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BACKGROUND AND PURPOSE: Different biomarkers for AD may potentially be complementary in
diagnosis and prognosis of AD. Our aim was to combine MR imaging, FDG-PET, and CSF biomarkers
in the diagnostic classification and 2-year prognosis of MCI and AD, by examining the following: 1)
which measures are most sensitive to diagnostic status, 2) to what extent the methods provide unique
information in diagnostic classification, and 3) which measures are most predictive of clinical decline.

MATERIALS AND METHODS: ADNI baseline MR imaging, FDG-PET, and CSF data from 42 controls, 73
patients with MCI, and 38 patients with AD; and 2-year clinical follow-up data for 36 controls, 51
patients with MCI, and 25 patients with AD were analyzed. The hippocampus and entorhinal, para-
hippocampal, retrosplenial, precuneus, inferior parietal, supramarginal, middle temporal, lateral, and
medial orbitofrontal cortices were used as regions of interest. CSF variables included A�42, t-tau,
p-tau, and ratios of t-tau/A�42 and p-tau/A�42. Regression analyses were performed to determine the
sensitivity of measures to diagnostic status as well as 2-year change in CDR-SB, MMSE, and delayed
logical memory in MCI.

RESULTS: Hippocampal volume, retrosplenial thickness, and t-tau/A�42 uniquely predicted diagnostic
group. Change in CDR-SB was best predicted by retrosplenial thickness; MMSE, by retrosplenial
metabolism and thickness; and delayed logical memory, by hippocampal volume.

CONCLUSIONS: All biomarkers were sensitive to the diagnostic group. Combining MR imaging mor-
phometry and CSF biomarkers improved diagnostic classification (controls versus AD). MR imaging
morphometry and PET were largely overlapping in value for discrimination. Baseline MR imaging and
PET measures were more predictive of clinical change in MCI than were CSF measures.

ABBREVIATIONS: A�42 � � amyloid 1–42; AD � Alzheimer disease; ADNI � Alzheimer’s Disease
Neuroimaging Initiative; AUC � area under the curve; B � B coefficient for each predictor in the
regression equation; CDR-SB � Clinical Dementia Rating sum of boxes; Corr. Class.� correlation
classification; CSHC � Center for the Study of Human Cognition; FDA � US Food and Drug
Administration; 18F-FDG � [18F] fluorodeoxyglucose; FDG-PET � fluorodeoxyglucose–positron-
emission tomography; inf. � inferior; lat. � lateral; LM-del � delayed Logical Memory from the
Wechsler Memory Scale Logical Memory II; M � mean; MCI � mild cognitive impairment; med.
orb. front. � medial orbital frontal; mid � middle; MMSE � Mini-Mental State Examination; MRI �
MR imaging; NIH � National Institutes of Health; NC � healthy control; orb. front. � orbital frontal;
p-tau � phosphorylated tau protein 181; parahippoc. � parahippocampus; PET � positron-emission
tomography; t-tau � tau protein; ROC � receiver operating characteristics

Multiple biomarkers have proved sensitive to AD and
MCI, a potential prodromal stage of AD. These include

patterns of regional cerebral atrophy and hypometabolism de-
tected by MR imaging and FDG-PET1 and quantification of
specific proteins in the CSF, including the tau protein and

A�42.2 Tau is associated with axonal microtubules and is the
main structural element of neurofibrils in AD. High CSF tau
levels probably reflect axonal degeneration.3 A�42 is derived
from cleavage of amyloid precursor protein, and CSF A�42
levels are lowered early in AD, possibly due to sequestering of
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A�42 in neuritic plaques.4 A full spectrum of imaging and CSF
analysis methods is seldom used; thus, knowledge is limited on
how they may best be combined. The ADNI, a large multisite
study, was launched to enable analyses of combinations of
different candidate biomarkers for AD.

