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In the Western world, endometrial cancer (EC) is the most common malignant tumor of the female genital tract. Solid tumors like
EC outgrow their vasculature resulting in hypoxia. Tumor hypoxia is important because it renders an aggressive phenotype and
leads to radio- and chemo-therapy resistance. Hypoxia-inducible factor-1« (HIF-1a) plays an essential role in the adaptive cellular
response to hypoxia and is associated with poor clinical outcome in EC. Therefore, HIF-1 could be an attractive therapeutic
target. Selective HIF-1 inhibitors have not been identified. A number of nonselective inhibitors which target signaling pathways
upstream or downstream HIF-1 are known to decrease HIF-1a protein levels. In clinical trials for the treatment of advanced and/or
recurrent EC are the topoisomerase I inhibitor Topotecan, mTOR-inhibitor Rapamycin, and angiogenesis inhibitor Bevacizumab.
Preliminary data shows encouraging results for these agents. Further work is needed to identify selective HIF-1 inhibitors and to

translate these into clinical trials.

1. Introduction

Endometrial cancer is the most common malignant tumour
of the female genital tract. The American Cancer Society
estimates that 42.160 women will have been diagnosed with,
and 7780 women will have died of cancer of endometrial
cancer in 2009 in the US [1]. Ninety percent of endometrial
cancer cases are sporadic, while the remaining are deemed
hereditary. In the endometrium, different adenocarcinoma
subtypes can develop. Endometrioid endometrial carcinoma
(EEC), or Type 1 cancer, accounts for approximately 75%
of cases. These tumours are usually oestrogen dependent,
tend to be of lower grade, and have fewer recurrences and
a better survival. They often develop in a background of
adenomatous hyperplasia and are characterized by muta-
tions in PTEN and defects in DNA mismatch repair—as
manifested by microsatellite instability. Type 2 tumours, of
which serous endometrial carcinoma (USPC) is the most
common subtype, arise from atrophic endometrium. Type 2
tumours often show p53 and are usually nondiploid. USPCs
are often poorly differentiated and have a greater propensity

for early spreading. They have worse prognosis than that of
EEC.

A developing solid tumour will outgrow its own vascu-
lature beyond the size of several cubic millimetres, result-
ing in hypoxia (defined as an oxygen tension below the
physiological level, <2% pO,) [2]. Hypoxia has been found
to be an important event in carcinogenesis as it renders a
more aggressive phenotype with increased invasiveness and
proliferation, formation of metastases, and poorer survival
in several types of cancer [3, 4]. Furthermore, it has been
shown that hypoxia-induces resistance to radiotherapy and
chemotherapy [5-7]. The key survival gene for cells in a
hypoxic environment is hypoxia inducible factor-1 (HIF-1)
(see Figure 1.).

The unsatisfactory results obtained with conventional
pharmacological treatment encourage further biological and
clinical investigations addressed to a better understanding
of specific cell targets and signalling transduction pathways
involved in endometrial carcinogenesis and to the identifi-
cation of novel molecular therapeutic targets. As hypoxia,
and thus HIF-1, leads to resistance to radiotherapy and


mailto:p.j.vandiest@umcutrecht.nl

OH

OH
Proteasome

Loss of function of | -
tumour suppressor

genes (pVHL, p53)

I
I
I
I
|
|
|
v

Cisplatin
Doxorubicin

ARNT

HIF-1a
> stabilization

==

~CCBP/P300

Obstetrics and Gynecology International

Cytoplasm

Nucleus

Transcription of

target genes PX-478 i
|
il
Metabolism (Glut-1, CAIX)
Angiogenesis (VEGF) B _l;e_v;c_iz_u_n;a_b_ N
Apoptosis (BNIP3) }—: WX G205 |
Metastasis (HGF) Sttt

F1GURE 1: Mechanisms of HIF activation in cancer.

chemotherapy in solid tumours [5-8], targeting HIF-1 could
be an attractive treatment strategy, with the potential for
disrupting multiple pathways crucial for tumour growth.
In this review, we will describe the current status of HIF-1
(upstream and downstream) inhibitors in the treatment of
endometrial cancer.

