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Abstract
Atherosclerosis has been considered a syndrome of dysregulated lipid storage until recent evidence
has emphasized the critical contribution of the immune system. Dendritic cells (DC) are positioned
at the interface of the innate and adaptive immune system. Recognition of danger signals in atheromas
leads to DC activation. Activated DC regulate effector T cells which can kill plaque-resident cells
and damage the plaque structure. Two types of DC have been identified in atherosclerotic lesions;
classical myeloid DC (mDC) which mainly recognize bacterial signatures and plasmacytoid DC
(pDC) which specialize in sensing viral fragments and have the unique potential of producing large
amounts of type I interferon (IFN). In human atheromas, type I IFN upregulates expression of the
cytotoxic molecule TRAIL which leads to apoptosis of plaque resident cells. This review will
elucidate the role of DC in atherogenesis and particularly in plaque rupture, the underlying
pathophysiologic cause of myocardial infarction.
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Dendritic Cells in the Vessel Wall – From Healthy Arteries to Rupture-Prone
Atherosclerotic Plaques

Dendritic cells (DC) are indigenous residents of healthy arteries and are typically localized in
the sub-endothelial space as well as at the media-adventitia junction [1,2]. It has now been
proposed that such wall-embedded DC play an important role in the surveillance of the arterial
wall and in tolerization against autoantigens by silencing T-cell responses [3]. However, once
activated sufficiently, vascular DC may also present autoantigens to T cells and initiate
inflammatory responses directly in the arterial wall. Modification of autoantigens and
molecular mimicry may lead to recognition of self-determinants in this unique tissue niche.
DC are primarily activated by sensing potential dangers in an antigen-independent way via
scavenger receptors recognizing typical damage-associated molecular patterns. Localization
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of DC adjacent to vasa vasorum allows them to monitor the most important access pathways
to the vessel wall and screen the tissue environment for the appearance of exogenous and
indigenous stressors. Millonig et al. described that already at early stages of atherosclerosis,
DC appear in the subendothelial layer, particularly in areas exposed to turbulent flow conditions
[4]. More than 10 years ago, Bobryshev et al. reported for the first time that DC accumulate in
atherosclerotic lesions and concluded that DC may play an important role in the disease process
[5]. Yilmaz et al. located DC mainly in rupture-prone areas of the atherosclerotic plaque where
they exhibit a mature phenotype [6]. In accordance, we found the presence of DC to be
associated with features of plaque instability [7]. Additionally, higher DC densities have been
reported in carotid plaques from symptomatic patients compared with those from asymptomatic
patients [8]. In addition to visualizing dendrites, typical morphologic features of DC, the
presence of DC in the atherosclerotic plaque has been confirmed by using a variety of antibodies
recognizing DC markers in humans and mice (CD11c, CD1a, S-100, CD83, and DC-SIGN).
Recent reviews have given comprehensive insight into the diversity of immune cells in
atherosclerosis [9,10]. This review aims to further elucidate the functional role of DC in
atherogenesis and, in particular, in plaque destabilization ultimately leading to plaque rupture
and acute coronary syndrome (ACS). DC in the vessel wall almost certainly participate in other
clinical circumstances such as aortic aneurysms [11] and in-stent restenosis and balloon injury
[12,13], and much can be learned from comparing their immunoregulatory functions in
different settings of vascular inflammation.

The Circulating Pool of Dendritic Cells
In healthy individuals DC constitute about 0.3% of circulating peripheral blood mononuclear
cells [14]. Circulating DC encompass immature and mature forms trafficking to different organ
destinations. There are conflicting data about whether circulating DC are increased or
decreased in patients with stable coronary artery disease compared to healthy controls [15,
16]. During ACS, circulating DC are markedly decreased. At the same time, DC accumulate
in vulnerable atherosclerotic tissue [14]. One may speculate that circulating DC evade into
inflamed tissue sites attracted by chemokines produced by the inflammatory infiltrate
occupying the plaque. However, accumulation of DC into a single tissue site cannot be
responsible for the major changes in the number of circulating DC reported so far. More likely,
DC may also migrate into lymphoid tissues in response to systemic inflammatory activation
which redirects trafficking and compartmentalization of antigen-presenting DC as well as
lymphocytes. The process of redistribution of DC and their accumulation in tissue niches, such
as atherosclerotic plaques, may be affected by changes in the lipid profile which are prototypic
for atherosclerotic disease [17].