Recent findings indicate that MR imaging can be used to
quantify regional atrophy in MCI, distinguishing early and
later preclinical stages of AD,5 and such measures are predic-
tive of clinical decline across 1 year.6-8 A pattern of parieto-
temporal metabolic reductions in MCI and AD and frontal
metabolic reductions later in the disease has been established
through the last decades of research1,9,10 and has recently been
confirmed in ADNI PET data.11 The relative sensitivity of
FDG-PET and MR imaging morphometry to AD-related
changes is, however, not well established. It has been assumed
that metabolic changes associated with neocortical dysfunc-
tion may be detectable by FDG-PET before atrophy appears.
Consistent with this assumption, De Santi et al12 reported that
metabolism reductions exceeded volume losses in MCI, and
Mosconi et al13 found the same in presymptomatic early-onset
familial AD. However, Jagust et al14 found that cingulate hy-
pometabolism was a significant risk factor in addition to MR
imaging measures of hippocampal atrophy, but the latter was
a more statistically robust risk factor in a group of cognitively
impaired but not demented elderly.15

Different brain characteristics relevant for the understand-
ing of MCI and AD may be captured by FDG-PET and MR
imaging morphometry. For instance, a report based on ADNI
data has indicated that FDG-PET and MR imaging measures
may be complementary and differentially sensitive to memory
in health and disease, with metabolism being the stronger pre-
dictor in healthy controls and morphometry most related to
memory function in AD.16 As for CSF�MR imaging relations,
recent reports17-22 indicate that cerebral anatomic differences
are related to tau and A�42 and behavioral cognitive measures
in AD and MCI. However, MR imaging and CSF biomarkers
have not simultaneously been related and compared with in-
formation obtained by FDG-PET. It is important to test the
specific sensitivity of all biomarkers simultaneously to be able
to optimize the combination of measures in diagnosis and
prognosis. We investigated the following: 1) which methods
are the most sensitive to established AD-related pathology, 2)
to what extent the methods provide unique-versus-overlap-
ping information, and 3) which methods are the most predic-
tive of clinical decline across 2 years.

Materials and Methods
The raw data used in the preparation of this article were obtained

from the ADNI data base (www.loni.ucla.edu/ADNI). ADNI was

launched in 2003 by the National Institute on Aging, the National

Institute of Biomedical Imaging and Bioengineering, the FDA, private

pharmaceutical companies, and nonprofit organizations. The pri-

mary goal of ADNI has been to test whether serial MR imaging, PET,

other biologic markers, and clinical and neuropsychological assess-

ment can be combined to measure the progression of MCI and early

AD. The Principal Investigator of this initiative is Michael W. Weiner,

of the Veterans Administration Medical Center and University of

California-San Francisco. There are many coinvestigators, and sub-

jects have been recruited from �50 sites across the United States and

Canada. The ADNI has recruited 229 healthy elderly subjects, 398

patients with MCI, and 192 patients with AD to participate and be

followed for 2–3 years. For up-to-date information, see www.adni-

info.org.

Sample
ADNI eligibility criteria are described at http://www.adni-info.org/

index.php?option�com_content&task�view&id�9&Itemid�43.

Briefly, participants were 55–90 years of age, had an informant pro-

viding an independent evaluation of functioning, and spoke English

or Spanish. Subjects were willing and able to undergo test procedures,

including neuroimaging and longitudinal follow-up, and all gave in-

formed consent. Specific psychoactive medications were excluded.

General inclusion/exclusion criteria of the ADNI study are as follows:

1) healthy subjects: MMSE23 scores between 24 and 30 inclusive (no

person enrolled as an NC in the present sample had an MMSE score

below 26); CDR of 0, nondepressed, non-MCI, and nondemented;

2) subjects with MCI: MMSE scores between 24 and 30 inclusive

(exceptions made on a case-by-case basis, but no such exceptional

cases were enrolled as patients with MCI in the present sample), a

memory complaint, objective memory loss measured by Wechsler

Memory Scale Logical Memory II,24 CDR of 0.5, absence of significant

levels of impairment in other cognitive domains, essentially preserved

activities of daily living, and an absence of dementia; and 3) mild AD:

MMSE scores between 20 and 26 inclusive (exceptions made on a

case-by-case basis), CDR of 0.5 or 1.0, and met the National Institute

of Neurological and Communicative Disorders and Stroke and the

Alzheimer’s Disease and Related Disorders Association criteria for

probable AD.25 Only ADNI subjects for whom adequate processed

and quality checked MR imaging, FDG-PET, and CSF baseline data

were available were included. This yielded a total of 153 participants.