2. Hypoxia-Inducible Factor-1«

HIF-1 is a transcription factor composed of the subunits
HIF-1a and HIF-1pB, which are basic helix-loop-helix DNA
binding proteins. Both HIF-1«a and HIF-1f genes are ubiq-
uitously expressed and heterodimerize to form the active
HIF-1 that activates gene transcription by binding to the
consensus HIF Responsive Element (HRE): 5-RCGTG-
3’ in promoters and enhancers of target genes [9]. The
activity of HIF-1 is predominantly regulated at the post-
translational level by regulating HIF- la protein stability. At
normal oxygen tension, HIF-1a is hydroxylated by prolyl
hydroxylases (PHD) in the oxygen dependent degradation
domain (ODDD). Hydroxylated HIF-1a is recognized by
the Von Hippel-Lindau (VHL) protein, ubiquitinated and

destined for degradation by proteasomes. This process
is inhibited during hypoxia [10]. Under hypoxia, stabi-
lized HIF-1a subunits heterodimerize with  subunits (also
known as ARNT) to transactivate target genes after nuclear
translocation. Among these are genes involved in adaptation
to low glucose levels like the glucose transporter Glut-
1, carboanhydrase IX (CAIX) that regulates pH [11], and
vascular endothelial growth factor (VEGF) that is one of
the most potent inducers of angiogenesis [12]. Although
HIF-1a usually induces prosurvival (CAIX, Glut-1, VEGF)
genes, a role of HIF-1a in regulation of apoptosis has also
been described. HIF-1a promotes cell death through an
increase in p53 or other proapoptotic proteins like BNIP3
[13]. As a result of this dual function of HIF-1a, a “stop-
and-go” strategy as a dynamic balance to maintain overall
cell growth and survival has been proposed [14]. Hypoxia
induced HIF-1a also affects the expression of genes involved
in metastasis formation. Hepatocyte growth factor (HGF),
for example, is a cytokine which stimulates proliferation
and invasion through its receptor, the protooncogene c-MET
[15]. Invasive cell growth is promoted by HIF-1a -induced c-
Met transcription and sensitizing of cells to HGF stimulation
[16-18]. Taken together, the adaptive response to hypoxia
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in primary tumours resembles in many ways the so-called
metastatic phenotype which explains the poor prognosis of
hypoxic cancers [19].

HIF-1 stabilization may also occur under oxygen-
independent conditions, including infection with oncogenic
viruses, loss-of-function mutations in tumour suppressor
genes such as Von Hippel-Lindau (VHL), or signaling
by receptor tyrosine kinases, prostaglandin E2 receptor,
or nitric oxide [20]. Furthermore, genetic alterations in
the EGFR [21], RAS, and PI-3K/Akt [22-24] as well as
loss of p53 function [25] have been shown to lead to
increased nonhypoxic HIF activity. HIF-1a has also been
shown to be regulated by mammalian target of Rapamycin
(mTOR). mTOR promotes increased translation of HIF-1«
mRNA into protein [26, 27]. Other possible mechanisms
contributing to normoxic HIF-1 expression like oncogenic
mutation or amplification of HIF-1a gene have rarely been
reported in solid cancers [28, 29]. A polymorphism in
HIF-1« (P582S) has been found associated with increased
HIF activity and poor prognosis in prostate cancer, but
its significance with cancer risk is still incompletely under-
stood [30, 31]. The single nucleotide polymorphism (SNP)
C1772T (also described as C1744T) in the HIF-la gene
coding region results in an amino acid change at position
582 changing a Proline to a Serine (i.e., P582>S) in the
ODD domain (http://www.ncbi.nlm.nih.gov/SNP/snp_ref.
cgi?rs=11549465). Carriers of this SNP seemed to have an
increased risk of developing cervical and endometrial cancer
[32]. However, the proportion of allele carriers with the
most common polymorphism in the control group was
different from ratios described in other studies. We [31]
examined whether the C1744T polymorphism increased
the risk for endometrioid endometrial cancer. Although
the C1744T polymorphism was associated with higher
microvessel density and AKT activation, it did not lead to
increased cancer risk. Interestingly we found that the P582S
genotype variation in the ODDD of the HIF-1a protein may
occur as a de novo mutation in endometrial cancer. Although
the significance of this remains to be established, others have
proposed that it may increase transactivation of HIF-1a [30].