Recruitment of Dendritic Cells into the Atherosclerotic Lesion
Adhesion and chemotaxis are requisites for invasion of DC into the inflamed atheroma (Figure
1). Adhesion molecules such as P- and E-selectin, and VCAM-1 are responsible for tethering
DC to the microvascular bed (Figure 1)[18,19]. Hypoxia, oxidized low-density lipoprotein,
tumor necrosis factor-α, and inhibition of endothelial NO synthase may all augment adhesion
of DC to the endothelium [20]. In addition, adhesion of DC to injured vessels may be mediated
by platelets covering the lesion [21]. Conversely, statin treatment may decrease adhesion of
DC [22].

Upon fixation to the vessel wall, a chemotactic stimulus is required for invasion of DC into
the tissue microenvironment. CCL2 and CCL5 are potential chemotactic candidates abundantly
expressed in the inflamed atheroma (Figure 1)[23,24]. These chemokines activate DC via
binding to the respective G protein-coupled receptors and thereby recruit DC fixed to the vessel
wall by building a gradient towards the inflamed tissue site. A recent publication of Liu et al.
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has shown that fractalkine may be another important chemokine for accumulation of DC in the
atherosclerotic plaque [25]. Deficiency of the fractalkine receptor CX3CR1 resulted in
decreased atherosclerosis and a decreased number of DC in atheromas. Transformed
circulating monocytes are an additional source of DC. Monocytes may transform into DC under
inflammatory conditions [26] with a potential role for granulocyte/macrophage colony-
stimulating factor (GM-CSF) facilitating this transformation [26]. Knocking out GM-CSF
resulted in a significant reduction of DC in murine atherosclerotic lesions [27]. Particularly,
Ly-6Clow monocytes may differentiate into CD11c+ DC [28]. These cells rely on CCR5 to
enter the atheroma.

Activation of Dendritic Cells
Recognition of damage-associated molecular patterns including endogenous alarm signals as
well as pathogen-associated molecular patterns has checkpoint function in initiating the
cascade of DC activation [29]. In turn, DC start to produce mediators of the innate immune
system and express costimulatory molecules such as CD40, CD80 and CD86, which are crucial
for induction of adaptive immune responses. The most thoroughly investigated receptors
recognizing danger signals are Toll-like receptors (TLR, Table 1). Among them, TLR4 plays
a central role in initiation and progression of atherosclerosis. This receptor has been shown to
activate and mature DC in patients with ACS [30]. Markers of activation are spontaneously
expressed on circulating DC from ACS patients, raising the possibility that they have been
exposed to stimulatory ligands [31]. Fragments of bacteria such as lipopolysaccharides (LPS),
modified autoantigens such as oxidized LDL, and heat-shock proteins are recognized by TLR4
and activate the subsequent signaling cascade [32,33]. However, a recent publication indicates
that oxidized lipoproteins may also inhibit TLR4 signaling [34]. TLR2 may also play an
important role in atherogenesis, possibly due to activation of DC, e.g. by Chlamydia
pneumoniae [35]. Furthermore, TLR7-, TLR8-, and TLR9-recognizing motifs of nucleic acids
deriving from infectious pathogens may be involved in plaque destabilization. Vessel-specific
TLR expression patterns inducing distinct types of vascular inflammation may explain the
selective susceptibility of different vascular beds to atherosclerosis [2,36,37]. Disturbed blood
flow may determine TLR expression patterns [38]. Activation of DC may lead to loss of
tolerance and may fuel a local immune response [1]. While dyslipidemia favors aggravation
of local inflammation and may break tolerance against autoantigens [17], severe dyslipidemia
can lead to inhibition of the production of effector cytokines via TLR [39]. High concentrations
of oxidized low density lipoprotein may also cause decreased activity of DC due to increased
apoptosis of DC [32]. Further, nicotine has been shown to be a strong inducer of DC [40].
However, there are contradictory data indicating immunosuppressive effects of nicotine [41].
Hypoxia and hypoxia inducible factor 1α are emerging as alternate triggers of DC activation
[42]. While hypoxia specifically induces cytokine production of DC, DC maturation and the
capacity to stimulate T cells are impaired during hypoxic conditions preventing self reactivity
[43]. Thereby the net effect of hypoxia on the contribution of DC to atherogenesis remains to
be elucidated. Also, platelets have shown to induce DC maturation thereby enhancing DC-
mediated lymphocyte proliferation [21]. Finally, C-reactive protein has been implicated in
activating DC, but the responsible molecular mechanisms are unknown [44]. There is some
evidence that statins may prevent accumulation and function of DC [6,45,46]. Also, diltiazem
has been shown to delay DC maturation in cell culture studies [47].

