the distance between two

neighboring synapses on a single cross-sectional profile, did not

change as a result of differential adult rearing conditions: on

average, in LL-flies we encountered one synapse every 14.1 mm,

and in DD-flies one every 15.4 mm (F(1,99) = 1.1; p.0.2; t-test;

Fig. 1c).

We also analyzed experience-dependent changes in extensions

of epithelial glial cells, so-called capitate projections. Histological

descriptions of capitate projections [e.g. 6,7] distinguish between

those reaching deep into photoreceptor cells (‘deep capitate

projections’; Fig. 3d below), and those embracing a photoreceptor

cell on its surface (‘shallow capitate Projections’; Fig. 3d above).

We found a significant interaction between the relative distribution

of both types and the adult LL- and DD-rearing conditions

(F(1,280) = 30.5; p,0.0001; 2-way ANOVA): Shallow capitate

projections were found significantly more often in LL-flies than in

DD-flies (F(1,140) = 6.4; p,0.05; Fig. 1c), whereas about twice as

many deep capitate projections invaded the photoreceptor

terminals in DD-flies than in LL-flies (F(1,140) = 25.8;

p,0.0001; Fig. 1c).

The latter finding suggests that early visual experience not only

affects the relative volume of the cells, but the whole architecture

of the lamina neuropil. In dark-reared flies, small photoreceptor

axons are invaginated by more projections from epithelial cells.

These findings raise the possibility that differential exposure to

visual stimuli modulates the interactions between neurons and glia

since volume changes of photoreceptor cells are associated with

changes in glial invaginations.

In order to look for behavioral correlates of these experience-

dependent morphological changes we measured the optokinetic

response, which involves the lobula plate [17], in flies reared in

these different light regimes. This response, measured by

compensatory turning of a tethered fly during movement of the

visual scene (Fig. 2a), has been used as a behavioral measure of

visual system function. We hypothesized that optomotor responses

might provide a ‘‘readout’’ for experience-dependent optimization

of photoreceptor terminals in the lamina. If so, we would expect

flies reared in darkness to function better at low light levels than

their counterparts reared in constant light.

In all groups tested we observed maximal optomotor turning

responses at a stimulus intensity of 10 cd m22 (Light intensity at

100% in Fig. 2b), and used this level as our baseline. Differences

between the fly groups occurred at light intensities below 10 cd

m22. We found that animals kept in darkness during the first four

days of adult life (DD), as well as those put into the light after two

days in darkness (DD2LL2 in Fig. 2b) responded significantly more

strongly at lower light levels (below 10 cd m22) than did light-

reared controls (LL; F(2,191) = 8.5, p,0.0005, ANOVA; Fig. 2b).

Experience-dependent changes in lamina volume followed a

Figure 5. Sensitivity and dynamic range of optomotor behavior
is controlled by experience-dependent and circadian mecha-
nisms. a, b, LD-reared WT flies were behaviorally tested in the
paradigms described in Fig. 2. Both, the sensitivity of the optomotor
response at low light intensities (a, n.16 per point of time) and the
dynamic range of optomotor behavior (b, n.30 per point of time)
oscillated in a circadian, anti-phasic manner: highest behavioral
sensitivity at night was accompanied by lowest dynamic range, and
vice versa. c, Rescue of circadian oscillations in optomotor sensitivity by
the restoration of the circadian clock in photoreceptor cells (Fig. 4d).
Adult flies of the indicated genotypes were reared as described above
and were behaviorally tested during their night- or day-phases (ZT 18–
21 [set to 100%] and ZT 6–9, respectively). Irrespective of the genotype
all LD-reared flies displayed a higher optomotor sensitivity during the
night (F(1,74) = 14.6, p,0.0005). DD-reared wild-type flies as well as
clock-rescued flies (per01; Rh1(2180)-per21/+) showed a similar
subjective day/night difference in behavioral sensitivity, which was
absent in dark-reared per01-mutants. Error bars indicate s.e.m. values.
doi:10.1371/journal.pone.0009217.g005
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similar pattern in that the lamina was smaller in both DD and

DD2LL2 flies than in LL controls [1]. Thus, experience-dependent

behavioral changes and lamina volume are correlated. Further-

more, the behavioral changes persist after two days in the light and

thus do not reflect short term modifications such as light

adaptation, light-induced reduced photoreceptor sensitivity or

photoreceptor desensitization. Our findings suggest that optomo-

tor performance reflects photoreceptor cell terminal volumes since

both respond in a similar fashion to visual exposure during early

life.

