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Abstract
The need for newer compounds to treat depression is an ever-growing concern due to the enormous
societal and financial ramifications of this disorder. Here, we review some of the candidate systems
that could potentially be involved in depression, or an inherent resistance to depression termed
resilience, and the numerous protein targets for these systems. A substantial body of literature
provides strong evidence that neurotrophic factors, glutamate receptors, hypothalamic feeding
peptides, nuclear hormone receptors, and epigenetic mechanisms, among others, will make for
interesting targets when examining depressive behavior or resilience in preclinical models, and
eventually clinical trials. Although some of these targets for depression already appear promising,
new waves of more selective compounds for any molecular system should promote a better
understanding of this complex disease and perhaps improved treatments.

1. Introduction
In addition to traditional agonists and antagonists that act predominantly at cellular membrane
receptors, a surge in the number of specific compounds affecting intracellular proteins has
recently been observed in experimental reports, furthering our understanding of, and putative
treatments for, psychiatric and neurological diseases. While much remains to be learned
concerning the roles of neurotransmitter systems and neuromodulatory peptides that act
directly at the cell surface of neurons and glia, we postulate that the steady rise in compounds
aimed at targeting intracellular mechanics reflects remarkable advances in neuroscience.
Probing deeper into the mechanisms of cellular function reveals increasingly complex
interactions between enzymes and structural proteins that mediate processes ranging from
genomic regulation to cellular morphology. Unraveling the roles of particular intracellular
signaling molecules, transcription factors, and chromatin modifying enzymes has elucidated
cell-type specific events that may be dysregulated during disease states. Further advancements
will undoubtedly lead to the generation of newer classes of compounds that are capable of
targeting such cellular events, with the added potential of cell-type specificity. The fundamental
goal of this strategy is to better treat psychiatric and neurological diseases in a timely manner
without undesired negative side effects.

The need for improved antidepressant treatments is long-standing. Despite a steady increase
in the number of people treated for depression over the past thirty years, the prevalence of the
disorder remains stable. This, along with other factors, demonstrates the inadequacy of current
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treatments and a lack of improvement over the conventional monoaminergic-based therapies
discovered by serendipity decades ago (Healy, 1999; Kessler and Wang, 2008). In addition,
available medications are slow to produce effects: mood elevation is seen only after several
weeks of treatment, and severely depressed patients reach remission after an average of four
successive treatments over 38 weeks (Rush et al., 2006). A need for maintenance therapies
after a remission of symptoms is also typically warranted in patients that have a lifetime history
of depressive episodes, comorbid anxiety disorder, substance abuse disorders, as well as those
who are likely to experience frequent bouts of stress (Blier et al., 2007; Davis et al., 2007). A
high lifetime prevalence rate (16.6%), with high rates of recurrence and morbidity, contribute
substantially to the global burden of the disease which supports a need for newer medications
with greater efficiency, faster onset of action, and improved tolerability (Berton and Nestler,
2006; Kessler and Wang, 2008; Rush, 2007).

A key obstacle in developing newer medications has been a limited knowledge of the
pathophysiology of depression (Krishnan and Nestler, 2008). Indeed, there is a profound
heterogeneity in the phenotype of depression (i.e., its clinical presentation, age of onset, course
of illness, and treatment response), signifying that depression encompasses many different
disease states with distinct etiologies (Berton and Nestler, 2006; Rush, 2007). Epidemiologic
studies have found that depression is roughly 40% heritable, yet no specific genes have yet
been identified definitively. In light of these problems, studies examining the role of gene-
environment interactions on the emergence of particular symptoms or treatment responses have
indicated several ‘susceptibility’ genes that may indicate a higher risk for major depressive
disorder or resistance to treatment (Aan Het Rot et al., 2009; Lekman et al., 2008). Recent
neuroimaging and post-mortem studies of human brain have advanced our knowledge of neural
systems involved in depression, particularly brain areas that might underlie cognitive
impairments and dysregulation of emotional processing (Drevets et al., 2008). As a
complement to these findings, deep brain stimulation of the subgenual cingulate cortex or
nucleus accumbens has been shown to alleviate some depressive symptoms in treatment-
refractory patients (Mayberg et al., 2005; Schlaepfer et al., 2008).