Demographics are shown in Table 1.

Table 1: Demographic characteristics of the 3 subsamplesa

NC (n � 42; 16F/26M) MCI (n � 73, 25F/48M) AD (n � 38, 16F/22M)

M SD Range M SD Range M SD Range
Age 75.5 (5.4) 62.2–84.7 74.5 (7.0) 55.5–88.9 76.2 (7.5) 58.8–88.1
Education 16.0 (3.2) 8–20 16.0 (2.9) 8–20 14.3 (3.6) 4–20
MMSE 29.1 (1.0) 26–30 27.0 (1.7) 24–30 23.8 (2.0) 20–26
MMSE_c �0.2 (1.6) �4–3 �1.3 (2.8) �13–4 �5.2 (5.8) �22–4
CDR 0.0 (0.0) 0–0 0.5 (0.0) 0.5–0.5 0.8 (0.3) 0.5–1.0
CDR_c 0.2 (0.7) �0.5–3.5 1.2 (1.6) �1.5–4.5 4.0 (3.1) 0–11
LM-del 12.0 (3.6) 6–22 4.1 (2.7) 0–8 1.1 (2.0) 0–8
LM-del_c 1.2 (4.1) �10–8 0 (3.3) �6–10 �0.7 (1.1) �4–1
a The numbers refer to baseline data, with the exception of MMSE_c, CDR_c, and LM-del_c, which refer to change across 2 years (baseline score subtracted from score at 2-year follow-up).
MMSE and LM-del change scores were available for 36 NC, 51 MCI, and 25 AD subjects. CDR-SB change scores were available for 34 NC, 49 MCI, and 25 AD.
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Standard Protocol Approvals, Registrations, and Patient
Consents
The protocol was approved by the institutional review boards of par-

ticipating sites. Written informed consent was obtained from all sub-

jects or from guardians of patients.

MR Imaging Acquisition and Analysis
All scans used here were from 1.5T scanners. Data were collected

across a variety of scanners with protocols individualized for each

scanner, as defined at http://www.loni.ucla.edu/ADNI/Research/

Cores/index.shtml, and processed as described elsewhere.5,16 Briefly,

raw DICOM MR imaging scans (including 2 T1-weighted volumes

per case) were downloaded from the ADNI site (http://www.loni.

ucla.edu/ADNI/Data/index.shtml), reviewed for quality, automati-

cally corrected for spatial distortion due to gradient nonlinearity26

and B1 field inhomogeneity,27 registered, and averaged to improve

signal intensity–to-noise ratios. Scans were segmented as described

by Fischl et al,28 yielding volumetric data for the hippocampal forma-

tion (consisting of the dentate gyrus, Cornu Ammonis fields, subicu-

lum/parasubiculum, and the fimbria29).

The procedure28,30 uses a probabilistic atlas and applies a Bayesian

classification rule to assign a neuroanatomic label to each voxel. The

cortical surface was reconstructed to measure thickness at each sur-

face point by using a semiautomated approach described else-

where.31-36 Thickness measurements were obtained by reconstruct-

ing representations of the gray/white matter boundary31,32 and the

pial surface and then calculating the distance between those surfaces

at each point across the cortical mantle. The measurement technique

used here has been validated via histologic37 and manual measure-

ments.38 The entire cortical surface was parcellated into numerous

cortical areas.30,39 To limit multiple comparisons, we selected candi-

date regions of interest on the basis of previous MR imaging and PET

findings1,5,7,11,16,40-44 indicating sensitivity to AD-related pathology:

the hippocampi, and the entorhinal, parahippocampal, retrosplenial,

precuneus, inferior parietal, supramarginal, middle temporal, and

lateral and medial orbitofrontal gyri.

