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Purpose: To introduce a method to simultaneously explore a collection of Pareto surfaces. The
method will allow radiotherapy treatment planners to interactively explore treatment plans for
different beam angle configurations as well as different treatment modalities.

Methods: The authors assume a convex optimization setting and represent the Pareto surface for
each modality or given beam set by a set of discrete points on the surface. Weighted averages of
these discrete points produce a continuous representation of each Pareto surface. The authors
calculate a set of Pareto surfaces and use linear programming to navigate across the individual
surfaces, allowing switches between surfaces. The switches are organized such that the plan profits
in the requested way, while trying to keep the change in dose as small as possible.

Results: The system is demonstrated on a phantom pancreas IMRT case using 100 different five
beam configurations and a multicriteria formulation with six objectives. The system has intuitive
behavior and is easy to control. Also, because the underlying linear programs are small, the system
is fast enough to offer real-time exploration for the Pareto surfaces of the given beam configura-
tions.

Conclusions: The system presented offers a sound starting point for building clinical systems for
multicriteria exploration of different modalities and offers a controllable way to explore hundreds of
beam angle configurations in IMRT planning, allowing the users to focus their attention on the dose
distribution and treatment planning objectives instead of spending excessive time on the technicali-

ties of delivery. © 2010 American Association of Physicists in Medicine.
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I. INTRODUCTION

In radiation therapy, multicriteria optimization with real-time
navigation of Pareto surfaces (PSs) is emerging as a fast and
informative strategy for intensity modulated radiation
therapy (IMRT) treatment planning.' In this context, the
Pareto surface is represented by a set of treatment plans and
their linear combinations (i.e., the linear combinations of the
fluence vectors), each plan having varying strengths and
weaknesses regarding the treatment planning objectives.
During the navigation session, the user interface allows the
planner to move along the high dimensional Pareto surface
(in radiation therapy, there are typically somewhere between
five and ten different objectives being traded off) by adjust-
ing sliders, one for each of the underlying objectives. This
approach is theoretically justified when the underlying opti-
mization problem is convex, since then the Pareto surface is
convex and linear combinations of Pareto optimal plans are
feasible.>?

In IMRT radiation treatment planning, when one includes
the beam angles as decision variables, the optimization prob-
lem is no longer convex (e.g., Refs. 4 and 5). One way to
understand why the IMRT problem with beam angle optimi-
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zation (BAO) is nonconvex is to see that given two different
“good” angle sets, there is no guarantee that the angle set
midway between these two angles sets is good or even fea-
sible for that matter. For instance, angle set 1 may avoid a
certain critical structure and angle set 2 might avoid it in a
different way, but the angle set created by averaging the
angle locations could have an angle pass right through that
critical structure. Because of this nonconvexity, determining
the Pareto surface to an IMRT problem where beam angles
are included as optimization variables is a problem of global
nonconvex optimization, where no solution method has yet
been demonstrated. A practical alternative to attempting to
determine and navigate a single BAO Pareto surface, where
the beam angle configuration would vary continuously across
the surface, is to compute Pareto surfaces for a large set of
beam configurations and provide a method to navigate the
collection of surfaces.

Multiple Pareto surfaces might arise in other contexts
within radiotherapy planning, for example, users might com-
pute different Pareto surfaces for various delivery modalities
(protons, IMRT, and arc delivery). The methods presented
here can be used for the interactive exploration of sets of
those surfaces as well. In this paper, however, we use the
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FiG. 1. A depiction of the navigation of a single Pareto surface using the
piercing algorithm. User navigation alters the point z on the dashed line
connecting the two anchor points by altering the convex combination s of
the anchor points that defines that point. The Pareto surface point F that is
associated with that point z is the point indicated by the small square and is
found by moving from z in the direction of (-1,-1,...).

beam angle problem for the source of multiple Pareto sur-
faces. We introduce a new method of navigating on a single
Pareto surface, and then extend this method to the navigation
of a collection of Pareto surfaces.

Il. METHODS

We consider a collection of Pareto surfaces. Each Pareto
surface has the same underlying set of convex objective
functions and the feasible space for the multiobjective for-
mulation is convex. In the navigation process we are solely
working with the precomputed plans and linear combinations
of these plans. Therefore, for the navigation we use the term
“Pareto surface” to mean undominated convex combinations
of the precomputed plans (for example, the piecewise linear
curve shown in Fig. 1). While strictly speaking this is just an
approximation of the Pareto surface, we assume there are a
sufficient number of well-distributed Pareto optimal points
calculated so that this is a close approximation. Relevant
methods to compute well-distributed points on a Pareto sur-
face are given in Refs. 6-8.