Plaque Destabilizing Effector Functions of Dendritic Cells
Inclusion of DC in (bioengineered) vessels leads to infiltration of CD4 T cells [48]. DC-derived
CCL19 and CCL21 have been implicated in orchestrating T-cell attraction. Further, DC also
produce IL-12. This cytokine modifies the function of T cells by upregulation of the chemokine
receptor CCR5, which in turn leads to accumulation of T cells into the atherosclerotic plaque
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[23]. Diltiazem has been shown to inhibit IL-12 production of DC, resulting in a decreased
DC-dependent T-cell activation [49]. In the atherosclerotic plaque, T cells are positioned in
close vicinity to DC [50]. However, DC–T-cell interaction may also take place in adjacent
lymphoid organs. DC as professional antigen-presenting cells are crucial for priming of T cells
as measured by production of IFN-γ [48]. DC present processed antigens complexed with HLA
molecules to ligate the T-cell receptor (TCR). Biologic consequences include clonal expansion
of T cells expressing a TCR specifically recognizing the presented antigen. In support of the
concept that antigen recognition occurs in the plaque microenvironment, clonally expanded T
cells have been found in human plaques [51]. Costimulatory signals provided by activated DC
are crucial for full-blown activation of T cells. Nicotine augments the DC-mediated capacity
of T-cell activation [40]. Thus, multiple factors acting within the plaque will shape the ultimate
outcome of antigen recognition and T-cell activation. Statins may suppress the ability of DC
to activate T cells [45].

Activated cytotoxic CD4 T cells have the ability to destabilize the atherosclerotic plaque by
killing plaque-resident cells, such as endothelial cells and vascular smooth muscle cells
forming the protective inner layer (Figure 2). These cells are equipped with cytoplasmic
granules containing perforin and granzyme B. Perforin forms pores that enable granzyme B to
enter the target cell. Granzyme B activates caspases within the target cells thereby inducing its
apoptosis. Moreover, T-cell derived cytokines such as IFN-γ induce macrophage-mediated
tissue damage, e. g. by metalloproteinase-induced digestion of the extracellular matrix. In
addition to regulating the effector functions of T cells, DC have also been implicated in shaping
the functional activity of natural killer cells thereby further enhancing the cytotoxic potential
in the atherosclerotic plaque [52]. DC may also affect activation of CD8 T cells, another
important fraction of cytotoxic T cells regularly found in advanced atheromas in close vicinity
to DC [11,53].

