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The bacterial essence of tiny symbiont genomes
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Abstract

Bacterial genomes vary in size over two orders of magnitude. The Mycoplasma genitalium genome
has traditionally defined the extreme small end of this spectrum, and has therefore heavily informed
theoretical and experimental work aimed at determining the minimal gene content necessary to
support cellular life. Recent genomic data from insect symbionts has revealed bacterial genomes that
are incredibly small—two to four times smaller than M. genitalium—and these tiny genomes have
raised questions about the limits of genome reduction and have blurred the once-clear distinction
between autonomous cellular life and highly integrated organelle. New data from various systems
with symbiotic bacterial or archaeal partners have begun to shed light on how these bacteria may
function with such small gene sets, but major mechanistic questions remain.

Introduction

In most bacterial genomes, genes are tightly packed and uniformly distributed at about one
gene per kilobase (kb) [1], so that in most cases genome reduction implies gene loss. Bacteria
that have close associations with animals often show reduced genomes compared to free-living
relatives [2-4], and for decades the smallest cellular genome observed in nature was from the
human pathogen M. genitalium [5,6]. As the ancestors of both mitochondria and chloroplasts
were free-living bacteria [7,8], they can be considered the most extreme examples of bacterial
genome reduction. Despite their bacterial origins, however, mitochondria and chloroplasts are
defined as cellular organelles, not as autonomous bacteria. This distinction is based on lifestyle
and gene content: M. genitalium can be grown in the lab, while organelles are highly genetically
integrated with the nucleus and are completely dependent on being in the host environment
[7,8]; M. genitalium has 524 genes in a 580 kb genome [6], while the largest mitochondrial
genome has 97 genes in a 69 kb genome [9], and the most gene-rich chloroplast genome has
253 genes in a 191 kb genome [10]. A long-standing empirical limit for genome reduction in
autonomous bacteria was therefore established by the mycoplasma, however they remain
clearly distinct from organelles by almost any measure except their shared bacterial ancestry.

This clean differentiation between organelle and independent bacteria has been muddied in the
last few years by data from genome sequencing projects targeting uncultured intracellular
symbionts of insects. This review will briefly describe these tiny symbiont genomes and discuss
them in the context of the minimal genome concept, compare their gene content with that of
organelles, and summarize recent experiments that give the first clues as to how these
organisms might survive with such small gene sets.
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Bacterial endosymbionts of insects

Like all animals, insects form associations with diverse bacterial lineages [4]. These symbioses
vary by type, falling anywhere on the parasitic-commensal-mutualistic continuum. Once
established, these relationships are not necessarily static, sometimes rapidly switching between
association type (e.g., from parasite to mutualist [11**]). The intimacy of the interactions can
also vary, as symbionts can be horizontally transferred among unrelated insects and/or strictly
vertically transmitted in a species-specific manner, and are found in a wide range of tissues,
from the extracellular space of the gut to the cytoplasm of specialized host cells. A well-known
example of an intracellular parasite that can be either horizontally or vertically transferred is
the reproductive manipulator Wolbachia, an a-Proteobacteria which skews the sex ratios of
offspring in infected mothers [12*]. Many insects with restricted or specialized diets (e.qg., plant
sap, animal blood) have one or more intracellular bacterial mutualist, which provision the insect
with nutrients that are missing in their diet [13,14]. These associations are usually extremely
stable—in some cases cospeciating for hundreds of millions of years—»by virtue of strict
transovarial transmission of the symbionts through insect generations [15,16]. Most of these
associations are thought to be reciprocally obligate, i.e., neither the insect nor its symbiotic
bacteria can survive without the other [14,17]. These symbionts also tend to have highly
reduced genomes compared to their free-living relatives [4].

The first several insect nutritional symbionts to have their genomes sequenced—all y-
Proteobacteria—included three strains of the aphid symbiont Buchnera aphidicola [15,18,
19], the tsetse fly symbiont Wigglesworthia glossinidia [20], and two strains of the carpenter
ant symbiont Blochmannia [21,22]. While all of these symbionts showed significant levels of
genome reduction (616 — 792 kb) and their limited gene sets indicated they could not (easily)
live outside of the host cell environment, their genome sizes were above the minimal size
threshold established by M. genitalium (although physical mapping of various Buchnera strains
indicated that some had smaller genomes, in the range of 450 kb [23]).