In the parcellation method used here,39 the entire cingulate cortex

was defined and divided into 4 separate regions, including the rostral

and caudal anterior cingulate, the posterior cingulate, and the isth-

mus cingulate, the latter referred to here as the retrosplenial cortex for

consistency with other published studies.5,16,40 The retrosplenial re-

gion may also be referred to as the isthmus of the cingulate or caudal

posterior cingulate area in other contexts. For a depiction of the exact

regions of interest used, see Fig 1.

FDG-PET Acquisition and Analysis
Subjects were scanned after a 4-hour fast (water only). Plasma glucose

had to be �180 mg/dL for FDG to be injected. An intravenous cath-

eter was placed in 1 arm for injection of 18F-FDG. Imaging began at

30 minutes postinjection, and the scan was acquired as six 5-minute

frames. For each subject, FDG-PET frames were averaged and regis-

tered to the corresponding distortion-corrected and intensity-nor-

malized MR imaging volume. PET activity for each subject was sam-

pled onto their reconstructed cortical surface, averaged within each

region of interest, and normalized to activity within the pons.45

CSF Acquisition and Analysis
CSF samples obtained by lumbar puncture were examined for t-tau,

p-tau, and A�42 by using an immunoassay method.46 The measure-

ments were performed by L. Shaw and J. Trojanowski of the ADNI

Biomarker Core at the University of Pennsylvania School of Medi-

cine. We analyzed the following CSF biomarkers for the present arti-

cle: A�42 (202 � 56, 159 � 51, 136 � 39 pg/mL for NC, MCI, and AD,

respectively), t-tau (68 � 28, 100 � 65, 125 � 67 pg/mL for NC, MCI,

and AD, respectively), and p-tau (26 � 17, 36 � 19, 45 � 23 for NC,

MCI, and AD, respectively). The ratios of tau and A�42 (tau/A�42;

0.37 � 0.21, 0.74 � 0.67, 0.98 � 0.56 for NC, MCI, and AD, respec-

tively) and the p-tau A�42 ratio (p-tau/A�42; 0.16 � 0.16, 0.26 �

0.19, 0.36 � 0.22 for NC, MCI, and AD, respectively) were also in-

cluded. A 1-way analysis of variance on the residual CSF values after

age and sex were regressed out showed significant (P � .001) main

effects of group on all variables. Post hoc tests controlling for multiple

comparisons showed significant (P � .05) differences between NC

and MCI, NC and AD, and MCI and AD, with a few exceptions where

trends (P � .10) were observed (differences in t-tau between MCI and

AD, p-tau between NC and MCI, and t-tau/A�42 between MCI and

AD).

Clinical and Cognitive Measures
Change scores were calculated by subtracting baseline scores from

scores obtained at the 2-year follow-up. In addition to CDR-SB47 and

MMSE,23 delayed recall on the Wechsler Memory Scale-Revised48 was

included. This test requires the subject to recall a story read by the

examiner after a 30- to 40-minute delay and is sensitive to the episodic

memory deficits in MCI.

Statistics
A repeated-measures general linear model with the 10 regions of in-

terest � hemisphere (left, right) � diagnostic group (NC, MCI, AD)

Fig 1. The regions of interest used are the following: 1) hippocampus and 2) entorhinal, 3) parahippocampal, 4) retrosplenial, 5) precuneus, 6) inferior parietal, 7) supramarginal, 8) middle
temporal, 9) lateral orbitofrontal, and 10) medial orbitofrontal cortices.
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with age and sex as covariates showed no significant effect of hemi-

sphere across regions of interest (F [1,148] � 1.530, P � .218) and no

interaction of hemisphere � diagnostic group (F [2,148] � 0.847, P �

.431). Hence, values were averaged across hemispheres, effects of age

and sex were regressed out, and the standardized residuals were used

in the analyses. Correlation analyses with MR, FDG-PET, and CSF

measures were run to assess their covariance. To select the measures

yielding the most explained variance for each method, we entered the

values in 3 separate logistic stepwise regressions by using MR, PET,

and CSF measures respectively, predicting NC versus AD. The se-

lected MR, PET, and CSF variables were then entered simultaneously

in multimethod stepwise logistic regression analyses predicting NC

versus AD and NC versus MCI. Next, the variables identified by the

NC-versus-AD classification analysis were correlated with 2-year fol-

low-up CDR-SB, MMSE, and delayed logical memory change scores

in the MCI group and were entered as predictors in stepwise regres-

sion analyses with the respective behavioral change scores as the de-

pendent variables.