3. Endometrial Cancer

3.1. HIF-1a and Endometrial Carcinogenesis. It has been
postulated that menstruation results from vasoconstriction
of spiral arterioles, causing hypoxia which leads to necrosis
[33]. This focal hypoxia in perimenstrual endometrium
could result in locally increased HIF-1a. However, in pre-
menopausal women, HIF-1a was undetectable in the major-
ity of samples. In the HIF-1a positive cases, expression was
only seen in a small focus within the tissue, suggesting that
if hypoxia does occur at this time, then it is not widespread.
There seemed to be no correlation of HIF-1« expression and
the menstrual cycle [34]. In postmenopausal women, HIF-1a
was increasingly overexpressed from inactive endometrium
through hyperplasia to endometrioid carcinoma, paralleled
by activation of its downstream genes such as CAIX, Glut-1,
VEGE and increased angiogenesis. Low HIF-1a expression

was associated with negative/low VEGF staining in the total
group [35]. These results highlight the potential importance
of hypoxia and its key regulator HIF-law in endometrial
carcinogenesis and progression of disease [36].

Perinecrotic, chronic hypoxia-associated HIF-1« expres-
sion was absent in inactive endometrium, rare in endome-
trial hyperplasia, and frequent in endometrioid carcinoma.
These results could point to the importance of hypoxia
and the subsequent stabilization of HIF-1a in endometrial
carcinogenesis [35-38]. Loss of PTEN tumour suppressor
gene (also known as MMACI) is often seen in endometrial
carcinogenesis and is thought to cause nonhypoxia-mediated
HIF-1a expression via activation of the PI3K/AKT and
mTOR signaling pathway [39-42]. Horrée et al. (unpub-
lished data) showed that although over 60% of the car-
cinomas showed extensive loss of PTEN by immunohis-
tochemistry, this was not correlated to increased HIF-1a
expression. Thus, diffuse nonhypoxia-related expression of
HIF-1a seemed not to be related to PTEN mutation in
endometrial cancer. Correlation of HIF-la with tumour
stage, tumour grade, or myometrial invasion is still under
discussion [35, 43, 44].

The mechanism of tumourigenesis of USPC differs from
that of EEC. More expression of HIF-1a was observed in
USPC than in EEC [44, 45]. In USPC, HIF-1a expression
was not correlated to clinical stage or depth of myometrial
invasion. p53 mutations are a common event in USPC
carcinogenesis and aberrant p53 accumulation has been
associated with HIF-1a overexpression in different human
tumours [46]. In contrast, p53 expression was not associated
with HIF-1a expression in type II endometrial carcinomas
[44, 45].

3.2. HIF-1a and Prognosis in Endometrial Cancer. Contra-
dictory results have been described as to the prognostic
value of HIF-1a overexpression in endometrial carcinoma.
HIF-1a showed significantly higher expression in recur-
rent endometrial carcinomas when compared with their
primary tumours; it was, however, not an independent
predictor for recurrent endometrial carcinoma [43, 44].
In stage 1 endometrial cancers, HIF-1la was associated
with a worse prognosis [37]. However, others did not
find prognostic impact of HIF-1a expression [38]. Besides
the limitation of relatively small numbers of patients in
these studies, immunohistochemical studies are difficult to
compare because of a variation in definition of HIF-la
positivity. In some studies, both nuclear and cytoplasmic
staining was scored. The significance of cytoplasmic HIF-
la, however, is still not clear as stable HIF-1a is thought to
rapidly translocate to the nucleus. Expression patterns that
can be observed in endometrial tumours are the diffuse,
perinecrotic, and mixed (both perinecrotic and diffuse)
patterns [35]. Perinecrotic HIF-1a expression is thought to
be hypoxia driven, whereas diffuse HIF-1a expression may
rather be due to nonhypoxic stimuli [47]. Our experience
shows that once authors take into account nuclear staining
only and HIF-1« expression pattern, the results can change
dramatically. Figure 2 shows an example of nuclear HIF-1«
in a diffuse and perinecrotic expression pattern.
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TasLE I: Clinical trials on HIF-1« targeted therapies in endometrial cancer.
Clinical trials in
Class Inhibitor Mechanism endometrial
cancer
Small molecule inhibitors of HIF-1
Inhibits hypoxic Miller etal. [48]
Topoisomerase inhibitor Topotecan (topo-I) induction of HIF-1a Triana et al. [49]
P P P protein and DNA Wadler et al.
binding activity (50]
Induces degradation of
o . HIF-1« protein and _
HSP90 inhibitor Geldanamycin inhibition of DNA
binding of HIF-1
Other PX-478 Inh1b1t1.0n. of HIE- .loc -
transcription activity
Inhibitors of signal transduction pathways
Downregulation of
mTOR inhibitor Ozaetal. [51]

Temsirolimus (CCI-779)

Everolimus (RADO001)

HIF-1a by inhibing
mTor

Slomovitz et al.
[52]

Inhibitors of HIF-1 target genes

VEGF inhibitor Bevacizumab

CAIX inhibitor Rencarex (WX G250)

Monoclonal antibody Aghajanian et al.
against VEGF (53]

Monoclonal antibody
against CAIX

As HIF-1a expression is associated with treatment failure
and/or patient mortality, targeting HIF-la could be an
attractive treatment strategy, with the potential for disrupt-
ing multiple pathways crucial for tumour growth.