To further explore the role of photoreceptor cell terminal

plasticity in visual coding, we stimulated optomotor turning

behavior at 100% light intensity but gradually restricted the frontal

visual field of the fly. As expected, the more of the frontal visual

scenery shown to the fly, the stronger was its behavioral response.

Interestingly, optomotor turning responses of DD-flies are already

saturated when only 45u of the maximal visual scenery are visible,

supporting the above idea that the coding efficiency is enhanced in

animals with small photoreceptor terminal volumes (Fig. 2c).

Conversely, LL-reared flies display gradual response-increases

over the entire visual scenery. This indicates that a reduction of

visual coding efficiency allows the transmitted visual signals to be

integrated within the optic system, in order to produce a fine

graded behavioral response. Thus, the coding capacity of the

visual system, computed as the quotient of the optomotor response

at 360u stimulation versus that at 30u–60u, is significantly increased

in LL-reared flies over DD-reared animals (inset in Fig. 2c).

Circadian Changes in the Lamina
Although changes in lamina volume and in optomotor

sensitivity are correlated, one cannot exclude the possibility that

the observed behavioral plasticity has its origin in effects of visual

experience on brain centers downstream of the lamina neuropil

(e.g. the lobula plate). We therefore looked for other evidence

linking morphological changes in lamina to behavioral changes.

There is evidence that in Drosophila [9,10], and in large flies [12],

cell populations within the visual neuropils can express circadian

rhythms. Plasticity of sensory-system cells might optimize the

visual system to operate during times of changing illumination at

dawn and dusk, is the times when Drosophila are most active. We

therefore examined the optic lobes of adult Drosophila flies both on

EM- and light microscopy level. In addition, we took advantage of

the many known circadian rhythm mutations to selectively express

proteins coded by clock genes.

We first examined cartridge cross-sections of wild-type light/

dark- (LD-) reared flies at 1, 7, 12, 17 and 0 hours Zeitgeber Time

(‘Zeitgeber Time’: ZT 0 = ‘lights-on’; ZT 12 = ‘lights off’). Axon

sizes increased during the day, reaching a peak at midday, then

decreased to a minimum at midnight, increasing again (Fig. 3a, c);

the circumference of the membrane surrounding the photorecep-

tor terminals also changed, closely following the circadian pattern

of the cross-sectional area. In line with this, the presynaptic T-Bars

residing on the membranes showed circadian variations, with a

peak during daytime and a trough at night. The abundance of

epithelial glial cell extensions also varies with time of day (Fig. 3e):

at night, deep capitate projections were twice as numerous as

during the day, whereas shallow capitate projections were more

numerous during the day than at night. Fitting the data for deep

and shallow projections to a sine-wave function revealed a

significant (p,0.05) periodicity of 24 hours for both types of glia

cell projections, and the respective peaks and troughs of the two

curves were out of phase by approximately twelve hours.