Results
Correlation analyses in the MCI group for morphometry and
metabolism for the 10 regions of interest and the 5 CSF vari-
ables showed no significant (P �. 05, corrected for 10 region-
of-interest comparisons) correlations among CSF variables
and morphometry or metabolism in any region of interest,
whereas moderate correlations were found between morpho-
metric and metabolic measures for the hippocampus and en-
torhinal, retrosplenial, and inferior parietal regions (on-line
Table).

Table 2 shows the results of the separate logistic stepwise
regressions predicting NC-versus-AD classification on the ba-
sis of MR imaging, FDG-PET, and CSF measures. Hippocam-
pal volume and entorhinal and retrosplenial thickness, for MR
imaging, were included in the final model, yielding an overall
classification accuracy of 85.0%, and approximately 71% ex-
plained variance (Nagelkerke R2). Entorhinal, retrosplenial,
and lateral orbitofrontal metabolism, for FDG-PET, were in-

cluded in the final model, yielding an overall classification
accuracy of 82.5% and approximately 62% explained vari-
ance. For CSF, the ratio of t-tau/A�42 was the single unique
predictor, yielding an overall classification accuracy of 81.2%,
and approximately 52% explained variance. Thus, hippocam-
pal volume; entorhinal and retrosplenial thickness; entorhi-
nal, retrosplenial, and lateral orbitofrontal metabolism; and
t-tau/A�42 ratio were entered in a logistic regression analysis
to classify NC versus AD, and the results are shown in Table 3.

In the final model, hippocampal volume, retrosplenial
thickness, and t-tau/A�42-ratio were included as predictors,
yielding an overall classification accuracy of 88.8% and ap-
proximately 78% explained variance. Figure 2 depicts the
ROC curves for these variables when using 1 (hippocampal
volume) versus a combination of 2 (hippocampal volume and
t-tau/A�42-ratio) and all 3 variables (hippocampal volume,
t-tau/A�42-ratio, and retrosplenial thickness) shown to be
unique predictors of NC-versus-AD classification. Predicted
values from logistic regressions were used for calculation of
the ROC curves. Statistical comparisons of the AUCs of these
classifiers were performed by using the method of Hanley and
McNeil.49 This approach yielded a significant difference (P �.
05) between the AUCs using hippocampal volume alone ver-
sus using hippocampal volume and t-tau/A�42 ratio in com-
bination and hippocampal volume, t-tau/A�42 ratio, and ret-
rosplenial thickness in combination. The difference of the
AUCs using hippocampal volume and t-tau/A�42 ratio versus
hippocampal volume, t-tau/A�42 ratio, and retrosplenial
thickness in combination was clearly smaller and not signifi-
cant (P � .05). Note however, that all meaningful differences
in AUCs (eg, in terms of sensitivity versus specificity causing
the curves to cross) may not necessarily be captured as statis-
tically significant. The same set of predictor variables was en-
tered in an analysis to predict diagnostic classification for NC
and MCI, which revealed that hippocampal volume and t-tau/
A�42 ratio were unique predictors, yielding an overall classi-

Table 2: Results from logistic regression analyses for each method predicting NC versus AD

Method Step Measure B P Odds Ratio % Corr. Class. R 2a

MRI 1 Hippocampus �2.306 .000 .100 NC:83.3 .601
AD:81.6
All: 82.5

2 Hippocampus �2.291 .000 .101 NC:88.1 .665
Retrosplenial cortex �1.202 .014. .301 AD:78.9

All: 83.8
3 Hippocampus �1.581 .011 .206 NC:85.7 .714

Entorhinal cortex �1.314 .026 .269 AD:84.2
Retrosplenial cortex �1.230 .024 .292 All: 85.0

PET 1 Entorhinal cortex �1.627 .000 .197 NC:85.7 .461
AD:73.7
All: 80.0

2 Entorhinal cortex �2.142 .000 .117 NC:81.0 .506
Lateral orbitofrontal cortex .675 .048 1.964 AD:76.3

All: 78.8
3 Entorhinal cortex �2.094 .000 .123 NC:88.1 .620

Retrosplenial cortex �1.866 .003 .155 AD:76.3
Lateral orbitofrontal cortex 1.701 .002 5.481 All: 82.5

CSF 1 t-�:A�42 2.775 .000 16.036 NC:85.7 .523
AD:76.3
All: 81.2

a R 2 is Nagelkerke R 2.
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fication accuracy of 79.1% and approximately 40% explained
variance.