Recent results from genome sequencing of diverse bacterial symbionts of sap-feeding insects
have begun to blur the clear distinction between independent bacterial life and organelle,
crashing through the 500 kb genome barrier established by M. genitalium in dramatic fashion.
In 2006, the 422 kb genome from Buchnera aphidicola Cc [24] and the 160 kb genome from
Carsonella ruddii [25], a y-Proteobacterial symbiont of psyllid, were reported. The next year,
aBacteroidetes called Sulcia muelleri, which is symbiotic with the glassy-winged sharpshooter,
was reported to have a genome of 245 kb [26]. Finally, in 2009, the genome for an a-
Proteobacterial symbiont of singing cicadas, Hodgkinia cicadicola, was shown to have a
genome of only 144 kb, encoding a paltry 188 genes [27*]. (Carsonella is the sole symbiont
in the species of psyllid studied, but Buchnera Cc [28], Sulcia [16,26,29], and Hodgkinia
[30] all have co-symbionts inhabiting the same insect tissue; Sulcia and Hodgkinia are partners
in cicada.) Amazingly, Carsonella and Hodgkinia have smaller genomes and fewer protein-
coding genes than some chloroplasts (Fig. 1), and questions as to whether or not these
organisms can still be considered autonomous bacteria have arisen [31*,32].

Metabolic vs. genetic integration and the minimal genome concept

The small genome of Mycoplasma genitalium has made it a central player in the “minimal
genome concept,” which can be defined as the experimental and computational search for the
minimal gene content required for independent life, given the richest possible growth
environment [33-39]. Predictions of the minimal genome, based on either comparative
genomics [33,37] or global transposition mutagenesis of M. genitalium [38], range from about
200 to 400 genes.
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The organism(s) that would fulfill the minimal genome concept are usually, but not always
[39], assumed to be both genetically and metabolically independent. That is, these organisms
would be capable of replicating their genome, transcribing RNA, and translating protein
(genetic independence); and would be able to obtain energy from simple metabolites to make
nucleotides, amino acids, lipids, and cofactors (metabolic independence). Gene content
analysis of Buchnera Cc, Sulcia, Carsonella, and Hodgkinia reveal that these organisms are
not metabolically independent, as they cannot make fatty acids (except Buchnera),
phospholipids, nucleotides, pyridines, and in the case of Buchnera Cc and Hodgkinia, have
lost their F{Fg ATP synthase. This loss of metabolic independence is typical of both
intracellular [2] and extracellular [40] symbionts. It is assumed that the required compounds
are somehow derived from the host (or possibly a co-symbiont, in some systems), but the
mechanisms are not well understood. Therefore, the remainder of this discussion will focus on
the potential genetic independence of the most highly reduced symbiont genomes.

The gene contents of symbionts and organelles are different

While the number of genes predicted in the smallest symbiont genomes rival that of some
organelles, gene content analysis reveals a clear difference in retained activities (Fig. 1). Insect
symbionts have retained genes involved in the core enzymatic activities involved in
chromosome replication, transcription, and translation, while in organellar genomes many of
these functions have been lost, with some exceptions (Fig. 1). For example, all of the bacterial
symbionts contain a homolog of the core replicative DNA polymerase (dnaE), the protein
responsible for the 5 to 3’ polymerization activity of the replication holoenzyme, but lack
homologs for many of the accessory components involved in increasing processivity, initiation,
and error correction (Fig. 1). These patterns suggest, not surprisingly [8], that the forces
governing gene loss in symbionts and organelles are different. Although it is not at all clear
how the genes present in symbiont genomes could work to form a fully functional replicating
unit, they do suggest a stronger bacterial identity for nutritional symbionts than for organelles.

