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lation of MnSOD with little change in CuZnSOD.  Conclu-
sions:  Chronic hypertension in phenol-injected rats is asso-
ciated with upregulation of NAD(P)H oxidase and hence 
increased O2

–� production capacity in the key regions of the 
brain involved in regulation of blood pressure. Since reactive 
oxygen species can intensify central noradrenergic activity, 
the observed maladaptive changes may contribute to the 
genesis and maintenance of the associated hypertension. 

 Copyright © 2008 S. Karger AG, Basel 

 Introduction 

 Kidney is a sensory organ which is richly innervated 
with mechano- and chemosensitive afferent nerve fibers 
 [1–6]  directly projecting to the regions of the central ner-
vous system involved in regulation of arterial pressure  [7, 
8] . Via modification of proteins and other molecules, ex-
posure to high concentrations of phenol can lead to tissue 
necrosis and scar formation. Single injection of a small 
quantity of phenol into the cortex of one kidney results 
in development of neurogenic hypertension (HTN) in ge-
netically-normal rats  [9, 10] . The associated HTN persists 
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 Abstract 
  Background:  Single injection of small quantities of phenol 
into the kidney cortex causes hypertension which is medi-
ated by renal afferent sympathetic pathway activation. This 
phenomenon can be prevented by superoxide dismutase 
(SOD) infusion in the lateral ventricle, suggesting the role of 
superoxide (O2

–� ) in noradrenergic control of arterial pressure. 
Since NAD(P)H oxidase is a major source of O2

–� , we tested the 
hypothesis that hypertension in this model may be associ-
ated with upregulation of NAD(P)H oxidase in relevant re-
gions of brain.  Methods:  NAD(P)H oxidase subunits, mito-
chondrial (MnSOD) and cytoplasmic (CuZnSOD) SOD were 
measured in rats 4 weeks after injection of phenol or saline 
in the left kidney cortex.  Results:  Phenol-injected rats exhib-
ited hypertension, upregulation of gp91 phox , p22 phox , p47 phox  
and p67 phox  in the medulla, gp91 phox  and p22 phox  in pons and 
gp91 phox  in hypothalamus. This was associated with upregu-
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long after complete healing of the initial injury and reces-
sion of the lesion to a microscopic scar. The intrarenal 
lesion in this model causes activation of the renal afferent 
sympathetic pathway which integrates with central regu-
latory brain regions and results in activation of the cor-
responding renal efferent pathway. The latter, in turn, 
raises arterial pressure by augmenting renal vascular re-
sistance and tubular sodium reabsorption and modulat-
ing pressure natriuresis  [11] . The role of activation of re-
nal afferent sympathetic pathway in the pathogenesis of 
HTN in this model is enforced by the observation that 
HTN in this model is prevented by renal denervation pri-
or to phenol injection  [12] .

  Brain stem control of blood pressure is primarily 
served through three medullary nuclei which influence 
activities of sympathetic and parasympathetic nerves. 
Rostral ventrolateral medulla (RVLM) is the main source 
of sympathetic outflow to preganglionic sympathetic fi-
bers, whereas nucleus ambiguous is the center of para-
sympathetic activity. The functions of these nuclei are 
influenced by the nucleus of tractus solitarius (NTS) 
which receives afferent connections from baro- and che-
moreceptors and regulates RVLM activity through the 
baroreflex signals  [13] . Higher in the central nervous sys-
tem, posterior hypothalamus also regulates the sympa-
thetic outflow  [14] .

  Reactive oxygen species (ROS) play an important role 
in numerous physiologic and pathologic processes by ac-
tivating redox-sensitive transcription factors and redox-
sensitive signal transduction pathways and by directly 
reacting with various molecules. There is mounting evi-
dence that ROS contributes to the genesis and/or mainte-
nance of nearly all forms of HTN by several mechanisms 
including activation of central sympathetic activity  [15–
19] . In this context, increased ROS level has been found 
in key regions of the brain involved in regulation of car-
diovascular functions in animal models of HTN. More-
over, increased ROS level can modulate activity of the 
central nervous system pathways in ways that support de-
velopment of hypertension  [20] . Reduced nicotinamide-
adenine dinucleotide phosphate oxidase [NAD(P)H oxi-
dase] is a major source of ROS in the immune cells, cel-
lular constituents of renal, cardiovascular, neuronal and 
other tissues. In fact, increased ROS production and oxi-
dative stress in animal models of HTN is associated with 
and largely due to upregulation/activation of this enzyme 
in the kidney and cardiovascular tissues  [21] .