Table 4 shows correlations for each variable included in the
regression models and the cognitive change scores (CDR-SB,
MMSE, delayed logical memory). In MCI, baseline retrosple-
nial thickness correlated with a 2-year change in CDR-SB and
MMSE, where a thicker cortex was associated with less
CDR-SB elevation and less MMSE reduction. Retrosplenial
and entorhinal metabolism correlated negatively with MMSE
change. Hippocampal volume correlated positively with de-
layed logical memory. There were no significant correlations
with clinical change measures for t-tau/A�42 in MCI. T tests
of the Fisher z-transformed correlation coefficients showed
that the t-tau/A�42 ratio correlated significantly lower (P �
.05) with CDR-SB and MMSE change than did retrosplenial

thickness and it correlated significantly lower with MMSE
change than did entorhinal and retrosplenial metabolism. Lat-
eral orbitofrontal metabolism also correlated significantly
lower with change in CDR-SB and delayed logical memory
than did retrosplenial thickness and hippocampal volume.

In the stepwise regression analysis predicting CDR-SB
change, only retrosplenial cortical thickness was included as a
unique predictor (y � 1.231 �0.731x, P � .002), explaining
18% of the variance. In predicting MMSE change, retrosple-
nial metabolism was included in the first step (y � �1.193 �
1.534 x1, P � .002 for x1, R2 � 0.22), and retrosplenial thick-
ness was added in the second (y � �1.197 � 1.177x1 � 0.776 x2,
P � .009 for x1 and .042 for x2, R2 � 0.29). Only hippocampal
volume was included as a predictor of delayed logical memory
change (y � 0.240 � 1.669 x1, P � .003 for x1, R2 � 0.17). The
regression plots for CDR-SB and MMSE change predicted
from retrosplenial thickness and metabolism and delayed log-
ical memory predicted from hippocampal volume are shown
in Fig 3. There was 1 outlier for the MMSE change score, with
a 13-point decline. Without this outlier, only retrosplenial me-
tabolism was included in the model for predicting MMSE
change (y � �1.023 � 1.091 x1, P � .004 for x1, R2 � 0.16),
but a trend was observed for retrosplenial thickness (P �
.079).

Table 3: Results from the multimodal logistic regression analyses predicting NC versus ADa

Step Measure B P Odds Ratio % Corr. Class R 2

1 MRI hippocampus �2.306 .000 .100 NC: 83.3 .601
AD: 81.6
All: 82.5

2 MRI hippocampus �2.029 .000 .132 NC: 88.1 .733
t-�:A�42 2.141 .001 8.509 AD: 81.6

All: 85.0
3 MRI hippocampus �1.861 .002 .155 NC: 90.5 .778

MRI retrosplenial �1.239 .028 .290 AD: 86.8
t-�:A�42 2.411 .002 11.140 All: 88.8

NC vs MCI
1 MR hippocampus �1.360 .000 .257 NC: 54.8 .312

MCI:80.8
All: 71.3

2 MR hippocampus �1.124 .000 .325 NC: 64.3 .399
t-�:A�42 1.422 .006 4.146 MCI:87.7

All: 79.1
a The variables explaining unique variance within each method, as listed in Table 2, were included in the set of predictor variables, i.e. for MR: hippocampal volume, retrosplenial, and
entorhinal thickness; for PET: entorhinal, retrosplenial, and lateral orbitofrontal metabolism; and for CSF: the ratio of T-tau to Abeta 42. R 2 is Nagelkerke R 2.