Taken together, in both light-dependent plasticity of the lamina

(LL versus DD; Fig. 1), as well as in circadian plasticity (Fig. 3), we

found photoreceptor terminal area, membrane circumference,

residing synapses and epithelial glia cell invaginations to be highly

modifiable. The daytime is comparable to the LL-type state, and

nighttime resembles the DD-type state. The finding that the

plasticity detected at the EM-level leads to morphological changes

detectable at the light-microscopy level - and vice versa - allowed

us to perform a large scale analysis of lamina volume with a high

temporal resolution. The combined data for lamina volume from

several independent experiments (overall data from almost 1.700

flies are contained in the corresponding Fig. 4a) revealed robust

circadian oscillations with an amplitude of up to 35% and a mean

period of 23.7 h under constant light conditions (LL and DD) and

under cycling illumination (LD). The rhythm of lamina volume

oscillations was independent of visual stimulation over at least the

first six days of adulthood (Fig. 4a). The observed volume

oscillations are superimposed on mean lamina sizes which have

been established during the critical period according to the overall

light exposure (LL or DD). Under LD-conditions, the observed

volume oscillations are clearly not induced by the day/night and

night/day transfers since they anticipated these events. For

instance, the lamina volume is down regulated between ZT 9–

12 in anticipation of the coming subjective night, and lamina

volume increases during ZT 21-0, phenotypically anticipating day.

This data suggests that an endogenous circadian mechanism

controls the continuous volume plasticity of the photoreceptor

synaptic terminals. We did not detect daily volume oscillations in

other visual areas such as the medulla, the lobula plate and the

calyces of the mushroom bodies (data not shown).

Parallel Pathways Control Lamina Plasticity
In null-mutants of the core circadian clock genes period [per01;

18,19] and timeless [tim01; 20,21] oscillations in lamina volume are

abolished in the absence of circadian changes in light levels (open

and filled circles in Fig. 4c), but are present in cycling illumination

(LD, half-filled symbols Fig. 4c). Closer examination of the volume

changes under LD conditions shows significant but slow lamina

swelling during light exposure and rapid shrinkage during darkness

(black-and-white squares in Fig. 4c). The timing of these structural

alterations is, however, not in ‘‘anticipation’’ of day/night or

night/day light changes. To further discriminate the light-driven

input to the lamina from the circadian we tested flies mutant in the

gene no receptor potential A (norpAP24), which are defective in the

phototransduction cascade [22]. They displayed a robust rhythm

of lamina volumes which was independent of the actual light-

rearing conditions (Fig. 4c; best sinusoidal fit for LL: F(1,98) = 3.9;

p,0.05; LD: F(1,84) = 4.9, p,0.05; DD: F(1,102) = 7.9, p,0.01).

Both, the absolute lamina volumes after LL-, LD- or DD-rearing,

and the time course of photoreceptor terminal plasticity (volume

max./min. at ZT 6 and ZT 18, respectively; Fig. 4c) were similar

in norpAP24 mutants and in dark-reared wild-type flies (Fig. 4a).

Altogether the data suggest that circadian fluctuations of PER-

protein levels, such as those found in photoreceptor cell nuclei of

wild-type and norpAP24-mutant flies [19], can affect lamina volume

and photoreceptor terminals. In addition, since norpAP24 mutant

animals can be synchronized with regards to their locomotor

activity rhythms [23], daily changes in light exposure can regulate

lamina volume, but by a different mechanism from those

regulating light-induced plasticity of that structure.

Transgenic expression of PER-protein restricted to photorecep-

tor cells of per01-mutants can reconstitute the circadian clock in

these cells [24]. In the next experiments we could show that it also

rescues the volumetric plasticity of the lamina (Fig. 4d). The

rescued volume oscillations of photoreceptor cell terminals in LL

and DD conditions (Fig. 4d) displayed dampened amplitude and a

Circadian Rhythm in Fly Vision

PLoS ONE | www.plosone.org 7 February 2010 | Volume 5 | Issue 2 | e9217



time-course delay of a few hours. LD-cycling of the rescued flies

appeared to be well matched to the wild type. These phenotypes

are consistent with a previous study analysing the molecular rescue

of the PER-protein cycle in dark-reared animals of the same

genotype [24]. We therefore conclude that a functioning circadian

clock in photoreceptor cells R1-6 is sufficient to control

photoreceptor terminal plasticity resulting in gross morphological

changes of lamina volume.