4. HIF-1« and Hypoxia as
a Target for Cancer Therapy

The unsatisfactory results obtained with conventional phar-
macological treatment encourage further biological and
clinical investigations addressed to a better understanding
of specific cell targets and signaling transduction pathways
involved in endometrial carcinogenesis and to the identifica-
tion of novel molecular targeted therapies. A new and more
effective treatment for metastatic endometrial carcinoma is
urgently needed.

There are different areas of research in hypoxia-related
drug therapy including (1) designing drugs that directly
inhibit HIF-1 signaling and (2) influencing other signaling
cascades that indirectly alter HIF signaling.

Inhibition of HIF-la would, of course, hit multiple
targets but because of its bifunctional effects, for example,
proapoptotic genes induced by hypoxia, outcome will be
difficult to predict. Thus far, selective HIF-1 inhibitors have
not been identified. A number of nonselective inhibitors,
which indirectly target signaling pathways upstream or
downstream HIF-1 are known to decrease HIF-1a protein
levels. Antisense therapy against HIF-1a has been shown

to reduce HIF-la expression and transcriptional activity;
however, at present it is not clinically applicable. Therefore,
the potential of HIF-1a as a target for cancer therapy lies
in the small molecule inhibitors of HIF-1. Several small
molecular inhibitors of the HIF-1 transcriptional activation
pathway have been identified (Table 1). Although none of
these has been shown to directly and specifically target HIF-
1 [54, 55], they do decrease HIF-1a protein levels. Some
of these HIF-1 inhibitors are subject of clinical trials at
present.

4.1. Topotecan. Topotecan, a topoisomerase I inhibitor that
has been used as a second-line therapy for ovarian cancer,
is one such small molecule inhibitor of HIF-1 [56, 57].
Topotecan inhibits hypoxic induction of HIF-la protein
and DNA binding activity [58]. In a GOG phase II trial of
Topotecan in pretreated patients with advanced, persistent,
or recurrent endometrial carcinoma, the total response rate
was 9%, with 1 patient achieving a complete response and
1 experiencing a partial response. Twelve (55%) patients
maintained stable disease [48]. The eastern Cooperative
Oncology Group subsequently performed a phase II trial
of Topotecan for metastatic or recurrent endometrial car-
cinoma. The overall response was 20%. Although single-
agent Topotecan treatment has shown activity in chemonaive
[50] and previously treated patients [48, 49], severe (grade
4 neutropenia) and unexpected (primarily sepsis) toxicities
were encountered [48, 50]. However, at modified doses,
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F1GURE 2: Immunohistochemical staining of HIF-1« in endometri-
oid endometrial carcinoma. Typical patterns are shown: (a) per-
inecrotic HIF-1a expression (10x magnification) and (b) diffuse
HIF-1a expression (10X magnification).

toxicity was acceptable and clinical activity was preserved
[50].

Despite the different carcinogenesis of EEC and USPC,
but probably due to the rareness of the latter, clinical
trials including only USPC patients are rare. A pilot study
of Topotecan for the treatment of USPC demonstrated
clinical activity in this patient group [59]. However, because
survival outcomes continue to be disappointing, combining
Topotecan with other active drugs may lead to improved
outcomes.

4.2. mTOR Inhibitors. HIF-1a has also been shown to be
regulated by mammalian target of Rapamycin (mTOR).
mTOR promotes increased translation of HIF-la mRNA
into protein [26, 27]. Rapamycin is a specific inhibitor of
mTOR and inhibits both the stabilization and the tran-
scriptional activity of HIF-1a in hypoxic cancer cells [60].
This effect is directly related to the disruption of mTOR-
dependent signaling functions. The current hypothesis is that
mTOR inhibitors could be effective inhibitors of hypoxic
adaptation in developing tumours. These effects could be
especially relevant in tumours with loss of PTEN function
as is often the case in endometrioid endometrial cancer

