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Abstract
Objective—To propose a model-free method to show linear and nonlinear information flow based
on time delayed mutual information (TDMI) by employing uni- and bi-variate surrogate tests and to
investigate whether there are contributions of the nonlinear information flow in corticomuscular
(CM) interaction.

Methods—Using simulated data, we tested whether our method would successfully detect the
direction of information flow and identify a relationship between two simulated time series. As an
experimental data application, we applied this method to investigate CM interaction during a right
wrist extension task.

Results—Results of simulation tests show that we can correctly detect the direction of information
flow and the relationship between two time series without a prior knowledge of the dynamics of their
generating systems. As experimental results, we found both linear and nonlinear information flow
from contralateral sensorimotor cortex to muscle.

Conclusions—Our method is a viable model-free measure of temporally varying causal
interactions that is capable of distinguishing linear and nonlinear information flow. With respect to
experimental application, there are both linear and nonlinear information flows in CM interaction
from contralateral sensorimotor cortex to muscle, which may reflect the motor command from brain
to muscle.

Significance—This is the first study to show separate linear and nonlinear information flow in CM
interaction.
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1. Introduction
Multi-variate time series analyses have been extensively used to investigate the relationship
between simultaneously recorded neurophysiological signals, and to assess the
interdependence between signals, giving insights into the function of the systems that produce
them rather than features of a single signal itself (Pereda et al., 2005). Cross-correlation or
coherence functions provide information on the linear correlation between two signals as a
function of time or frequency. Cross-correlation was the most popular method to investigate
the similarity and the time delay between two electroencephalogram (EEG) signals before the
coherence method was introduced in the early 1960s (Shaw and Ongley, 1972). Coherence has
been highly successful as a methodology for assessing functional coupling, information
interaction, and temporal coordination between cortical regions in normal subjects (Gerloff et
al., 1998; Leocani et al., 1997; Nagamine et al., 1996) and clinical populations (Holschneider
et al., 1999; Thatcher, 1994a, b). The coherence method has also been adopted to characterize
synchronization between oscillatory cortical motor and muscle activity confined to the beta
frequency range (Kristeva et al., 2007; Mima et al., 2000). Although these methods give useful
information in the study of interdependence between two signals, they have the intrinsic
limitation that they cannot give the direction of information flow. Furthermore, they are linear
methods, which mean that they mainly measure linear connectivity, although neural
connectivity may be nonlinear. Thus linear methods are insufficient for the study of complex
neurophysiological data (Lopes da Silva, 1991; Popivanov and Dushanova, 1999).

Nonlinear multivariate techniques mainly result from recent advances in information theory
(Kraskov et el., 2004; Schreiber, 2000). Their aim is to address whether there is any common
information between two time series, and this might be established by means of information-
theoretic tools (Pereda et al., 2005). The main advantage of these measures is that they may
capture both linear and nonlinear relationships between time series. Mutual information (MI)
is useful to study the relationship between a stimulus and response in the literature of
information theory (Borst and Theunissen, 1999; London et al., 2002). Since Xu et al.
(1997) suggested that it is reasonable to study information transmission among the various
parts of the human cerebral cortex by information theory, several researchers have employed
MI based methods in their studies (Chen et al., 2000; Kraskov, 2004; Kreuz, 2004). Kraskov
(2004) suggested that MI may be used as a good measure for seizure prediction as well as to
localize the epileptic focus, and Chen et al. (2000) reported that the information content of the
EEG decreased markedly prior to a seizure. Moreover, since MI is not an amplitude dependent
measure, it may be more robust for estimation of the changes in brain electrical activity than
a linear method of spectral power analysis which depends on amplitude, and it is suited to
measure changes in synchronization of different neuronal electrical activities (Frasch et al.,
2007; Stam, 2005).

In order to designate the direction of information flow, time delayed mutual information
(TDMI) has been introduced and used to detect whether there are differences between control
groups and groups of patients with various neurological disorders (Jeong et al., 2001; Na et
al., 2002). Previous studies have examined the function or information transmission between
brain areas during object and emotional recognition tasks (Ioannides, 2001, Ioannides et al.,
2000), odor stimulation in subjects classified by occupation (Min et al., 2003), and the scientific
hypothesis generation process in gifted or normal children (Jin et al., 2006a, b). Hinrichs et al.
(2006, 2008) used directed information flow (DIF) as a model free approach of information
flow to measure causal interactions in event related fMRI, EEG, and MEG experiments. They
used a measure of information theoretic causality proposed by Saito and Harashima (1981),
and this measure has a very similar theoretic background with TDMI. Although these previous
studies have shown the direction of information flow, they do not give any information on
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whether the connectivity comes from a linear or nonlinear dependence because this measure
includes both dependences simultaneously and does not play with surrogates.