There are a number of possible ways these symbionts could cope with such small gene sets,
such as: i) the transfer some genes to the nucleus for subsequent reimportation, similar to what
is observed in organelles; ii) the importation host (or co-symbiont) proteins or RNASs that
complement the lost activities; or, perhaps most interestingly, iii) the evolution of unexpected
coadaptations to the loss of various genes, resulting in mechanisms for cellular processes that
are difficult to predict. While some data exist concerning the host’s role in the symbiosis
[41], there is no information presently available concerning the import of proteins or RNA into
these symbionts, so this point will not be discussed further.

Is gene transfer the answer?

Given the extremely small gene sets of these insect endosymbionts, it is tempting to speculate
whether some of the lost genes have been transferred to the host nucleus for subsequent
expression and protein reimportation to the symbiont [25,42], as this process has occurred with
some frequency in organelles, and in fact has been shown to be ongoing in some cases [8].
This idea might be considered particularly seductive given the apparent ease with which
Wolbachia species—another transovarially transmitted intracellular bacterial symbiont found
in insects and other invertebrates—have been shown to exchange DNA with the host nucleus
[43-49]. Remarkably, some of these Wolbachia-to-host transfers include DNA fragments
approaching the size of entire Wolbachia genomes (about 1 Mb) [44**]. Early evidence
suggested that the majority of these transferred genes were non-functional, as they typically
are not expressed at high levels and contain mutations that would result in nonfunctional
proteins if expressed in the recipient host cell [44**,49,50]. However, recent experiments from
various systems have shown that some transferred genes might be functional, in that they
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contain no premature stop codons, are undergoing purifying selection, and in some cases are
expressed at high levels in the appropriate tissues [45-47].

Of particular relevance here is the report of transferred bacterial genes in the pea aphid
Acyrthosiphon pisum [47], as the pea aphid is host to Buchnera aphidicola, a long-term
coevolving bacterial symbiont with a reduced genome. While Buchnera from the pea aphid
does not show as much genome reduction as Hodgkinia, Carsonella, or Sulcia, at 641 kb it is
still a small bacterial genome [18], and its publication has fueled speculation that some lost
genes might have been transferred to the host nucleus [42]. By analyzing an mRNA expression
library made from aphid tissues for genes that looked bacterial in nature, two potential transfers
were identified: IdcA (LD-carboxypeptidase) and rplA (rare lipoprotein A) [47]. Phylogenetic
analysis indicated that IdcA was derived from a Wolbachia-like o-Proteobacteria, while the
classification of rplA was less clear [47]. Importantly, both genes were preferentially expressed
in the tissue type containing bacterial symbionts [47]. These results suggest two interesting
possibilities: i) the maintenance of some symbioses may be aided by genes transferred to the
host from unrelated bacterial lineages, and ii) lost Buchnera genes could be complemented by
genes transferred to the host nucleus from an unrelated symbiotic bacterium such as
Wolbachia. Although these data are preliminary, they also hint at the possibility that the large
amount of genome reduction seen in insect symbionts may not have been accompanied by gene
transfer to the host nucleus, as no clear case of gene transfer from Buchnera was observed in
this study. It should be noted that firm results on the number of potentially transferred
Buchnera genes will soon be available upon completion and analysis of the pea aphid genome
[NCBI Aphid Genome Resources; URL:
www.ncbi.nlm.nih.gov/projects/genome/guide/aphid/].

It is important to note that although both Wolbachia and insect nutritional symbionts are
transferred via a transovarial route, the timing and cell biology of these transfers are different.
In the fruit fly, Wolbachia is intimately associated with germ line cells throughout the
development of an infected insect, including cytoplasmic localization in the germ line stem
cells and physical association with oocyte nuclei at later points in oogenesis (e.g., see [51]).
By contrast, in aphid development (the best studied system for insect nutritional symbionts,
though the rough outlines seem similar in other sap-feeding insects [13]), Buchnera cells are
not transferred to the oocyte until later in oogenesis, where the bacteria are held in a matrix of
filamentous actin at the posterior end of the egg until being cellularized by the developing
embryo (e.g., see [52]). If further work continues to show a dearth of gene transfer between
nutritional symbionts and their hosts compared with Wolbachia, the close association with the
germ line in the latter may account for the difference.