Fig 2. Comparison of ROC curves for using 1 versus a combination of 2 and all 3 variables
shown to be unique predictors of NC-versus-AD classification. Yellow is the predicted
probability based on hippocampal volume alone (AUC � 0.900, SE � 0.033). Blue is the
predicted probability based on hippocampal volume and t-tau/A�42 ratio (AUC � 0.950,
SE � 0.022). Red is the predicted probability based on hippocampal volume, t-tau/A�42
ratio, and retrosplenial cortical thickness (AUC � 0.961, SE � 0.018).

Table 4: Correlations between the variables included in the
regression models predicting NC/AD classification and the change
in CDR-SB (n � 49) and MMSE (n � 51) scores across 2 years in
the MCI groupa

CDR-SB Change MMSE Change LM-Del Change
MRI hippocampus �.29 .29 .41

b

MRI entorhinal �.17 .23 .34
MRI retrosplenial �.43b .42b .35
PET entorhinal �.30 .38b .28
PET retrosplenial �.22 .47b .11
PET lat. orbitofrontal �.02 .27 �.05
T-�:A�42 .02 .08 �.23
a The variables explaining the unique variance within each method, as listed in Table 2,
were included in the set of predictor variables (ie, for MR imaging, hippocampal volume
and retrosplenial and entorhinal thickness; for PET, entorhinal, retrosplenial, and lateral
orbitofrontal metabolism; and for CSF, the ratio of t-�:A�42).
b P � .05, corrected for 7 comparisons.
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Discussion
Morphometry, metabolism, and CSF biomarkers were all sen-
sitive to diagnostic status. The best classification accuracy of
NC versus AD was obtained by MR imaging morphometry
measures (hippocampal volume, entorhinal and retrosplenial
cortical thickness). However, classification accuracies close to
those obtained by MR imaging were also obtained by FDG-
PET (entorhinal, retrosplenial, and lateral orbitofrontal me-
tabolism) and CSF measures (t-tau/A�42-ratio). In the mul-
timodal analysis, FDG-PET measures appeared to provide
largely redundant information, whereas hippocampal vol-
ume, retrosplenial thickness, and the t-tau/A�42 ratio were
unique predictors of diagnostic status. In particular, the inclu-
sion of the CSF biomarker in addition to MR imaging hip-
pocampal volume did result in a significant improvement in
classification in terms of AUC. Thus, the combination of MR
imaging morphometry and CSF biomarkers yielded the high-
est diagnostic classification accuracy. Contrary to this finding,
in the prediction of clinical change during 2 years, FDG-PET
and MR imaging morphometry were the best predictors.
However, with the exception of retrosplenial metabolism and
thickness in the prediction of change in MMSE scores, the 2
measures were largely redundant. Thus, it seems that the ben-
efits of including both MR imaging morphometry and FDG-
PET are modest in predicting clinical decline in MCI.

Whereas CSF biomarkers added to the diagnostic accuracy
at baseline, they did not predict 2-year clinical decline in the
current MCI group. This finding may be somewhat surprising
because previous studies have found decreased CSF A�42
and/or tau or tau/A�42 levels to be predictive of future de-
mentia in patients with MCI.2 Several factors may have con-
tributed to the discrepancies. First, the ongoing ADNI study
may have a more heterogeneous MCI group than some of the

previously published CSF studies. As pointed out by Hansson
et al,50 participants included in CSF studies have generally
been highly selected, for example, by inclusion of only patients
with MCI who progress to AD. In ADNI, the ultimate end
point is not known for many patients with MCI. Further, stud-
ies have often used dichotomized variables for CSF values and
prognosis.50,51 A stable/conversion dichotomization involves
clinical judgment, which may vary from physician to physi-
cian and demands long follow-up intervals impractical for
clinical trials. It may be advantageous to identify other prese-
lection criteria, biomarkers, or clinical measures of decline
than conversion. Therefore, it is important to relate the bi-
omarkers to easily administered continuous behavioral mea-
sures. Most interesting, another study investigating continu-
ous variables52 did not find any association between MMSE
change and change in CSF levels of either A�42, tau, or p-tau
(r � 0.18, �.03, and �.07, respectively). This does not mean
that CSF measures are not related to clinical change. CSF tau/
A�42 ratio did correlate in the expected negative direction
with change in logical delayed memory in the present sample,
but the effect size was too modest to reach significance. Select
MR imaging morphometry and FDG-PET measures at base-
line were significantly more sensitive to 2-year change in
CDR-SB and MMSE than were CSF measures. Both cortical
thickness and metabolism of parietal regions of interest served
as unique predictors of clinical decline, indicating that even
though FDG-PET did not contribute uniquely to diagnostic
classification when MR imaging morphometric variance was
accounted for, some additional prognostic information can be
obtained by combining the 2 imaging modalities.