In this study, we propose a potential model-free method based on TDMI with uni- and bi-
variate surrogate testing to identify the relationship between two time series and determine
whether their connectivity comes from linear or nonlinear dependence while maintaining the
advantage of being able to detect the direction of information flow. To verify the validity of
our method we apply it to simulated and experimental data as well. As a simulation test, three
datasets generated from different dynamic systems were used to test whether our method would
successfully detect the direction of information flow and identify their nature of dependence
without a prior knowledge of the dynamics of their generating systems. As an experimental
data application, we investigate CM interaction during a weak tonic contraction in order to
investigate whether or not nonlinear information flow is involved in CM interaction.

2. Materials and Methods
2.1. Simulated data

As simulation tests, we used three different models, independent, linear and nontrivial models.
Using these three models, we checked whether our method would successfully detect the
direction of information flow and identify the relationship between two time series without
prior knowledge of the dynamics of their generating systems.

Two independent time series X and Y were generated by the following processes, as a first
model to test (Peguin-Feissolle and Terasvirta, 1999).

(1)

Secondly, as a linear model, we generated two time series by using the following formula
(Diks and DeGoede, 2001). We can expect strong linear information flow from Y to X.

(2)

The last two time series as a nontrivial model were generated by the following model (Peguin-
Feissolle and Terasvirta, 1999). In this model, mainly nonlinear information flows from Y to
X, as Chavez et al. (2003) presented.

(3)

For all models, ut and vt represent two independent white noise processes with unit variance.

2.2. Experimental data
Seven right-handed healthy volunteers (2 females; Age: 29.6 ± 5.5 years) participated in the
study. The protocol was approved by the Institutional Review Board and all volunteers gave
written informed consent for the experiment.

Jin et al. Page 3

Clin Neurophysiol. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The task was a weak tonic extension (20–30% of maximal strength) of their right wrist. Subjects
performed repeated periods of maintained wrist extension for 10 seconds in response to
auditory cues presented at random intervals, and they were instructed to keep their eyes fixed
on a cross 3m in front of them during whole recording in order not to give them any visual
feedback.

EEG signals were recorded from 29 surface electrodes mounted on a cap (Electro-Cap
International, Inc., Eaton, OH, USA) using the international 10–20 system referenced to the
right ear. Bipolar recordings of the vertical and horizontal electrooculogram (EOG) and surface
electromyogram (sEMG) from extensor digitorum communis were simultaneously obtained.
Signals from all channels were amplified (Neuroscan Inc., El Paso, TX, USA), filtered
(DC-100Hz) and digitized with sampling frequency 1 kHz.

After sEMG onset was marked manually, epoching was done with a window of 1 sec after the
onset of movement to 10 sec. We discarded the first 1 sec data from the onset of EMG, since
the EMG firing pattern is different from the sustained tonic contraction. Linear trend was
removed from the entire epoch and eye movement related artifacts were corrected using an
auto-regressive exogenous input (ARX) model, in which the vertical and horizontal EOG
signals were used as the exogenous inputs (Cerutti et al., 1988). All the sEMG data were
rectified before subsequent calculation to enhance the motor neuron firing rate (Myers et al.,
2003; Yao et al., 2007). Finally, 10 artifact-free epochs in each subject were obtained to
calculate TDMI values. These preprocessing steps were performed by using the same home-
made MATLAB (MathWorks, Natick, MA) scripts as used in Bai et al. (2005).

2.3. Time delayed mutual information (TDMI)
A central concept of information theory is entropy derived from Shannon and Weaver
(1949) which characterizes the amount of information stored in a more general probability
distribution. The observation of a system is regarded as a source of information, a stream of
numbers which can be considered as a transmitted message (Kantz and Schreiber, 2004). MI
is a measure of the amount of shared information gained about one system from the observation
of another one. Let us consider time series X (t) and Y (t) (t = 1,…,T) at T discrete points. Each
time series can be thought of as a random variable with underlying probability density function
(PDF), p (X (t),n) ≡ p(X (t)) with n=1,…,bin, the index of sampling bins for the construction
of approximated PDF. In this study, 16 bins were adopted for 4,000 samples. In order to
quantify the degree of dependence one may compute MI as follows:

(4)

Where, p (X (t),Y (t)) is the joint PDF between X (t) and Y (t).

The mutual information function is strictly non-negative and has a maximum value when the
two time series are completely identical. If one system is completely independent of the other,
MI is zero because it is assumed that 0·log(0)=0. We took logarithm with base 2, so maximum
MI in our study is 4 bits.

MI does not indicate the direction of information flow, because it is a symmetric measure.
However, we can obtain asymmetric MI, called time-delayed mutual information (TDMI) by
adding a time delay in one of the variables using the following equations (Kwapien et al.,
1998; Jeong et al., 2001; Jin et al., 2006a, b; Min et al., 2003; Na et al., 2002; Nichols et al.,
2006)
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(5)

TDMI, which represents the mutual information as a function of time delay is used as a measure
for mutual coupling or for information transmission between two time series. This measure
may be thought of as a nonlinear cross-correlation function capable of capturing both linear
and nonlinear correlations in time series (Nichols et al., 2006).

In real calculation of entropy and MI, we added a corrective term to compensate the effect of
finite data and quantization on the PDF, since the calculated entropy and MI have a functional
dependence on the amount of data and the quantization chosen (Roulston, 1999).