  In a series of acute experiments, Ye et al.  [10]  showed 
that rapid rise in arterial pressure seen shortly after in-
trarenal injection of phenol in rats is associated with 

heightened renal sympathetic nerve activity, increased 
norepinephrine release from posterior hypothalamic nu-
clei, and increased NAD(P)H oxidase mRNA abundance  
 in the posterior hypothalamic and paraventricular nu-
clei, as well as locus coeruleus. Furthermore, this study 
found that the associated rise in arterial pressure and 
sympathetic activity can be abolished by infusion of cell-
permeable superoxide dismutase (SOD) in the lateral 
ventricle prior to intrarenal injection of phenol. These 
observations suggest that abrupt stimulation of central 
sympathetic activity and the associated rise in arterial 
pressure in this model is mediated by increased produc-
tion of superoxide by NAD(P)H oxidase in the brain nu-
clei involved in the noradrenergic control of arterial pres-
sure.

  The present study was undertaken to determine pro-
tein abundance of the superoxide-generating enzyme, 
NAD(P)H oxidase, and SOD in the key regions of the 
brain involved in noradrenergic control of arterial pres-
sure in this model.

  Methods 

 Animals 
 Experiments were performed in male Sprague-Dawley (SD) 

rats (280–320 g b.w.). Baseline arterial pressure was measured by 
tail plethysmography. Under general anesthesia with intramus-
cular injections of sodium pentobarbital (35 mg/kg), the left kid-
ney was exposed via a dorsal incision and 50  � l of 10% phenol or 
saline were injected into the lower pole cortex. The incision was 
then closed and the rats returned to the vivarium, where they were 
provided free access to food and water. After a 4-week observation 
period, the rats were placed in individual metabolic cages for a 
24-hour urine collection. Subgroups of animals were used for di-
rect measurement of arterial pressure. These animals were anes-
thetized as described above and placed on a thermostatically con-
trolled warming table to maintain body temperature at 37   °   C. A 
polyethylene catheter (PE-10) was placed into a femoral artery 
and arterial pressure recorded as described in our earlier studies. 
Under general anesthesia, the remaining animals were eutha-
nized by exsanguinations using cardiac puncture, the brains were 
then harvested, medulla, hypothalamus and pons were isolated, 
snap-frozen in liquid nitrogen and stored at –70   °   C.

  Tissue Preparation 
 Medulla, hypothalamus and pons were homogenized in 10 

mmol/l Hepes buffer, pH 7.4, containing 320 mmol/l sucrose,
1 mmol/l EDTA, 1 mmol/l DTT, 10 mg/ml leupeptin, 2 mg/ml 
aprotinin, and 1  � mol/l phenylmethylsulfunyl fluoride (PMSF) 
at 0–4   °   C. A Polytron tissue mixing and blending device was used 
to blend the tissue into a smooth homogenate. Homogenates were 
centrifuged at 12,000  g  for 5 min at 4   °   C to remove tissue debris 
and nuclear fragments. The supernatant was used to perform the 
Western blot analysis. Total protein concentration was deter-
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mined with the use of a Bio-Rad kit (Bio-Rad Laboratories, Her-
cules, Calif., USA).

  Western Blot Analysis 
 Protein abundance of NAD(P)H oxidase subunits (gp91 phox , 