The genetic dissection of lamina plasticity has shown that both

circadian- and light-dependent mechanisms regulate synaptic

terminal volumes. In wild-type photoreceptor cells these two

mechanisms seem to converge: visual experience caused small, but

significant modifications of the time course and amplitude of

lamina volume oscillations, being most apparent at ZT 9 (Fig. 4b;

(F(2,191) = 5.5, p,0.005, ANOVA). Here, dark-reared animals

(DD) showed a down-regulation of the lamina volume, while

visually experienced flies (LD) were somewhat delayed in this

down-regulation, and constant light (LL) drove the system to

maximal amplitude. The two qualitatively different control

mechanisms may serve to optimize this sensory system so it can

cope with both long-term, unpredictable changes in light levels

(e.g. LL vs. DD), and with predictable short-terms changes.

Behavioral Sensitivity and Photoreceptor Plasticity
If the changes in lamina volume and photoreceptor terminals

are part of an optimization of the visual system, they should be

accompanied by matching changes in visual-system function. We

therefore reared flies in a 12 h light/dark cycle (LD) and analyzed

their optomotor behavior throughout a 24 h period. Both, the

sensitivity of optomotor responses as well as the dynamic range of

visual behavior displayed circadian oscillations with an anti-phasic

time course. The optomotor response at low light levels is highest

during the night and lowest during day-time hours (F

(1,281) = 8,29; p,0.005). Conversely, the dynamic range of the

flies’ visual performance had a peak at day and a low at night

(statistical test between the two peaks: p,0.05). Both curves are

anti-phasic by about 12 hours (Fig. 5a, b). These data suggest that

the visual system of Drosophila is capable of increasing its

behaviorally relevant sensitivity at the expense of its dynamic

range and vice versa. The time course of these oscillations in

behavioral sensitivity is strongly correlated with the one observed

for lamina volume plasticity (e.g. Fig. 4a).

In the final experiments we took the large day/night differences

in optomotor response as a benchmark to test for day/night and

subjective day/night changes, and thus for circadian rhythmicity

in optomotor behavior. Consistent with the previous findings, the

day/night differences in behavioral sensitivity were found again in

LD-reared wild-type flies (Fig. 5a, b) and per01 mutant animals.

When dark-reared flies were tested at their subjective day- or

night-time hours, differences could still be found in wild type

(F(1,24) = 4.9, p,0.05), but they were completely abolished in

dark-reared per01 clock mutant flies (compare left to middle panel

in Fig. 5c). In the final, critical experiment we tested flies with the

expression of PER-protein just in the photoreceptor cells (per01;

Rh1(-180)-per-1/+) once more. We found a lower optomotor

behavior performance at subjective day than at subjective night

(F(1,40) = 4.8, p,0.05; right panel in Fig. 5c), suggesting that the

rescued PER expression in the photoreceptor cells exclusively

rescues both volumetric plasticity of the lamina (Fig. 4d) and

circadian changes in visual behavior. Thus, lamina volume and

sensitivity of optomotor behavior are both regulated by two

distinct mechanisms: one circadian involving expression of the

PER-protein and a second that is experience dependent and

involves the phototransduction cascade in the photoreceptors. We

therefore finally conclude that a functioning circadian clock in

photoreceptor cells R1-6 is sufficient to control photoreceptor

terminal plasticity and thereby to regulate the changes in

sensitivity of optomotor behavior.

Discussion

Our experiments show that volume plasticity of photoreceptor

synaptic terminals is controlled by the parallel actions of both

endogenous circadian- and vision-dependent mechanisms. As our

genetic analyses suggest, the circadian input is independent from

the phototransduction cascade and is synchronized by light/dark

cycles. Visual input strongly depends on a functioning photo-

transduction cascade. We propose that both input pathways work

in parallel and contribute to the period and phasing of the lamina

oscillation and the absolute volume of the lamina (Fig. 6). The

expression of the clock protein PER exclusively in the photore-

ceptor cells rescued both structural and behavioral circadian

rhythmicity. Therefore, we conclude that the functioning circadi-

an machinery in photoreceptor cells is sufficient to control visual

coding efficiency in Drosophila. In addition, endothelial glia cells

[25] and the large monopolar cells, L1 and L2 [9,10] might

contribute to the output of this circadian network. The specificity

of the observed plasticity in the first optic neuropil suggests that

this plasticity might participate in the transduction and processing

of primary sensory signals rather than in direct photoreception.