Functional and morphological differences between brains of depressed and non-depressed
subjects are likely to be derived from distinct molecular and cellular correlates (Manji et al.,
2001). In clinical depression, and through the use of depression models in animals, numerous
anomalies at the cellular level in distinct brain areas have indeed been revealed, which has in
effect “opened the flood gates” for examining newer antidepressant targets (Berton and Nestler,
2006; Mathew et al., 2008). Also contributing to this wealth of potential new targets is the
realization that the search for new antidepressants should not focus solely on mechanisms that
prevent or reverse the deleterious effects of stress, but should also include mechanisms that
promote resilience—continued health and well-being despite the onslaught of severe stress
(Feder et al., 2009). Amongst such newer targets are amino acid neurotransmitter systems that
are known for their dominant role in regulating neural activity and synaptic plasticity (e.g.,
glutamate and GABA), neurotrophic factors, and molecules that are readily induced by
episodes of stress (e.g., CRF [corticotropin release factor] and glucocorticoids), neuropeptides
that maintain homeostatic energy balance (e.g., hypothalamic feeding peptides), gonadal
hormones that fluctuate over time, particularly in females (e.g., estrogen), as well as the
abundance of downstream cellular effectors that affect genome-wide transcriptional outcomes
(e.g., ΔFosB, CREB [cAMP response element binding protein], PDEs [phosphodiesterases],
GSK-3ß [glycogen synthase kinase 3ß], and HDACs [histone deacetylases]). The majority of
these potential targets are broadly expressed throughout the brain and have a diversity of
functions. Therefore, the overwhelming challenge is to find specific targets that generate
predicted outcomes, without producing adverse side effects. The development of allosteric
modulators of receptor systems represents a particularly nice example of recent successes in
drug discovery. Allosteric binding sites, when targeted, allow for increases or decreases in the
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efficacy of endogenously available receptor ligand. Consequently, tolerance, dependence, and
overdoses are less-frequently reported with allosteric pharmacological modulators. The best
example of this principle is the popular GABAA positive allosteric modulators used to treat
anxiety. Refining our understanding of the pathophysiology of depression and resilience, and
uncovering novel antidepressant mechanisms, will ultimately lead to better therapeutic
strategies for treating depressive syndromes.

In this review, we summarize our current understanding of depression and highlight examples
of recent neural and molecular mechanisms implicated in this disorder. We focus on their
therapeutic potential, and critically discuss their strengths and weaknesses in the light of recent
preclinical and translational studies. Novel potential treatments for depression that are already
actively in clinical trials (i.e., those that target receptors for CRF, vasopressin, glucocorticoids,
and neurokinins) are discussed in other reviews (see Berton and Nestler, 2006; Mathew et al.,
2008), and therefore are not covered here.

2. Neurotrophic factors and related signal transduction pathways
Sizeable morphological changes in the hippocampus have been reported in depressed humans
and after chronic stress in animal models (Gould et al., 1997; Sapolsky, 1996). These
observations have prompted the notion that depression might be associated with neuronal loss
in this brain region (Sapolsky, 2000). One mechanism by which hippocampal impairments
may correspond with depression is via the loss of neurotrophic factors and related signaling
cascades. In addition, conventional antidepressant treatments have been shown to increase
patterns of neurogenesis in the adult hippocampus, an effect that appears to be important for
their antidepressant-like behavioral effects (Santarelli et al., 2003). However, given a lack of
selective molecules that target specific signaling cascades involved in the process of
hippocampal neurogenesis has made it difficult to achieve empirical assessments of their
effects in preclinical depression models. Nonetheless, BDNF [brain-derived neurotrophic
factor] is decreased in the hippocampus of depressed patients (Dwivedi et al., 2003) and by
stress in animals, and multiple lines of experimental evidence have supported a role for BDNF
in the behavioral effects of antidepressants in animals (Duman and Monteggia, 2006). In
addition, BDNF polymorphisms can robustly alter its activity-dependant release, and may be
linked to depression-related vulnerabilities in humans (Duncan et al., 2008; Gatt et al., 2009).

However, the effects of BDNF in other brain areas generate different behavioral outcomes,
and increases in BDNF in the brain’s reward circuitry may actually be pro-depressant (Berton
et al., 2006). For example, infusion of BDNF into the ventral tegmental area (VTA) produces
depression-like effects (Eisch et al., 2003). Likewise, an increase in BDNF protein levels in
the VTA and its nucleus accumbens (NAc) target is triggered by chronic social defeat stress,
and this increase is both necessary and sufficient to produce a depressive-like phenotype, while
the selective knockout of BDNF from the VTA promotes resilience to stress (Berton et al.,
2006; Krishnan et al., 2007). Thus, it is not surprising that broad forebrain deletions of BDNF
or its TrkB receptor do not dramatically influence depression-like behaviors (Monteggia et al.,
2007; Zorner et al., 2003) and that modulating BDNF or TrkB activity has proven to be
clinically ineffective (Sen and Sanacora, 2008; Tanis et al., 2007). The limitations associated
with modulating BDNF globally have prompted a revision of the neurotrophic hypothesis of
depression, and highlights the difficulties of targeting such complex systems (Groves, 2007;
Krishnan and Nestler, 2008).