While the present findings show that the different biomar-
kers all were sensitive to diagnostic group, a question of great
interest is whether the findings regarding specific measures

Fig 3. The regression plots for 2-year change in scores in the MCI group significantly (P � .05) predicted from MR imaging morphometry and PET metabolism variables. A, CDR change
predicted from retrosplenial cortical thickness. B and C, MMSE change predicted from retrosplenial cortical metabolism (B) and retrosplenial cortical thickness (C). D, Delayed logical memory
change predicted from hippocampal volume.
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can be applied on an individual subject basis. McEvoy et al7

recently reported that semiautomated individually specific
quantitative MR imaging methods identical to those used here
can be used to identify a pattern of atrophy in MCI that is
predictive of conversion to AD after 1 year. Hence, in light of
the present findings also indicating somewhat superior sensi-
tivity of such MR imaging morphometry measures compared
with other biomarkers, it does seem that these measures are
prime candidates to be used on an individual basis (eg, to
enrich clinical trials). However, as seen from Fig 3, while the
MR imaging morphometry measures evaluated here do pre-
dict 2-year change in screening and memory parameters
among patients with MCI, the regression plots also show con-
siderable scatter. Hence, while these measures can yield indi-
vidual prognostic information, this will be associated with
considerable uncertainty, and at present, any such estimate
must be made with great caution.

The present results are limited by a number of factors: Par-
ticipants were selected on the basis of willingness and ability to
undergo MR imaging and PET scanning and lumbar puncture
and may thus not be fully comparable with other samples.
However, imaging is an integral part of the ADNI protocol, so
participants did enter with the intention of having brain scans
performed, and approximately half of the ADNI participants
have also agreed to have CSF samples drawn.53 In terms of age,
MMSE score, A�42, t-tau, p-tau, and ratios of t-tau/A�42 and
p-tau/A�42, the subgroups studied in the present article do
appear to be representative of the larger ADNI sample. The
mean values for these indices in the present sample appear
very similar to those reported by Shaw et al53 for 410 partici-
pants with CSF measures, and all the present mean values for
age, MMSE, and CSF measures for NC, MCI, and AD deviate
less than one-fifth of the SDs from the means reported by
Shaw et al for the larger groups. Still, the present sample may,
of course, not be fully representative of the general population.
Furthermore, the multisite design of the ADNI is likely to add
some noise in data collection. Finally, the ADNI study is still
ongoing, and the ultimate status of the current MCI group is
unknown. That being said, the present study involving multi-
ple sites and 2 years of follow-up likely represents a more re-
alistic model for current clinical trial designs than longer in-
terval single-site studies.

Conclusions
Each of the biomarkers demonstrated potential to inform di-
agnosis and/or prognosis and enrich clinical trials. As a single
classifier, MR imaging morphometry (hippocampal volume)
was the most sensitive to diagnostic group, but the inclusion of
CSF biomarkers (t-tau/A�42) did result in significant im-
provement of classification (NC/AD). Still, both quantitative
MR imaging morphometry and regional metabolism as as-
sessed by coregistered FDG-PET data provided better predic-
tion of clinical decline than did CSF biomarkers. MR imaging
morphometry showed somewhat superior diagnostic and
prognostic sensitivity and is the least invasive, least expensive,
and most widely available method. MR images are often rou-
tinely required as part of the diagnostic work-up, so a broader
application of MR imaging morphometry may be feasible and
useful.
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