Our findings do not exclude the possibility, however, that the

autonomous network in the periphery of the visual system is

Figure 6. Model of parallel pathways. Light serves at least two
functions in the visual system of Drosophila, it entrains and keeps the
autonomous circadian clock of photoreceptors in phase and it triggers
the phototransduction cascade. Both cellular mechanisms are active in
parallel in photoreceptor cells and both converge in the volume control
of their synaptic terminals in the lamina. The neuronal readout of this
peripherally controlled morphological and functional plasticity is further
computed downstream of the photoreceptor terminals, within the
lamina and/or e.g. in the lobula plate, to instruct the appropriate
behavior.
doi:10.1371/journal.pone.0009217.g006
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affected by circadian oscillators in other parts of the brain such as

the axonal terminals of the PDF circuit [11; for large flies: 9],

although we have no indication that this is the case.

We are aware that our observation of a sustained circadian

rhythm of the lamina under LL-conditions appears to be counter-

intuitive in light of the literature on circadian rhythms and their

abolishment under LL-conditions [e.g. 18,21]. Nevertheless, we

have demonstrated sufficient data to state that circadian rhythm in

this newly described circadian output in Drosophila persists under

LL-conditions, although we have no molecular explanation for this

finding thus far. Alternatively, an external Zeitgeber such as

temperature shifts, noise, or changing levels of CO2 between day

and night could induce the circadian changes in the lamina under

LL conditions. However, in control experiments (data not shown)

where flies lived under LL-conditions during all stages of their

development, measurable circadian rhythms in the lamina were

abolished. Interestingly, recent literature [26,27] provides exam-

ples of genetic variants in Drosophila which can sustain circadian

rhythms under LL-conditions. This observation invites further

experiments to shed new light on our present findings.

The peripheral plasticity at the level of first synaptic signal

computation governs visual behavior of adult Drosophila melanoga-

ster, as demonstrated by the optomotor turning response. A twofold

autonomy of behaviorally relevant visual signal processing appears

to be well matched to the visual ecology of Drosophila melanogaster.

Under light-dark conditions, most flies show a bimodal activity

pattern with a strong activity-peak in the morning, around 1 lights-

on, and an evening peak around lights-off [28]. In line with these

behavioral observations, the largest changes in lamina volume

were observed for the three-hour intervals preceding lights-on in

the morning and lights-off in the evening, overall lamina changes

were at a rate of 15% per three hours during that time. These data

suggest that the circadian system optimally adapts the visual

system of Drosophila to the ambient light environment thereby

guaranteeing the best vision at dawn and dusk.

Diurnal visual optimization appears to have diverged during

evolution. In the majority of systems, including cockroaches [29],

large flies [9] horseshoe crab, Limulus polyphemus [2], and

vertebrates [30], the circadian pacemakers governing circadian

rhythms in the visual system have their origin in central brain

structures. For example, in Musca domestica large PDH-immuno-

reactive fibre tracts travel from the accessory medulla back to the

lamina where they seem to propagate circadian changes to L1 and

L2, but leave the volume and synaptic frequencies of photorecep-

tor cell terminals unaffected. In contrast, in Drosophila, independent

circadian pacemakers have been found to operate autonomously

in many tissues [31,32,33], and direct, for example, daily changes

in olfactory responses in the antennal neurons [34,35]. We

therefore suggest that the robust rhythmic activity of clock genes in

photoreceptor nuclei and epithelial glial cells in the lamina [36,37]

is part of the underlying molecular machinery of another

autonomous, self-sustained circadian output system. In Drosophila

melanogster, the periphery of the visual system can therefore be

regarded as a plastic neuronal network in itself, modifiable at

different stages of computation, with behavioral flexibility as its

emergent property.
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