[61]. Loss of PTEN leads to constitutive activation of
AKT, which leads to up-regulation of mTOR. Potential
therapies targeting the mTOR pathway include mTOR
inhibitors (Rapamycin derivates) Temsirolimus (CCI-779),
and Everolimus (RADO001) [62]. Demonstrated activity in
preclinical studies has led to numerous phase I and phase
IT trials. A phase II trial of Temsirolimus in patients with
chemotherapy treated, recurrent, or metastatic endometrial
cancer showed modest activity of Temsirolimus. Two patients
(7.4%) showed partial response and twelve patients (44%)
had stable disease [51]. A 44% clinical benefit response rate
was found in a phase II study of Everolimus in 29 patients
with recurrent endometrial cancer [52]. Clinical Benefit
was defined as complete or partial response or prolonged
stable disease. In this trial, loss of PTEN expression was
predicative of response rate. The different mTOR inhibitors
show encouraging single agent clinical benefit. A phase I trial
of Temsirolimus with Topotecan (NCT00523432) in patients
with gynaecological malignancies, including endometrial
cancer, has just finished recruiting patients. Other trials of
Temsirolimus are underway.

4.3. Bevacizumab. An HIF-1 inhibitor that targets a pathway
activated by HIF-1 is Bevacizumab. Bevacizumab is a mon-
oclonal antibody that targets VEGF, a potent endothelial cell
mitogen that has been associated with increased angiogenesis
in malignancies. Different studies showed that an increase
in VEGF expression was linked to increased angiogenesis
in endometrial carcinomas. High VEGF mRNA levels were
correlated significantly with highly vascularized tumours
[63, 64]. Early results of a phase II study of Bevacizumab in
the treatment of recurrent or persistent endometrial cancer
in 53 patients showed a 15% response rate. Nearly 36%
of the patients were progression free at 6 months [53]. In
conclusion, Bevacizumab appears to be active in women with
recurrent or persistent endometrial cancer.

4.4. Cisplatin and Doxorubicin. Some conventional anti-
cancer agents targeting signal transduction pathways have
also been shown to inhibit HIF-1 [65]. Duyndam et al.
[66] showed in human ovarian cancer cell lines that the
conventional anticancer agents cisplatin and doxorubicin
can negatively influence HIF-1 activity with a concomitant
reduction of VEGF expression. A recent phase III trial
demonstrated improved progression-free and overall sur-
vival for the three-drug regimen of cisplatin, doxorubicin
and paclitaxel compared with a two-drug combination (cis-
platin and doxorubicin) in advanced or recurrent endome-
trial carcinoma. However, toxicity problems often make the
three-drug regimen less acceptable [67].

4.5. New Promising Drugs. Small molecule inhibitors of
HIF-1 activity currently investigated in clinical trials are
PX-478, an inhibitor of HIF-1 transcription factor activity
[68], and geldanamycin, an HSP90 (heat shock protein 90)
inhibitor [69]. HSP90 is involved in the folding of HIF-1«
and Geldanamycin induces degradation of HIF-1a [70]. Both
are being evaluated in advanced solid tumours. WX G250,



a CAIX antibody (http://www.wilex.com), is another HIF-1
inhibitor that targets a different pathway activated by HIF-
1. WX G250 is currently in phase III clinical trials in renal
cell cancers. These new drugs may find their way into clinical
trials in endometrial cancer in the future.

5. Summary

Hypoxic tumours are usually resistant to radiotherapy and
conventional chemotherapy, rendering them highly aggres-
sive and metastatic. Response to hypoxic stress is largely
mediated by the HIF pathway. HIF-1a expression is corre-
lated with a poor prognosis in endometrial cancer. Therefore,
targeting the HIF pathway provides an attractive strategy
to treat hypoxic and highly angiogenic tumours. Thus far,
selective HIF-1 inhibitors have not been identified. A number
of nonselective inhibitors, which indirectly target signaling
pathways upstream or downstream of HIF-1, are known to
decrease the key regulating HIF-1a protein levels. Different
(indirect) HIF-1a inhibitors that are in clinical trial for
the treatment of advanced/recurrent endometrial carcinoma
are Topotecan, Rapamycin derivates, and Bevacizumab.
Preliminary results show encouraging results for these single-
agent treatments with partial response and stable disease
in the patients. However, lack of specificity increases the
difficulty in attributing any antitumorigenic effects of these
drugs specifically to inhibition of HIF-1. The combination
of HIF inhibitors with conventional treatment may prove to
be clinically useful. Further work is needed to identify more
selective HIF-1 inhibitors, to determine their mechanism
of action, and to translate these developments into clinical
trials.
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