Despite such difficulties, the neurotrophic hypothesis of depression has opened new doors for
research strategies examining the mechanisms of depression and resilience. One example is
the insight obtained from studies on the intracellular signaling pathways that are regulated by
BDNF and other neurotrophic factors. BDNF activation of TrkB in turn activates several
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intracellular cascades, including the Ras-Raf-ERK (extracellular-signal regulated kinase),
phosphatidylinositol-3-kinase (PI3K)-AKT, and PLCγ (phospholipase Cγ) pathways. These
distinct pathways converge on activating the transcription factor CREB, among many other
actions. CREB then activates the transcription of numerous genes, including many of the
neurotrophins. Not surprisingly, most of the proteins involved in neurotrophic signaling
pathways, including ERK, AKT, PLCγ, and CREB, are regulated in animal models of
depression or antidepressant treatments (Bolaños et al., 2003; Carlezon et al., 2005; Duman et
al., 2007; Dwivedi et al., 2006; Dwivedi et al., 2008; Krishnan et al., 2008). Another potential
target for achieving antidepressant effects may be via upregulation of the cAMP-CREB
pathway through inhibition of any of several phosphodiesterases, which catalyze the
breakdown of cAMP and increase BDNF expression (Fujimaki et al., 2000). Rolipram, a non-
selective inhibitor of PDE4, has been reported to have antidepressant effects in depressed
patients (Manji et al., 2003). Although these early trials were discontinued due to intense side
effects (e.g., nausea and vomiting), efforts to develop safer drugs that target selective PDE
isoforms continue [i.e., mice lacking PDE4D display antidepressant-like behaviors (Zhang et
al., 2002)], and new PDE4 agents are in clinical trials for treating inflammatory diseases (Spina,
2008). PDEs 2, 5, 6, 10 and 11 all contain a GAF binding domain, and the GAF domain on
PDEs 2, 5 and 6 have a higher affinity for cyclic guanosine monophosphate (cGMP) than for
cAMP (Zoraghi et al., 2004), which serves to regulate catalytic activity upon association. By
virtue of a large and well-defined structure, GAF domains provide a realistic theoretical target
for constructing new ligands that function as agonists, or antagonists, and with a high degree
of selectivity for particular PDEs (Martinez et al., 2002). Two compounds, sildenafil (a PDE5
inhibitor) and papaverine (an inhibitor of PDE10 among other subtypes), both appear to have
anxiogenic effects in mice, indicating a hypothetical role for these enzymes in stabilizing mood
(Hebb et al., 2008; Kurt et al., 2004).

Two recently characterized proteins, named SPROUTY (SPRY) and SPRED, have been shown
to repress the action of fibroblast growth factor (FGF) and associated receptor tyrosine kinase-
dependent signaling pathways (Bundschu et al., 2007; Cabrita and Christofori, 2008).
Antagonism of these proteins has been postulated to be a potential therapeutic treatment for
depression. SPRY2 is downregulated in the prefrontal cortex after chronic antidepressant
treatment (Ongur et al., 2007), and disruption of this protein in the dorsal hippocampus has
long-lasting effects on neurogenensis and depressive-like behavior (Dow et al., 2008).
However, this protein, like many others, is enriched across several brain areas and its action
may lead to different behavioral outcomes depending on its location. SPRY3, on the other
hand, may be a more promising target in this regard (Minowada et al., 1999; Sanchez et al.,
2008). As more inhibitors of SPRY (i.e., other modulators of FGF signaling) become
increasingly available, their potential effects on depressive-like behavior, through their
presumable effects on neurogensis and cellular plasticity, can begin to be fully addressed in
preclinical models (Bachis et al., 2008).

The SPRED family of proteins specifically inhibits the Ras-ERK pathway in response to
several growth factors, including vascular endothelial growth factor (VEGF) (Bundschu et al.,
2007). Studies with Spred1 knockout mice have demonstrated that this protein plays an
important role in hippocampal-dependant learning and synaptic plasticity, making this an
interesting target for antidepressant treatment (Denayer et al., 2008). Future studies should
determine whether or not other family members of these proteins are selectively enriched in
certain brain areas. It is promising that some of these proteins, such as SPRED3, are expressed
predominantly in brain (Kato et al., 2003). However, until pharmacological agents are made
available that alter their activity in vivo, it will remain challenging to unravel the promise in
modulating SPRED in depressive-like behavioral responses.
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The precursor of BDNF, proBDNF, is widely and abundantly expressed in adult brain and
binds to the pan-neurotrophin receptor p75NTR. Upon binding to p75NTR, proBDNF can elicit
long-term depression, reduce spine density in hippocampal neurons, and induce apopotosis in
basal forebrain neurons (Martinowich et al., 2007; Volosin et al., 2006; Woo et al., 2005;
Zagrebelsky et al., 2005). Control over the cleavage of proBDNF may thus represent a
potentially relevant therapeutic target. Indeed, several recent studies have shown that the
enzymes responsible for converting proBDNF to mature BDNF (i.e., tissue plasminogen
activator [tPA], as well as several regulators of tPA like plasminogen activator inhibitor type
1 [PAI1], and p11, an activator of tPA) are implicated in depression (Martinowich et al.,
2007; Tsai et al., 2008). Interestingly, the use of STATINs to treat hypercholesterolemia is
reported to be associated with a reduction in the incidence of depression (Tsai, 2007). The
mechanisms underlying an antidepressive effect of STATINs are currently unknown, but their
inhibitory role over PAI1 might increase tPA activity, thereby increasing the cleavage of
proBDNF into BDNF. Since tPA is expressed in the blood and the tPA-plasmin proteolytic
cascade is involved in cardiovascular function, this approach may target a subset of depressed
patients suffering from cardiovascular disease (Hou et al., 2009). Due to a lack of empirical
data that support a role for STATINs, and their regulation of associated pathways, in
depressive-like behavioral responses, more studies are necessary to build upon these claims.
Additional neurotrophic factors, such as VEGF, FGF , and VGF (non-acronymic) have been
implicated in the etiology and treatment of depression (Tsai et al., 2009; Evans et al. 2004;
Warner-Schmidt and Duman, 2007). Such neurotrophic factors are induced by chronic
antidepressant treatments in the hippocampus, while chronic stress reduces the expression of
vegf (as well as its receptor fllk-1) and fgf2 (as well as its receptor fgfr1) in this brain region
(Heine et al., 2005; Turner et al., 2008). There are more than 20 endogenous ligands for FGF
receptors alone (Reuss et al. 2003). Assessments of neurotrophic factor manipulations during
ongoing conventional antidepressant treatments may be particularly valuable, given their
prominent role in various forms of neuronal plasticity. All in all, a careful elucidation of the
networks that rely on transcriptional regulation by these and other neurotrophic factors has
tremendous potential for providing new therapeutic targets for the treatment of depression.