p47 phox , p67 phox , and p22 phox ), mitochondrial SOD (MnSOD) and 
cytoplasmic SOD (CuZnSOD) were measured by Western blot 
analysis as described in our earlier studies  [22] . Polyclonal anti-
body against gp91 phox  was purchased from Upstate Inc. (Lake 
Placid, N.Y., USA). Antibody against p47 phox  was purchased from 
BD Biosciences Inc. (San Diego, Calif., USA), and polyclonal an-
tibodies against P67 phox  were purchased from Upstate Inc. The 
anti-p22 phox  antibody was a generous gift from Dr. A.J. Jesaitis 
(Montana State University). Antibodies against CuZnSOD and 
MnSOD were purchased from Calbiochem Inc. (San Diego, Calif., 
USA). Western blot blue staining (PerkinElmer, Boston, Mass., 
USA) was used to verify the uniformity of protein load and trans-
fer efficiency across the test samples. Experiments failing this test 
were discarded. Peroxidase-conjugated immunopure goat anti-
rabbit IgG (H+L; Pierce Biotechnology Inc., Rockford, Ill., USA) 
and sheep anti-mouse IgG, HRP linked (Amersham ECL; GE 
Healthcare Inc., Piscataway, N.J., USA) were used as secondary 
antibodies and diluted in 5% non-fat milk at 1:   10,000. The mono-
clonal antibody against  � -actin was purchased from Genetex Inc. 
(San Antonio, Tex., USA). Optical densities of the target protein 
bands were determined by a laser densitometer (Molecular Dy-
namics, Sunnyvale, Calif., USA), quantified with Image Quant 
5.2 and normalized against those of  � -actin.

  Data Presentation and Analysis 
 Data are presented as mean  8  SEM. Student’s t test and anal-

ysis of variance (ANOVA) were used in statistical evaluation of 
the data. p values  ̂  0.05 were considered significant.

  Results 

 General Data 
 Body weight and serum creatinine were unchanged 

(data not shown) while arterial pressure was significantly 
elevated in the phenol-injected rats as compared with the 
placebo-injected animals ( fig. 1 ). Fractional excretion of 
sodium in the renal injury group was slightly lower than 
that found in the control animals (0.68  8  0.1 vs. 1.02  8  
0.1, p  6  0.05).

  NAD(P)H Oxidase Subunits 
 Data are illustrated in  figures 2–4 . The phenol-inject-

ed rats exhibited significant upregulation of gp91 phox , 
p22 phox , p47 phox  and p67 phox  in the medulla. In addition, 
gp91 phox  and p22 phox  were significantly increased in pons, 
and gp91 phox  abundance was elevated in the hypothala-
mus of the phenol-injected group as compared to the cor-
responding values found in the saline-injected controls.

  CuZnSOD and MnSOD 
 Data are depicted in  figures 5–7 . MnSOD protein 

abundance was significantly increased in the medulla, 
hypothalamus and pons of the phenol-injected compared 
to the placebo-injected control group. CuZnSOD abun-
dance was slightly increased in the hypothalamus and 
was unchanged in the medulla and pons of the phenol-
injected group.
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  Fig. 1.  Systolic arterial pressure and serum creatinine concentration in rats obtained at baseline and 4 weeks 
after injection of saline or phenol in the renal cortex. n = 6 rats in each group;  *  p  !  0.05. 
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  Discussion 

 Animals studied 4 weeks after injection of a small 
amount of phenol in the left kidney cortex exhibited a 
significantly higher arterial pressure than the placebo-
injected animals, confirming the results of the previous 
studies in this model  [9, 12, 23] . A previous study con-
ducted in one of our laboratories showed that intrarenal 
injection of phenol in rats raises arterial pressure, aug-
ments norepinephrine secretion from posterior hypotha-
lamic nuclei and increases renal sympathetic nerve ac-
tivity  [12, 23] . A subsequent study demonstrated that
intrarenal injection of phenol results in activation of 
sympathetic nervous system and an immediate increase 

in renal tubular sodium reabsorption  [11] . The role of 
heightened renal sympathetic activity in this model was 
substantiated by subsequent experiments which demon-
strated that HTN can be prevented by prior renal dener-
vation  [12, 23] .

  There is compelling evidence that ROS modulate ac-
tivity of the neuronal pathways involved in regulation of 
blood pressure and cardiovascular function. Moreover, 
HTN in experimental animals is linked to increased lev-
els of ROS in the cardiovascular centers of the brain stem 
(RVLM, NTS) and posterior hypothalamus. For instance, 
high levels of ROS have been shown in RVLM in sponta-
neously hypertensive rats  [24, 25] . In addition, injection 
of H 2 O 2  into the 4th ventricle has been shown to raise 
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  Fig. 2.  Protein abundance of gp91 phox , p22 phox , p47 phox , p67 phox  in the medulla of rats obtained at baseline and 
4 weeks after injection of saline or phenol in the renal cortex. n = 6 rats in each group;  *  p  !  0.05. 
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blood pressure and lower heart rate  [20]  in normotensive 
animals, events that were abrogated by  � -adrenergic re-
ceptor blockade with prazosin.