Plasmacytoid Dendritic Cells in the Atherosclerotic Plaque
Recently, DC have been further divided into subsets, including conventional myeloid (m) and
plasmacytoid (p)DC. pDC received their name because their shape resembles that of plasma
cells [54], and about one third of circulating DC are classified as pDC. Various markers are
used for identification of these cells. While BDCA-2 appears on immature pDC [55], CD123,
the receptor for IL-3, is constitutively expressed on pDC. Typically, pDC show only low
expression of CD11c while this marker is abundantly expressed by mDC. Apart from
differences in morphology and expression of surface molecules, there are important functional
differences between mDC and pDC (Table 2). pDC have a different TLR expression profile
with abundant expression of TLR7, TLR8, and TLR9. These TLR are expressed intracellularly
and recognize RNA and DNA deriving from pathogens, particularly viruses. In the
atherosclerotic plaque, they may recognize viruses but also nucleotides deriving form dying
cells. However, pDC may also recognize bacterial signatures [56]. It has been shown that,
similar to mDC, circulating pDC are significantly reduced in patients with troponin-positive
ACS [57].

pDC have the unique function of producing large amounts of type I IFN. This cytokine exerts
strong antiviral effects. Furthermore, it induces marked upregulaton of the molecule TRAIL
on CD4 T cells [7]. TRAIL-expressing CD4 T cells effectively kill plaque-resident cells,
potentially weakening the scaffold of the lesion and rendering the plaque vulnerable (Figure
2) [58]. Moreover, type I IFN produced by pDC also sensitizes mDC by upregulating TLR4
on their surface [59]. This interaction leads to a major amplification of immune responses as
mDC and pDC are concomitantly triggered with different danger signals. This may for instance
happen when a viral infection activates pDC to produce type I IFN while mDC are chronically
stimulated by modified lipoproteins via TLR4. In accordance, type I IFN has been found to be
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associated with plaque instability in human atheromas [7]. In essence, interactions between
distinct types of DC emerge as mechanisms of setting inflammatory thresholds in the atheroma,
assigning a critical role to innate sensing tools in modulating the fate of the atherosclerotic
lesion.

Outlook and Potential Therapeutic Immunomodulation
This review summarizes the crucial pathogenic role of DC in plaque inflammation, contributing
to all stages of the atherosclerotic process. DC seem to be of particular importance in advanced
vulnerable lesions. However, exploring their contribution in early stages of atherosclerosis is
complicated by the extended time span through which this process proceeds. Capturing early
steps in human atherosclerosis would literally require studying teenagers. DC are activated by
recognition of damage-associated molecular patterns via scavenger receptors. While receptors
on mDC mainly recognize bacterial signatures, pDC are specialized in recognizing viral
particles. Also, modified autoantigens have the ability to stimulate DC in the atherosclerotic
plaque. Activated DC participate in destabilizing the atherosclerotic plaque in two different
ways. First, they are highly efficient antigen-presenting cells, determining the differentiation
of T cells. A critical effector pathway exposing the plaque to risk of rupture is the activation
of cytotoxic T cells. Secondly, DC induce production of proteases such as metalloproteinases
which disintegrate the extracellular matrix. A close interplay among mDC, pDC, and other
immune cells results in full-blown immune activation, paving the way for the detrimental
rupture of the atherosclerotic plaque.