3. Glutamate acting drugs
Ever since the discovery in 1959 that D-cycloserine, a partial NMDA glutamate receptor
agonist, has antidepressant effects, it has been generally accepted that the glutamatergic system
contributes to the pathophysiology of depression (Crane, 1959; Pittenger et al., 2007). Many
reports have highlighted alterations in glutamate signaling as well as changes in the expression
of AMPA or NMDA receptor subunits in depression, although there are significant variations
across brain areas, and the functional significance of these changes remains unclear (Feyissa
et al., 2009; Karolewicz et al., 2009; Sanacora et al., 2008). No approved antidepressant
treatment is currently based solely on targeting the glutamatergic system, although the
glutamatergic agent riluzole is sometimes administered for its antidepressant effects. Originally
developed as an anticonvulsant and subsequently granted approval by the FDA for treating
amyotrophic lateral sclerosis, riluzole has recently been demonstrated to be a successful
augmentation strategy in subjects with treatment resistant depression (Zarate et al., 2004).

In parallel, there is growing interest in the non-competitive NMDA receptor antagonist,
ketamine, which produces a rapid and sustained antidepressant response in patients with
treatment-resistant depression (Berman et al., 2000; Zarate et al., 2006; Aan Het Rot et al.,
2009). Importantly, such effects of ketamine are seen at sub-psychomimetic doses of the drug.
Moreover, ketamine produces a profound reduction in suicidality (Price et al., 2009). Based
on findings with ketamine, there is interest in developing subtype-selective NMDA antagonists,
particularly those that act through allosteric mechanisms. Allosteric modulators of glutamate
receptors might have higher selectivity, retain the spatial and temporal aspects of endogenous
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receptor activity, and avoid many of the drawbacks associated with more conventional ligands
(Conn et al., 2009).

NMDA receptors are complex ion channels formed by the combination of two NR1 subunits
that contain the glycine/D-serine co-agonist site, and two NR2 subunits, which contain the
glutamate-binding site. Among the four NR2 subunits, NR2A and NR2B are expressed in
forebrain. These subunits have different pharmacological properties and localization, and they
play an important role in adjusting a cell’s excitability threshold for synaptic modification
(Yashiro and Philpot, 2008). Therefore, specific targeting of these distinct subunits may reveal
useful antidepressant treatments. In this regard, CP-101,606 (an NR2B selective antagonist) is
reported to produce rapid and robust antidepressant effects in patients with treatment-refractory
depression with good tolerability and without producing dissociative reactions (Preskorn et al.,
2008; Pittenger et al., 2007). Contrary to ketamine, which blocks the receptor-gated ion
channel, CP-101,606 inhibits NMDA receptors through an allosteric mechanism (Mott et al.,
1998), which may account for its fewer adverse side effects. Recent studies have indicated that
activation of synaptic (or extrasynaptic) NMDA receptors can have apparently opposite effects
on the function and survival of neurons (Hardingham et al., 2002). Specifically, it appears that
activation of synaptic NMDA receptors promotes cell survival, in part through activation of
CREB and BDNF, while extrasynaptic NMDA receptors initiate cell death. Pre-clinical studies
have also revealed antidepressant-like effects of NMDA receptor partial agonists at the glycine/
D-serine site (Pittenger et al., 2007).

AMPA and kainate ionotropic glutamate receptors represent additional potential drug targets
(Lodge, 2009). AMPA receptors mediate fast excitatory postsynaptic currents in most neurons,
however, the time course and amplitude of these effects depend on the subunit composition of
the receptors, which vary across brain regions, neurons, and even synapses, which influences
their role in synaptic plasticity and behavior (Kessels and Malinow, 2009). Allosteric
modulators fail to rapidly desensitize AMPA receptors like full agonists do, and several classes
of positive allosteric modulators of AMPA receptors increase BDNF expression levels, which
can stimulate neurogenesis as well as neuronal sprouting in hippocampal neurons (O’Neill and
Witkin, 2007). Such potentiation of AMPA receptors promotes antidepressant-like effects in
rodents (Bleakman et al., 2007). In line with these findings, mice lacking the AMPA subunit
GluR1 show depression-like behavior (Chourbaji et al., 2008). It is also possible that the
antidepressant effects of ketamine are mediated in part through the activation of AMPA
receptors (Maeng et al., 2008).

Despite these promising results, no clinical trial with AMPA receptor potentiators has yet
succeeded as a result of their risk of toxicity (Mathew et al., 2008). Nonetheless, large-scale
gene candidate studies have revealed an association between the GluR3 AMPA receptor and
the K2 kainate receptor and suicidal ideation (Laje et al., 2007). Associations between the K4
kainate subunit and the outcome of antidepressant treatment have been identified as well
(Paddock et al., 2007). Such pharmacogenomic approaches have further established a
prominent role for the glutamatergic system in the neural effects of antidepressant treatment
(Lekman et al., 2008).