We represent each Pareto surface as a matrix, with rows
corresponding to the Pareto optimal plans and the columns
corresponding to the objectives. Let P; be the matrix repre-
senting the ith Pareto surface. Thus, P; is an m X n matrix,
where m is the number of points on the surface and n is the
number of objectives. Note that each of our surfaces could
have a different number of points, but in this paper we will
assume for simplicity that each surface is made up of same
number of points m. We assume that m>n.

I.A. Navigating the surface of a single Pareto surface

Here we present a new method for the navigation of a
single PS which naturally extends to the navigation of mul-
tiple surfaces. We assume that the first n points on the PS are
the anchor plans (i.e., the best you can do in each objective
individually).
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Each of the n anchor plans (“plans” and “points” used
interchangeably throughout) is a point in the n dimensional
Pareto space and we associate these plans with the objectives
that they minimize. The user navigates across the PS by in-
creasing or decreasing the significance of each of the anchor
plans in the following way.

Let s be a convex combination vector of length n. That is,
the components of s are non-negative and sum to 1. A con-
vex combination of the n anchor plans is not necessarily
Pareto optimal, but a unique Pareto optimal point can be
associated with the convex combination in the following
way.

Let O denote the first n rows of the PS matrix P. Let z
=s' Q be the convex combination location. Since our under-
lying optimization problem is convex, z is a feasible solution.
Now we imagine a vector emanating from z and pointing in
the direction (=1,-1,...). The problem of finding the point
along the Pareto surface along this direction can be solved by
a small linear program.l’9 The formulation is as follows:

min A,

s.t. h=y;—z;, for i=1.n,

EUFL

v,qg=0. (1)

Here F is a point on the Pareto surface. A slack variable g is
included for the case when the line from z in the direction
(-1,-1,...) does not intersect the surface. In that case ¢ is
nonzero (otherwise, y=F as in Fig. 1). We call this the pierc-
ing step since it is visualized as piercing the PS. This formu-
lation, called a scalarization method, is proved in Ref. 9 to
always be feasible and always yield a Pareto optimal point
(again, in our case subject to the error stemming from our
discrete approximation of the PS).

What remains is to map the user request, increasing or
decreasing the relative contribution of each objective, into
changing the vector s. This is handled in the following way.

We present two arrow buttons for each objective, one up
and one down, as well as a lock button. Consider the user
clicking the up button for objective j. Clicking the up arrow
for j means increase the contribution of that anchor plan, so
we should increase s;. Let inc be the amount by which s; is
changed. For any plan that is locked, we do not change the s
for that plan. Let SNF be equal to the sum of the not fixed s;,
not including the one we are changing, s;. SNF is the wiggle
room we have to work with. With inc=0.1 (i.e., a 10% step
size in navigation), we consider two cases:

Case 1: SNF>0.1 (and therefore 5;<<0.9). This is our
“normal” situation where we have some wiggle room, so
we take a full step of size inc=0.1 (i.e., s; new:sj+inc).
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Case 2: SNF<0.1. Here we have less than 0.1 of wiggle
room, so we take a smaller step. Specifically, we take
inc=1/3 SNF.

Now, we update the other s values, the ones that are not
locked, in proportion to their size. This works out algebra-
ically as s; new=g-s;, where g=1-inc/SNF. A downward
click is antisymmetric to the upward click so details are
omitted. Also note that inc=0.1 and inc=SNF/3 are arbitrary
and could be chosen differently for larger or smaller naviga-
tion steps.

With these details in place, the entire process of on-
surface navigation of a single PS can be summarized: When
the user clicks the up or down arrow for a particular objec-
tive, the convex combination vector s is updated according to
case 1 or 2 above, and then the piercing linear program (1) is
solved to push the solution to the PS, at which point the dose
distribution and other visualizations of the current solution
are updated.

1.B. Navigating multiple Pareto surfaces

Implementing a navigation on multiple Pareto surfaces
needs a method for switching between surfaces. The system
we present has a switch request coupled with one of the
objectives. A switch should move to a surface which offers
an improvement in that objective, and should also meet the
following two requirements. First, the new plan found after
the switch should be Pareto optimal. Second, the dose distri-
bution should not change too much. We ensure the former by
optimizing the position on the new surface. The latter needs
the following preprocessing, to make sure a “close” surface
is selected.

For each surface and each objective, we store the closest
PS that offers an improvement in the particular objective. In
the base of beam angle sets as the underlying source of the
multiple Pareto surfaces, it is natural to define closeness in
terms of the “distance” between the beam angle configura-
tions of the corresponding Pareto surfaces. This way, as the
user is navigating and switching surfaces, the process is as
smooth as possible.

We assume each angle configuration has the same number
of angles. We pair the beam angles of two sets such that the
sum of the distances is as small as possible using a matching
problem and define this to be the distance of two given beam
angle sets. Determining the optimal pairing which minimizes
the sum of the angle differences can efficiently be solved by
linear programming (e.g., Ref. 10).