Depletion and repletion experiments in animal models of complex atherosclerotic lesions are
necessary to explore which steps of the inflammatory cascade are regulated by these innate
immune cells. It is important to keep in mind that DC may also be helpful in inducing tolerance
against modified autoantigens in the microenvironment of the arterial wall and that this
particular immune function could prove beneficial in novel therapeutic approaches to
atherosclerosis. Particularly, DC may expand CD4+Foxp3+ T regulatory cells [60]. This T cell
subtype is crucial for balancing immune responses and inhibits atherogenesis by secretion of
transforming growth factor-beta and interleukin-10. There are ongoing efforts to develop a
vaccination against autoantigens found in the atherosclerotic plaque to induce immune
tolerance and avoid tissue-damaging immune responses [61]. The state of DC presenting such
antigens to lymphocytes may be crucial for inducing tolerance. As the induction of immune
memory may be irreversible, considerably more research on the safety of vaccination against
epitopes found in atherosclerotic lesions is required. Developing experimental approaches to
assign selected DC functions to certain stages of the atherosclerotic process seems particularly
promising as it may be necessary to harness DC functions through diverse means. Both
inhibiting unwanted immune responses and fostering protective immune responses may
converge on the level of modulating DC function.
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Figure 1. Recruitment of Dendritic Cells into the Atherosclerotic Plaque
DC are tethered to activated endothelium covering atherosclerotic plaques with the help of
adhesion molecules including P-Selectin, E-Selectin, and VCAM-1. Production of chemokines
in the atherosclerotic lesion determines which cells enter the lesion. The chemokines CCL2,
CCL5, and CX3CL1 are abundantly expressed in the lesion and build a gradient towards the
lesion in the vessel wall. DC express the corresponding receptors CX3CR1, CCR2, and CCR5
and follow the gradient towards the atheroma. Transmigration through the endothelium is
associated with phenotypic changes of DC.
DC = dendritic cells
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Figure 2. The Role of Dendritic Cells in the Atherosclerotic Plaque
mDC are activated by exogenous and endogenous danger signals binding to TLR2 and TLR4.
Activated mDC produce effector molecules such as metalloproteinases degrading the
extracellular matrix. Further, they trigger the recruitment of cytotoxic T cells via production
of IL-12. pDC are mainly activated by viral antigens binding to intracellular receptors such as
TLR9. Activated pDC produce vast amounts of IFN-α. This cytokine enhances the sensitivity
of other antigen-presenting cells by upregulation of TLR4. Furthermore, it upregulates the
expression of the proapoptotic molecule TRAIL on T cells thereby multiplying their cytotoxic
potential. These TRAIL-expressing T cells have the ability to kill plaque-resident cells such
as activated VSMC and EC expressing the death receptor DR5.
VSMC = vascular smooth muscle cells, EC = endothelial cells, mDC = myeloid dendritic cells,
pDC = plasmacytoid dendritic cells, MMP = metalloproteinase, DR5 = death receptor 5, TNF-
α = tumor necrosis factor-alpha
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Table 1

Immune Triggers Activating DC in Atherosclerotic Disease

Receptor Ligand Source

TLR2 Lipoproteins, Peptidoglycans,
Lipoteichoic acid

Gram-positive bacteria,
Mycoplasma, and other pathogens

entry-mediating envelope gp,
gp B (gB) and gp H (gH)[62]

CMV

? HSV

Heat shock protein 60 Human and chlamydial

Lipopolysaccharides Porphyromonas gingivalis

TLR3 Double-stranded RNA Viruses

? CMV

TLR4 Lipopolysaccharides Outer membrane of gram-negative
bacteria

Lipoteichoic acids Gram-positive bacteria

Protein F Respiratory syncytial virus

Heat shock protein 60 Human and chlamydial

Outer membrane protein? Chlamydia

Oxidized LDL (inhibitory role?),
minimally modified LDL

Human

Fibronectin Extra Domain A Human

TLR5 Flagellin Bacteria with flagella, e.g.
Salmonella

TLR7 single stranded RNAs Virus

TLR9 Unmethylated CpG motifs Bacterial DNA

DNA from CMV, HSV, Hepatitis
B Virus

Virus

Human DNA? Dying cells?

modified from de Kleijn et al. [63]
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Table 2

Comparison of Myeloid and Plasmacytoid Dendritic Cells

Dendritic Cell Subtype Myeloid Plasmacytoid

Circulating numbers* 0.2% 0.1%

Preferentially-expressed Toll-
receptor profile

TLR2, TLR4, (TLR5) TLR7-TLR9

Site of TLR expression Cell surface Cytoplasm

Recognition of

 Pathogens Bacterial fragments, e.g. LPS Viral fragments, e.g. RNA

 Autoantigens Oxidized LDL, HSP60 DNA from dying cells?

Typical effector cytokines IL-12, TNF-α, IL-6 Type I interferon

Effector function Activation of T cells via HLA-antigen
complexes and costimulatory molecules

Regulation of cellular functions
via type I interferon, e.g. induction
of TRAIL on T cells

Crosstalk Sensitized to TLR4 ligands by pDC-
derived type I interferon

Upregulation of TLR4 expression
on mDC

*
% of peripheral blood mononuclear cells
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