  The prototypical phagocytic and tissue-specific iso-
forms of NAD(P)H oxidase are a major source of ROS 
production in the cellular constituents of various tissues 
including neuronal tissues  [21, 26, 27] . The enzyme con-
sists of two membrane-associated (gp91 phox  and p22 phox ) 
and three cytoplasmic (p47 phox , p67 phox , and rac1) sub-
units. Activation of the enzyme involves assembly of the 
cytoplasmic and membrane-associated subunits which is 
initiated by phosphorylation of the p47 phox  regulatory 
subunit. Once activated, NAD(P)H oxidase, catalyzes 
single electron reduction of molecular oxygen to super-

oxide, a highly reactive free radical species (O 2  + e–  ]  
O2

–� ). Several factors including pro-inflammatory cyto-
kines, mechanical stress and angiotensin II promote 
p47 phox  phosphorylation leading to NAD(P)H oxidase
activation and superoxide production in the target tis-
sues. It is of note that gp91 phox , the catalytic subunit of 
NAD(P)H oxidase, is expressed on the neural processes 
of the NTS where it co-localizes with Ang II type 1 recep-
tor  [27] . In fact, ROS activity in the cardiovascular re-
gions of brain stem is closely linked to the angiotensin II 
activity. For example, addition of Ang II to cultured neu-
rons from the cardiovascular regions of the hypothala-
mus and brain stem increases neuronal firing, partly, 
through inhibition of K current, an effect which is associ-
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  Fig. 3.  Protein abundance of gp91 phox , p22 phox , p47 phox , p67 phox  in the pons of rats obtained at baseline and 4 
weeks after injection of saline or phenol in the renal cortex. n = 6 rats in each group;  *  p  !  0.05. 
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ated with increased NAD(P)H oxidase activity and ROS 
production in these neurons  [28] . In rats, administration 
of SOD-mimetic drug, tempol, has been shown to com-
pletely abolish the effects of Ang II on blood pressure, 
norepinephrine secretion from the posterior hypotha-
lamic nuclei and renal sympathetic nerve activity  [29] .

  In rats, application of Ang II to RVLM causes NAD(P)H 
oxidase activation (phosphorylation of p47 phox ) and in-
creased superoxide production, events which are pre-
vented by pretreatment with NAD(P)H oxidase inhibi-
tors  [30] . Likewise, pretreatment of RVLM nucleus with 
gp91ds-tat, a specific gp91 inhibitor, suppresses the phys-

iological action of Ang II  [28]  and mice lacking p47 phox  
fail to show hypertensive response to Ang II infusion  [31] . 
Finally, in rabbits, angiotensin upregulates expression of 
p40 phox , p47 phox , p67 phox , gp91 phox  and increases NAD(P)H 
oxidase-dependent production of superoxide  [32] .

  Rats with chronic neurogenic HTN studied 5 weeks 
after intrarenal phenol injection, exhibited significant 
upregulation of gp91 phox , the catalytic subunit of 
NAD(P)H oxidase in the medulla, hypothalamus and 
pons. Similarly, the enzyme’s second membrane-associ-
ated subunit, p22 phox , and its important regulatory sub-
unit, p47 phox , were upregulated in most of the tested re-
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  Fig. 4.  Protein abundance of gp91 phox , p22 phox , p47 phox , p67 phox  in the hypothalamus of rats obtained at baseline 
and 4 weeks after injection of saline or phenol in the renal cortex. n = 6 rats in each group;  *  p  !  0.05. 
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gions of the brain in our rats with renal-injury-induced 
neurogenic HTN. Together, these observations point to 
increased superoxide-generating capacity of the key re-
gions of the brain involved in regulation of blood pres-
sure and cardiovascular function in this model. In addi-