With the distances between all angles sets computed, we
do the following for each angle set. For each objective, we
find the closest angle set that offers an improvement in the
objective (a beam angle set offers an improvement in an
objective if its anchor point solution for that objective is
lower), and assign that as the neighboring angle set. Figure 2
shows the results for objective function 2 for the case pre-
sented in Sec. II C. The results are shown as a tree structure
with each beam angle configuration shown as a node point-
ing to the next closest improving beam angle set node.
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FiG. 2. Tree structure of 100 beam angle configurations showing nearest
neighbors for each beam angle set regarding improving objective function 2,
mean kidney 1 dose. Angle set 34 is the absolute best for this objective
function. For all other nodes, for example, the uppermost node representing
angle set 86, the node points down to the closest angle set that offers an
improvement in objective 2.

The system offers two styles regarding surface switching:
Manual and automatic. In manual switching, navigation
moves do not result in surface changes. This is helpful when
the user wants more control: A surface switch can result in a
sudden jump in dose distribution characteristics. In auto-
matic switching, after the user clicks to improve or worsen
any objective, the piercing optimization [Eq. (1)] is run for
all of the Pareto surfaces and the surface with the smallest
optimal value 4 is chosen as the next surface, it being the
dominating solution.

In both the automatic and manual switching, the user can
request a surface change at any time. This is done when the
user desires to move to the next best surface for a particular
objective. This is handled as follows.

First, the place on the new surface (the surface given by
the information shown in Fig. 2) to move to is found which
best matches the current objective vector. This is found by
solving the following linear program. Let G be the current
location on the current PS. Let Py be the next Pareto surface
to move to, and let (Py)’ be the ith column of the P, matrix,
v is the convex combination vector to be solved for.

min y,

s.t. y=|G;=v'(Py)|, for all i,

v=0,

EUFl- (2)

Notice that any deviation between G and the new point v’
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FiG. 3. Patient geometry (2D) used for demonstrating the multiple Pareto
surface navigation system. Target and organs at risk are shown. Spinal cord
is not used as an objective in this model because in clinical pancreas cases,
cord is not close enough to the target to consider it an organ at risk. Scale of
axes is centimeters and individual voxels are shown, each is 0.4 X 0.4 cm?.
Beamlet size is 1 cm.
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(Py), is minimized by pushing the decision variable y down.
After solving this we have a new point in objective function
space. Navigation control happens in the space of the convex
hull of the anchor plans though. Therefore, we solve the
following linear set of equations to map the location found in
the above optimization back onto the anchor points’ plane.
Let g be the new point g=v™'Py. Let Q denote the first n
rows of Py. We want to solve for the amount we move in the
(1,1,1,...) direction from the point ¢ until we are on the
hyperplane which passes through the anchor plans (the rows
of Q). That is, we want to solve for the scalar quantity 7 such
that ¢**(1,1,1,...)=s"Q. This is n equations with n+1 un-
knowns, the s vector plus the scalar t. The convex combina-
tion constraint on s gives us one more equation so we can
solve for all the quantities. Notice this allows for negative
values which sometimes arise if the Pareto surface is skewed,

such that the outward projection of the point g does not
intersect the convex hull of the anchor plans (this cannot

happen in 2D). Negative values are simply set to 0 and the
resulting s vector (i.e., the first n components of x) is renor-
malized. At this point, if there are active locks, then the
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FIG. 4. Navigation dashboard for multiple Pareto surface navigation. Six anchor plans with their dose volume histograms (DVHs) are shown. For each plan,
four control buttons appear at the left of the DVH. The increase arrow A is used to increase the contribution of this type of plan, and the downward facing
arrow V is for the opposite. The buttons labeled S caused the active surface that is being navigated to switch to the closest other surface in the computed set,
which offers the chance for more improvement regarding that objective. The check box is used as a constraint. If this is clicked, as it is for kidney 1, then the

text.
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contribution of the kidney 1 plan is fixed at the value shown, in this case 0.22. The values shown in the text boxes for each plan constitute the s vector in the
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locked values of the convex combination s are reset to their
locked values and the other values are scaled such that the s
vector sums to 1 again. Another option is to remove the locks
during a surface switch since a surface switch might dramati-
cally change where you are in objective space, and in that
scenario, the locks have less significance. Either way, once s
is set, the piercing algorithm [Eq. (1)] is performed to ensure
the new plan being displayed is on the PS.

II.C. Choosing the set of beam angle configurations

We use the following approach for obtaining a set of
Pareto surfaces in the beam angle context. Note this subsec-
tion is not needed to understand the main algorithms of this
paper, but is included for completeness.

In choosing a finite set of beam angle configurations we
balance between (1) having the angles configurations such
that each has a close neighbor so that there is some smooth-
ness to the navigation when the active surface changes and
(2) widely spanning the space of angle configurations. We
have chosen the following approach to balance these two
goals.