AMPA receptors are highly regulated at the synapse via phosphorylation and their direct
interaction with a multitude of proteins, particularly, the transmembrane AMPA receptor
regulatory proteins (TARPs) and the recently discovered cornichon protein family, among
many others like GRIP/ABP and PICK1 (Fig. 1). Targeting these proteins may be a feasible
way to influence AMPA receptor function. TARPs are expressed exclusively in excitatory
post-synaptic densities, which make them relatively selective for AMPA receptors (Tomita et
al., 2003). TARPs mediate AMPA receptor surface expression and synaptic clustering (Tomita
et al., 2003) and modulate the receptor’s electrophysiological properties by slowing its
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desensitization and deactivation (Korber et al., 2007;Priel et al., 2005). TARPs also control the
pharmacological effects of AMPA receptor potentiators (Tomita et al., 2006) and antagonists
(Cokic and Stein, 2008;Kott et al., 2007). Each TARP isoform displays a specific pattern of
expression in brain. For instance, g3 and g8 are almost exclusively expressed in the cerebral
cortex and hippocampus, respectively (Tomita et al., 2003). Recent studies implicate
dysregulation of TARPγ2 mRNA in prefrontal cortex in bipolar disorder, further suggesting
an involvement of these proteins in mood disorders (Silberberg et al., 2008). Cornichon
homolog 2 and 3 (CNIH-2, -3) proteins are the main auxiliary subunits integrated into AMPA
receptors complexes, at least in rodents (Schwenk et al., 2009). Similar to TARPs, cornichon
proteins increase the expression of AMPA receptors and slow the kinetics of their deactivation
and desensitization (Schwenk et al., 2009). The specific binding domains for enzymes, such
as TARPs, remain rather elusive (Milstein and Nicoll, 2008). Thus, as information regarding
the physical properties of these proteins becomes available, so may a future for compounds
that have the ability to regulate their cellular functions.

These same approaches can be used to examine other components of the glutamatergic system,
for instance, by targeting the receptor auxiliary protein NETO2 which functions to modulate
kainite receptor channel properties (Zhang et al., 2009). More work is needed to fully explore
this possibility (Gallyas et al., 2003; Zhang et al., 2009). Interestingly, blockade of K2 kainate
subunits produces anxiolytic-like effects in rats, suggesting that this could be an adjunctive
therapy for depression associated with high levels of anxiety (Alt et al., 2007).

Increasing evidence suggests that other aspects of glutamate signaling are regulated by stress
or antidepressant treatments, including effects on presynaptic glutamate release and glutamate
homeostasis via glial cells. Vesicular transporters for glutamate, SNARE complexes that
mediate vesicle exocytosis, and plasma membrane glutamate transporters are under current
investigation as potential targets in the treatment of depression (Sanacora et al., 2008).

A final glutamatergic strategy for treating depression may be through modulating metabotropic
(G protein-coupled) glutamate receptors (Fig.1). One receptor in particular, mGluR5, increases
neuronal excitability and potentiates NMDA-evoked currents, suggesting that antagonism of
mGluR5 might dampen NMDA function. Indeed, MPEP and MTEP, selective mGluR5
allosteric antagonists, induce antidepressant effects in rodent models (Pilc et al., 2008). The
antidepressant-like effects of MPEP are lost in mGluR5 knockout mice (Li et al., 2006).
However, negative allosteric modulators of mGluR5, like MPEP, MTEP or fenobam, function
like inverse agonists, and such actions might be the cause of cognitive deficits and
psychotomimetic effects observed in some patients with severe anxiety after treatment with
fenobam (Porter et al., 2005). The recent development of an mGluR5 partial allosteric
antagonist might lead to the generation of improved drugs with fewer side effects (Rodriguez
et al., 2005). Contrary to mGluR5, mGluR2 and mGluR3 negatively modulate glutamatergic
neurotransmission. Preclinical studies have demonstrated that antagonists of these receptors
may possess antidepressant-like effects when administered to rodents (Pilc et al., 2008). Such
effects are prevented after blockade of AMPA receptors with NBQX, suggesting an AMPA-
dependant antidepressant effect of these mGluRs (Bespalov et al., 2008;Pilc et al., 2008).
Similarly, mGluR7 knockout mice generate antidepressant-like behaviors (Cryan et al.,
2003).

Targeting glutamate receptors has the appeal of relieving depressive symptoms much faster
than conventional monoaminergic strategies. In addition, the number of administrations or
daily doses may be reduced based on the persistence of antidepressant effects after a single
treatment, as observed with ketamine (Aan Het Rot et al., 2009). Problematic side effects of
targeting ionotropic glutamate receptors arise from the acute disruptive effects (e.g., sedation
and cognitive impairments) of strongly regulating glutamatergic synapses. Metabatropic
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glutamate receptor acting drugs, however, are less likely to produce undesirable side effects
due to their weaker, modulatory effects on excitatory synapses, and are currently in clinical
trials for a number of neurological disorders (Marek, 2004; Moldrich et al., 2003).