Unexpected coadaptations to gene loss

The concept of an “essential” gene is difficult to precisely define. Some genes are required
only in certain metabolic contexts, and other genes found to be required experimentally in one
bacterial lineage are completely missing in other lineages [36,53,54]. Furthermore, there are
only about 60 universally conserved proteins derived from the analysis of genome projects,
this list being dominated by translation related functions [36]. Clearly, though, there are a core
of highly conserved genes that seem to have essential activities for which it is difficult to
imagine how the cell survives without. One possible solution to the problem of “essential”
gene loss that is rarely mentioned is the emergence of novel coadaptations elsewhere in the
genome to accommodate the lost activity [54]. The main problem with this solution is that
mechanisms are difficult to imagine in many cases, and concrete examples have been rare until
recently.
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The most compelling example of coadaptation to the loss of an “essential” gene comes from
the smallest Archaeal genome, Nanoarchaeum equitans, the extracellular symbiont of
Ignicoccus hospitalis (itself an archaeon) [40]. Nanoarchaeum—as well as Sulcia,
Carsonella, and Hodgkinia—lacks the ribonucleoprotein RNase P, the enzyme involved in
processing 5’ leader sequence from tRNAs. RNase P is a (nearly) ubiquitous enzyme, and
therefore is included in even the smallest proposed minimal genome [37]. The absence of
RNase P in Nanoarchaeum prompted So6ll and colleagues to look at this system more closely,
where they found that unlike most organisms, Nanoarchaeum tRNAs have transcriptional
promoters placed at uniform distances upstream of the first base of the tRNA [55**]. This
precise promoter positioning allows for leaderless tRNAs; if transcription always starts at the
first base of tRNA, RNase P is no longer needed. This result shows how the cell can cope with
the loss of an “essential” and nearly universal gene in a novel and unexpected way, and serves
as a warning not to expect cellular processes, even highly conserved and seemingly essential
ones, to proceed by standard mechanisms in highly reduced symbiont genomes.

Conclusions

Continued sequencing of symbiont genomes, whether from insects or elsewhere, will likely
continue to uncover organisms with even smaller gene sets than the ones discussed here. These
genomes will continue to contribute to our understanding of the breadth and depth of bacterial
symbioses with animals, but will likely not advance the field in terms of understanding how
these organisms survive with such limited gene sets. It seems reasonable that the answer lies
in a complex combination of metabolite, protein, and/or RNA importation combined with both
small incremental and large unexpected coadaptations to the loss of genes. Untangling this web
will not be easy, as none of these insect systems containing the smallest symbiont genomes
are currently genetically tractable or even easily cultured in the lab. Progress will have to come
from creative biochemical and cell biological experiments that complement the intriguing
genomic data described here.
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Figure 1. Gene content of the smallest cellular genomes and some organelles
Genes present in the four smallest bacterial genomes [24,25,27*,30] together with large [9,
10] and more typical [56,57] mitochondrial and chloroplast genomes are shown as colored
circles, missing genes as open circles. The number of protein coding genes is shown in
parentheses after the organism name. Abbreviations: mitochondria (mito.) and chloroplast
(chlor). Rows for genes present in all four symbiont genomes are highlighted in yellow.
Asterisks represent genes that are highly divergent from typical sequences. Numbered positions
indicate: (1) translational release factor 2 (prfB) is not needed in the Hodgkinia genome because
the stop codon UGA has been recoded as tryptophan [27*]; (2) Sulcia uses the single subunit
version of glycyl-tRNA synthetase; and (3) these aminoacyl-tRNA synthetases are not
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necessary due to the presence of proteins (GatAB) that catalyze a tRNA-dependent
amidotransferase activity [58]. The numbers of retained ribosomal genes are shown in the table
at the bottom right of the figure. The list of genes in this figure are a subset of genes listed in
the smallest minimal genome set [37].
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