We choose an angular spacing grid of A=5°. The first
angle configuration in our set is an equispaced angle set
(rounded to the 5° degree grid). From there, we generate the
next set by, for each beam, randomly choosing to increase or
decrease the angle by A, or keep it the same, each with equal
likelihood. If this new angle configuration has not been
found yet and does not violate a “beams too close” rule (we
use 15° as our cutoff), it is added to the set. The random
search proceeds then from that new set, and goes until we
have the desired number of beam angle configurations. In-
stead of this linear advancing random walk to populate the
beam angle configuration space, one could also branch at
each step with two or more branches, creating more of a tree
structure. This would tend to cover less of the beam angle
space, but the surface switching would be generally
smoother.

lll. DEMONSTRATION OF SYSTEM

We use a 2D phantom representing a pancreas case. Pan-
creas cases are good studies for beam angle optimization
because many critical structures are located around the
target.11 Figure 3 shows the patient geometry used in this
study. We use five angles in each angle set, and a total of 100
angle sets. The multicriteria optimization problem has six
objectives, all minimizations: (1) Mean liver dose, (2) mean
kidney 1 dose, (3) mean kidney 2 dose, (4) upper ramp at 25
Gy for the stomach, (5) upper ramp at 25 Gy for the unclas-
sified tissue, and (6) lower ramp at Rx=50.4 Gy for the
target. Ramp functions linearly penalize any voxel above or
below the ramp level, by an amount equal to the distance to
the ramp point.12

Hard constraints for the formulation are: 0.95"Rx
=target voxel dose=1.12"Rx and all doses=1.12"Rx. For
each angle configuration we compute a Pareto surface of
exactly seven plans, the anchor plans, and then a single equi-
weighted plan. Voxel size is 0.4 X 0.4 cm? and beamlet size
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FiG. 5. A sequence of four navigation steps for improving kidney 2, the
structure at the lower right of the target. From the top downward are steps
on the same Pareto surface. Then, for the final step, a few manual surface
changes were requested, and the system moved to surface of angle set 3,
which shows a better beam configuration for avoiding kidney 2. In the
demonstration system, DVH plots are updated as well with every navigation
move (not shown).

is 1 cm. The dose calculation used is the triple Gaussian
pencil beam model from Ref. 13. Note that any convex func-
tions, such as equivalent uniform dose or quadratic deviation
functions, can also be used in this framework.

Figure 4 displays the main navigation dashboard. In this
version of the dashboard, each of the underlying six objec-
tives is represented by its dose volume histogram. Controls
are discussed in the figure caption.

Figure 5 shows a sequence of navigation steps, two steps
improving the kidney 2 objective and the third step where
the surface is changed to the closest surface that has better
plans regarding kidney 2 than the original surface.

IV. DISCUSSION AND CONCLUSIONS

This paper introduces, to the authors’ knowledge, the first
report on navigating multiple Pareto surfaces, and the first
use of the piercing scalarization method using a navigation
reference point lying on the hyperplane through the n anchor
plans (for a single Pareto surface, this is the main difference
between the current method and the method presented in
Ref. 1). The lower envelope of the collection of Pareto sur-
faces is the entity over which we would like to navigate.
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Rather than explicitly calculating this lower envelope, our
method navigates it implicitly, and by doing so avoids the
difficult mathematical task of representing the boundaries
where the Pareto patches join. Furthermore, the lower enve-
lope of patched Pareto surfaces is in general nonconvex and
there is no guarantee that it is even connected (i.e., there
could be holes). Finally, by storing all of the surfaces in
entirety, our system allows users to explore each surface in
its entirety. Forcing the users to only be able to view plans
that are globally Pareto optimal (i.e., only the lower enve-
lope) results in more restrictive and less smooth navigation.

The benefits of the piercing method, in addition to its
simplicity, are: (1) It is an easy way to stay on Pareto surface
and (2) it easily extends to multiple Pareto surfaces. The
drawback of the method as presented is that the user control
is on the hyperplane connecting the anchor plans instead of
directly on the objective function values. However, this is
largely alleviated by the fact that objective function values
can be displayed in real-time during the navigation, and ob-
jective value constraints can be invoked during the naviga-
tion process (e.g., Ref. 1).

We have demonstrated the navigation of multiple Pareto
surfaces by using multiple beam angle configurations for
IMRT, and switching to a close surface is straightforward in
this context because it is easy to define the closeness of
Pareto surfaces by the closeness of the underlying beam
angle sets. If multiple Pareto surface navigation is used for
comparing different modalities (protons versus photons, for
example), it is left to decide if automatic surface switching
would be implemented, and how to select the next “closest”
surface to move to.
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