4. Hypothalamic feeding peptides
Hypothalamic peptides are best known for their prominent role in the regulation of feeding
behavior (Grossman, 1975; Hoebel and Teitelbaum, 1966). Recent studies have demonstrated
that these peptides also contribute to emotional behavior (Nestler and Carlezon, 2006). The
anhedonic and lethargy symptoms and significant changes in body weight that occur in many
depressed patients suggest the involvement of hypothalamic mechanisms in a subtype of
depression. For instance, orexin (hypocretin) stimulates feeding in response to energy
deficiencies (Sakurai et al., 1998), and is critical for the antidepressant-like effects produced
by calorie restriction in animals (Lutter et al., 2008a). Likewise, experimental treatments with
this peptide promote antidepressant-like effects (Lutter et al., 2008a). Stimulation of
hypothalamic orexin neurons appears to be mediated partly by the feeding-promoting gut
hormone, grhelin, and its activation of growth hormone secretagogue receptor (GHSR, also
known as the ghrelin receptor) on orexin neurons (Lutter et al., 2008b). Interestingly, social
stress increases ghrelin secretion, indicating that this peptide may promote resilience (Lutter
et al., 2008b). Mice lacking GSHRs display significant increases in stress-induced depressive-
like behaviors (Lutter et al., 2008b). Targeting GHSRs to stimulate receptor function may
therefore be a promising strategy for relieving symptoms of major depression, particularly
when weight loss is a prominent symptom, as in anorexia nervosa (Lutter and Nestler, 2009).

Melanin-concentrating hormone (MCH) is another major orexigenic (pro-appetite) peptide.
Like orexin, its expression is limited to a subset of lateral hypothalamic neurons. MCH activates
the MCH1 receptor, which is remarkably enriched in the NAc. (Humans also express an
MCH2 receptor, about which much less is known.) Targeted administration of MCH into the
NAc, hypothalamus, or lateral ventricles robustly increases feeding behavior; whereas
MCH1 receptor antagonists produce the opposite effect (Georgescu et al., 2005). Interestingly,
antagonism of MCH1 receptors in the NAc promotes antidepressant-like effects, and similar
actions are found in mice lacking these receptors (Georgescu et al., 2005). Over-expressing
MCH is correspondingly pro-depressant (Shimazaki et al., 2006). Inhibiting MCH may
therefore serve as an effective treatment in the subset of depressed patients that demonstrate
weight gain.

Several other hypothalamic feeding peptides may also be targeted for treating depression. Of
note are the anorexigenic peptides, including melanocortin (αMSH) and cocaine- and
amphetamine-regulated transcript (CART), and the orexigenic peptides, ARP (agouti-related
peptide) and NPY (neuropeptide Y). Preliminary evidence indicates that these peptides not
only participate in the control of feeding behavior, but also regulate behavioral responses to
emotional stimuli (Nestler and Carlezon, 2006). NPY, for example, is an attractive
antidepressant target because of its expression in limbic circuits, as well as the hypothalamus
(Karl and Herzog, 2007). Well-known for having a role in stress responses, NPY has been
intensively examined in animal models and in clinical studies. Indeed, lower levels of NPY in
CSF, plasma, and prefrontal cortex have been reported for depressed subjects as well as suicide
victims (Caberlotto and Hurd, 2001; Widdowson et al., 1992). In support of these clinical
findings, experimental decreases in NPY levels promote depressive-like behavioral responses
in animals. Perhaps most encouraging are reports in mice and rats where stimulation of NPY
neurotransmission produces antidepressant-like and anxiolytic-like effects. Two of the six
known NPY receptors have received attention as potential mediators of the NPY-mediated
antidepressant-like effects. For instance, activation of the primarily postsynaptic Y1 receptor
(that is highly expressed in the hippocampus and cerebral cortex) via intra-cranial
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administration of the Y1 selective agonist [Leu31;Pro34]PYY promotes antidepressant effects.
Further confirming a role for this receptor are findings that direct hippocampal delivery of the
Y1 non-peptidic antagonists BIBP3226 or BIBO3304 prevents the antidepressant-like effects
produced by NPY administration (Ishida et al., 2007). NPY Y2 receptors could also be an
interesting target for treating depressive symptoms due to its function as an inhibitory
presynaptic autoreceptor, and by virtue of it being a heteroreceptor (Tschenett et al., 2003).
Significant increases in the release of NPY are accomplished by deletion or blockade of Y2
receptors. Consequently, Y2 knockout mice or administration of the selective Y2 receptor
antagonist BIIE0246 reveals a promising anxiolytic- and antidepressant-like phenotype
(Bacchi et al., 2006). Clinical trials for NPY-based compounds have already been initiated for
the treatment of obesity.

5. Estrogen receptors
The odds of being diagnosed with a depressive or anxiety disorder is at least twice as high for
women than for men (Earls, 1987). Fluctuations in endogenous levels of gonadal hormones
during premenstrual, postpartum, and perimenopausal times often occur concomitant with
changes in mood, which is exemplified by the two-to-five fold increase in incidence of
depressive illnesses that occurs during the onset of menopause (Cohen et al., 2006; Freeman
et al., 2006). As reviewed below, such hormonal events highlight a critical role for gonadal
hormones in the regulation of affective behavioral responses. Indeed, strong evidence for a
lack of estrogen receptor beta (ERß) activation in brain during depressive-like behavioral
responses has been identified. Positive treatment outcomes in females with depressive illnesses
can be deduced from reports on the robust antidepressant effects of estrogen-derived treatments
when endogenous estrogen levels are low. Although the effects of estrogen levels during the
course of depression in males is remains uncertain, data indicate that gonadectomy-related
changes in mood within this population can be alleviated by estrogen treatments (Hughes et
al., 2008).