tion, the study extends the findings of an earlier investi-
gation which showed a rapid rise in mRNA abundance of 
NAD(P)H oxidase subunits in this model shortly after 
intrarenal injection of phenol  [10] .
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after injection of saline or phenol in the renal cortex. n = 6 rats in each group;  *  p  !  0.05. 
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  Superoxide is converted to hydrogen peroxide by a 
family of enzymes known as superoxide dismutase (SOD) 
comprising cytoplasmic (CuZnSOD), mitochondrial 
(MnSOD) and extracellular (EC-SOD) isoforms. Expres-
sion of SOD is upregulated by superoxide and SOD defi-
ciency results in elevation of superoxide level. The SOD 
content of RVLM is reduced in stroke-prone spontane-
ously hypertensive rats  [24]  and administration of SOD-
mimetic drug, tempol, attenuates HTN in spontaneously 
hypertensive rats  [24, 25] . Microinjection of SOD into the 
RVLN reduces arterial pressure and renal sympathetic 
activity in both normo- and hypertensive pigs  [33] . In 
stress-induced HTN model, bilateral microinjection of 
tempol into the RVLM or posterior hypothalamus atten-
uates sympathoexcitatory and pressor response to air jet 
in rabbits  [34, 35] . Similarly, intraventricular infusion of 
SOD or tempol prevents the acute rise in blood pressure 
in response to intrarenal injection of phenol  [10] .

  ROS can influence the activities of central neuronal 
pathways involved in regulation of arterial pressure and 
cardiovascular system by several mechanisms. For in-
stance, ROS influence neuronal firing in RVLM and pos-
terior hypothalamus by modulating the activity of calci-
um or potassium channels. Ang II activates calcium cur-
rents  [36]  by promoting superoxide production via the 
rac1/NAD(P)H oxidase system  [37] . This assertion is sup-
ported by the fact that gp91ds-tat which disables the gp91 
catalytic subunit of NAD(P)H oxidase, blocks the Ang II-

mediated enhancement of L-type calcium currents  [27] . 
Similarly, angiotensin-induced superoxide production by 
NAD(P)H oxidase, increases calcium currents in NTS 
neurons  [27] .

  Using the inside-outside patch clamping technique, 
Sun et al.  [28]  have shown that increased production of 
superoxide in the brain stem neurons regardless of its 
source can directly close potassium channels which, in 
turn, influence membrane conductance and increase 
neuronal firing. Alternatively, superoxide can influence 
neuronal firing by inhibiting protein phosphatases that 
inactivate calcium/calmodulin kinase II, thereby sus-
taining potassium current  [38] . In addition, high levels of 
ROS can have a long-lasting impact on the structure/
function of these regions of the brain through transcrip-
tional mechanisms. For instance, high levels of ROS in 
brain stem nuclei (RVLM, NTS) may affect blood pres-
sure regulation though activation of redox-sensitive nu-
clear factors leading to transcription of such genes as 
SOD, Ca-calmodulin kinase-II, and NO synthase, among 
others  [39] . Moreover, via inactivation of nitric oxide and 
inhibition of NO synthase, ROS can heighten central 
sympathetic activity which is normally suppressed by
NO  [40] .

  Upregulation of the superoxide-generating enzyme, 
NAD(P)H oxidase in the brain regions involved in cen-
tral regulation of noradrenergic activity in phenol-inject-
ed rats employed in the present study was accompanied 
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by increased MnSOD in the pons and medulla but not 
hypothalamus. In addition, CuZnSOD was unchanged in 
all tested regions of the brain. These findings represent a 
partial compensatory response to heightened ROS pro-
duction in the given regions of the brain in phenol-in-
jected animals.

  In conclusion, chronic neurogenic HTN induced by 
intrarenal injection of phenol is associated with upregu-
lation of the superoxide-generating enzyme, NAD(P)H 
oxidase in the medulla, pons and hypothalamus. These 
findings point to increased ROS production capacity in 
the key regions of the brain involved in regulation of 

blood pressure and cardiovascular function. Given the 
role of ROS in stimulating central noradrenergic activ-
ity, the observed maladaptive changes may, in part, con-
tribute to the genesis and maintenance of HTN in this 
model.
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