Estrogen receptor alpha (ERα) and ERß are differentially expressed in brain, and have
divergent roles regarding depressive-like behaviors. Agonist activity at ERα can positively
regulate libido in females (Mazzucco et al., 2008; Walf and Frye, 2005). However, targeting
ERß is well documented for its effect on a number of mood-related behaviors. Total knockout
of ERß, and not ERα, significantly increases depressive- and anxiety-like behaviors (Imwalle
et al., 2005; Krezel et al., 2001). Systemic administration of trilostane, a 3ß-hydroxysteroid
dehydrogenase inhibitor, produces antidepressant-like effects in the forced swim test, an effect
eliminated in mice lacking ERß (Koonce et al., 2009). ERß is highly expressed in serotonergic
neurons of the dorsal raphe nucleus, and within the hippocampus and amygdala where
antidepressant actions are considered to be important (Hu et al., 2005; Savitz et al., 2009). In
the dorsal raphe, estrogen acts to increase tryptophan hydroxlase (the rate limiting enzyme in
serotonin synthesis), and serotonin levels are decreased in the hippocampus of ERß knockout
mice (Hiroi et al., 2006; Imwalle et al., 2005). Direct hippocampal activation of estrogen
receptors promotes antidepressant- and antianxiety-like effects, and the hippocampus
expresses more ERß than ERα (Shughrue et al., 1997; Walf and Frye, 2007). Recent clinical
data support the promise of combining estrogen and serotonin modulators as an approach to
treating depression in postmenopausal women (Wise et al., 2008). In fact, studies in women
with severe postpartum depression have revealed surprising beneficial effects of estradiol
treatments when administered alone that far exceed recovery rates after conventional
antidepressant treatments (i.e., SSRIs). Gregoire et al. (1999) and Ahokas et al. (2001) both
observed a significant reduction in depression scores in at least 80% of their patients treated
with estradiol within 3 months or 2 weeks, respectively, after starting treatment. More clinical
studies are required to elucidate the parameters of safe and successful estrogen treatment
strategies; administration of estrogens that effectively push circulating levels above the
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“normal” physiological range have no effects, or produce negative outcomes, on mood and
cognition in both males and females (Galea et al., 2002; Patisaul et al., 2009).

An intriguing component of gonadal hormone-mediated effects on mood may be derived from
their interaction with the hypothalamic-pituitary-adrenal “stress” axis. Estrogen dysregulation
can lead to exacerbated stress responses (Walf and Frye, 2007; Young et al., 2000). Affective
vulnerabilities to chronic environmental and social stressors may be reduced by estrogen
treatments, and potentiated by low levels of endogenous estrogen (Gerrits et al., 2006; Young
et al., 2000). Overall, it would appear that physiologically “normal” levels of estrogen
positively regulate mood and increase resiliency to stress.

6. Epigenetic mechanisms
While all available antidepressant medications rapidly increase the activity of monoaminergic
systems in brain, the mood-enhancing effects of these compounds require weeks of
administration. Thus, the nature of drug-induced neural plasticity underlying the clinical
actions of classical antidepressants has recently highlighted chromatin remodeling mechanisms
as an essential process in these drugs’ progressive therapeutic effects (Lee et al., 2006;
Tsankova et al., 2006). Such epigenetic modifications can alter gene transcription in neurons
in several ways, including covalent changes to DNA (e.g., DNA methylation) and to histone
N-terminal tails (e.g., acetylation, methylation, phosphorylation, among many others).
Environmental experiences that modify gene function through epigenetic mechanisms do so
in the absence of altering the sequence of DNA, thereby providing a strong rationale for
studying epigenetic changes in depression, which is particularly evident when considering the
large number of inconsistent genetic association studies. In addition, chronic exposure to stress
or antidepressant drugs influences histone acetylation and methylation in brain areas important
for emotional processing (Tsankova et al., 2006).

At least two lines of evidence indicate how DNA methylation may play an important role in
the emergence and alleviation of depression. In rodents, adult levels of hippocampal DNA
methylation (of cytosine) are reported to be under the control of early rearing styles by the
mother, with deficiencies in mother-pup interactions between post-natal days 1-10 effectively
increasing DNA methylation of the glucocorticoid receptor gene, as well as increasing anxiety-
like behaviors throughout the lifespan (Szyf et al., 2007; Weaver et al., 2004). By this
mechanism, low amounts of maternal care reduce the expression of hippocampal
glucocorticoid receptors. Such maternally induced increases in hippocampal DNA methylation
in the pup can be attenuated by direct infusion of trichostatin A, an HDAC inhibitor (Weaver
et al., 2004). In contrast, early life stress reduces the methylation of other gene promoters, such
as that of the arginine vasopressin gene (Avp) in hypothalamus, which leads to life-long
increases in AVP expression and perhaps to hypercortisolism (Murgatroyd et al., 2009).

A second line of evidence supports a prominent role for increasing global DNA methylation
as a potential treatment for depression. S-Adenosyl-L-methionine (SAMe) functions as a donor
of methyl groups for many cellular functions, including DNA methylation (Lieber and Packer,
2002). Clinical trials have examined the antidepressant effects of administering SAMe with
promising results (Mischoulon and Fava, 2002). Because SAMe serves a number of important
cellular functions (including a prominent role in the synthesis of monoamines), it is difficult
to attribute any particular molecular effects of SAMe to one behavioral phenotype.
Nonetheless, experimental work is beginning to provide critical insight regarding the brain
areas, and the particular gene promoters, where altering levels of DNA methylation might be
therapeutic for treating depression. For instance, chronic stress-induced increases in DNA
methylation, within the NAc, occurs via a selective upregulation of certain DNA
methyltransferases (LaPlant et al. 2009). Inhibiting DNA methyltransferase activity via
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RG-108 infusion into this brain area has antidepressant-like effects. Data such as these indicate
packaging and unpackaging of heterochromatic domains of the genome may be a stress-
sensitive, and reversible, phenomenon.

In neuronal tissue, HDAC inhibitors increase histone acetylation through the inactivation of
class I or class II HDACs, and thereby alter patterns of gene expression (Tsankova et al.,
2007). In addition, histone acetylation, which is most often associated with activating
transcription through its ability to relax ‘condensed’ areas of chromatin, appears sufficient to
induce antidepressant effects in animals (Schroeder et al., 2007; Tsankova et al., 2006). One
of these reports observed an increase in histone acetylation at certain BDNF gene promoters
in the hippocampus after chronic imipramine treatment, and this increase in acetylation appears
to be necessary for reversing a depressive-like phenotype induced by chronic stress (Tsankova
et al., 2006). More recently, the direct infusion of more specific HDAC inhibitors into the NAc
has been shown to induce potent antidepressant-like actions in several rodent models, and alter
stress-induced patterns of gene expression in a similar manner to that of the conventional
antidepressant fluoxetine (Covington et al., 2009). When examining particular genes in the
NAc that are regulated by stress, and oppositely regulated by HDAC inhibitor, numerous
potentially interesting gene targets for future scientific studies become apparent (Fig. 2). It
should be noted, however, that inhibition of HDACs via systemic routes of administration
would be expected to be accompanied by intolerable side effects, hence developmental efforts
for more potent agents that are selective for specific HDACs may provide more promising
results (Haggarty, 2005; Tsankova et al., 2007).

7. Conclusion
A considerable amount of knowledge has been gained since the original discovery of
monoamines as a target for antidepressant treatments (Schildkraut, 1965). A multitude of
diverse neurobiological systems have now been identified that could potentially be implicated
in the pathophysiology of depression and its treatment. This diversity highlights the
overwhelming heterogeneity of this complex disease and might represent a first step toward
the development of novel drug targets for specific subtypes of depression. Unfortunately,
animal models used to screen for newer compounds must first be validated according to the
traditional effects produced by classical antidepressants, and thus the potential for false
negative findings still remains a source of contention (Berton and Nestler, 2006). The
incorporation of new behavioral approaches with a strong focus on neuroadaptive responses
to stress has shown some success (Berton et al., 2006; Tsankova et al., 2006).

It is encouraging that there are many drugs in active clinical trials aimed at targeting a several
different systems (e.g., corticotrophin-releasing factor, vasopressin, glucocorticoids, and
neurokinin) (Mathew et al., 2008). Such trials incorporating mediators of glutamatergic
activation appear to be particularly promising (Preskorn et al., 2008). Hypothalamic feeding
peptides or hormones like estrogens may also soon find their way in the treatment of subtype-
selective depression. The ability to regulate mood and the hypothalamic feeding system in both
directions may provide the necessary tools for treating depressive symptoms that are also
associated with dietary imbalances. With regard to the long-term stability of depressive
symptoms, epigenetic modifications may also play a prominent role. Taken together, as
scientific advances uncover the basic neurobiological mechanisms in diverse limbic brain
regions that underlie the behavioral disturbances associated with distinct depression
syndromes, it is anticipated that major advances in treatment will be achieved.
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Figure 1.
Emerging antidepressant targets from neurotrophic and glutamatergic signaling pathways.
Negative modulators of downstream neurotrophic signaling acting at SPROUTY and SPRED
protein families represent potential mechanisms for increasing neurotrophic function. AMPA
receptor potentiators and NMDA receptor allosteric modulators (with specific subunit
selectivity) are now in clinical trials. Allosteric modulators of mGluRs are also being explored
in preclinical studies. Modulators of AMPA receptor expression and function, such as TARPs
and CNIH, represent potential therapeutic targets as well. Compounds under development for
their antidepressants effect are shown in blue boxes. New target proteins are highlighted in red
boxes. CNIH, cornichon homolog; MAPK, mitogen-activated protein kinase; RTK, receptor
tyrosine kinase; TARP, transmembrane AMPAR regulatory proteins; VGLUT, vesicular
glutamate transporter.
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Figure 2.
Portrayed here is a molecular pathway analysis of genes regulated in the mouse nucleus
accumbens by a direct infusion of the HDAC inhibitor MS-275 after chronic social defeat
stress. Infusion of MS-275 promotes antidepressant-like behavioral responses and significantly
regulates genes as revealed by microarray analysis. Examples of highly regulated molecular
pathways that may provide novel targets for treating depression include genes that encode
presynaptic vesicular proteins, plasma membrane receptors, intracellular signaling molecules,
proteins that regulate the actin cytoskeleton, and the transcriptional regulatory machinery.
Reprinted with permission from The Journal of Neuroscience (Covington et al., 2009).
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