(6)

where BX and BY are the number of bins for which p (X) >0 and p (Y) >0, BXY is the number
of bins for which p (X,Y) >0, and N is the size of the time series. MItrue is the corrected MI,
which is accepted as a final MI value.

In order to evaluate the linearized version of TDMI (LTDMI), assume the two processes are
Gaussian distributed function with zero-mean, and variance , i.e.,

. Then LTDMI between X and Y can be rewritten as

(7)

where ρ X (t)Y (t + τ) and ρY (t) X (t + τ) are a cross-correlation coefficient. These equations are
referred to as the linearized information flow between the two processes X and Y and consider
only second moments in the data (Nichols et al., 2006), whereas general TDMI eq. (5) considers
higher statistics including second moments. This is an intrinsic difference between TDMI and
LTDMI. We should note that it is meaningless to numerically compare TDMI value from eq.
(5) with LTDMI value from eq. (7), because these values are calculated by two different
equations with different assumptions on their distribution. LTDMI is used as an abbreviation
for linearized version of TDMI in order to avoid ambiguity in linearized version of TDMI
calculated from eq. (7) and linear TDMI obtained from our hypotheses tests (see Surrogate
tests section).

Since TDMIXY and TDMIYX are not symmetric, the difference between them, NIXY, can show
the net flux of information which may be interpreted as the information flow between them.
We used the same definition as Hinrichs et al. (2006; 2008) employed. If NIXY is positive, then
the information flows from X to Y, and vice versa. Fig. 1 demonstrates the information flow
from X to Y and Y to X, and final net flux of information.

As an experimental application, we calculated TDMI values from the beta power fluctuation
time series of EEG and sEMG obtained by wavelet transformation. TDMI values calculated
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for 100 ms time delay. We chose sufficient time duration as a delay time to show the exchange
of information between EEG and sEMG. In addition, X and Y in TDMIXY and TDMIYX
correspond to EEG and sEMG, respectively.

Subsequently, we calculated weighted TDMI (wTDMI) and LTDMI (wLTDMI) values by
summating all the statistically significant values for delay time at each EEG location to see the
overall information flow.

2.4. Surrogate tests
Surrogate data come from manipulation of the original data by constructing additional time
series that preserve specific statistical properties of the original data but are random with respect
to other properties, presumably for the ones that are tested (Nichols et al., 2006). Among many
methods to generate surrogate data, we used the method of Fourier-transformed surrogates
(Prichard and Theiler, 1994; Schreiber and Schmitz, 2000; Theiler et al., 1992). First, a Fourier
transform of the original data is computed to obtain complex amplitude at each frequency.
Then the phase of the complex amplitude is randomized by adding the random phase variable
ϕ which is chosen uniformly in the range [0, 2π) for each frequency, i.e., each complex
amplitude is multiplied by eiϕ. Finally, the spectrum was transformed back to the time domain.

If one applies the uni-variate surrogate test to two time series, surrogate data keep the same
mean, variance, and power spectrum as each time series whereas the coupling can be presumed
to be destroyed, since phase randomization was independently applied to each time series. This
process corresponds to two independent linear stochastic processes that oscillated with the
same frequencies as the original series but asynchronously without any coupling between them
(Alonso et al., 2007). On the other hand, bi-variate surrogate test can also be treated very much
the same way as uni-variate surrogate test except for the phase randomization process. For bi-
variate time series, the phase randomization process is synchronously applied to both signals
to preserve all the linear autocorrelations and cross correlations between them (Prichard and
Theiler, 1994). Thus, bi-variate surrogate data would preserve linear synchronization whereas
uni-variate surrogate data would not. Figure 2 shows surrogate data generated by uni- (Fig. 2a)
and bi-variate (Fig. 2b) processes.

Based on the characteristics of uni- and bi-variate surrogate data, two kinds of null hypotheses
were tested for.

The 1st null hypothesis tested by uni-variate surrogate test is that the original data have no
connectivity, that is, they are independent. If the 1st null hypothesis has not been rejected, we
can suppose that the two time series are independent. Otherwise, we can suppose that there is
connectivity including linear and nonlinear components even though their connectivity
characteristics have not been differentiated. Since this connectivity includes both linear and
nonlinear dependence, we call it total connectivity. Then, the second surrogate test is applied.

The 2nd null hypothesis is tested in order to assess whether the relationship between the original
two time series can be accurately represented by a linear model or not. In other words, we
assessed whether the original data has connectivity through uni-variate surrogate test, and if
so, whether this connectivity comes from nonlinear dependence or not through bi-variate
surrogate test. Thus, if the 2nd null hypothesis has been rejected, we can suppose that the
original two time series has nonlinear dependence between them rather than linear one.
Otherwise, we can suppose that the total connectivity which has passed the first surrogate test
presumably results from their linear dependence, because the total connectivity would be either
a linear or nonlinear one. Figure 3 demonstrates the hypotheses testing procedure.

For each surrogate test, the significance S is defined by
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(8)

〈TDMIsurro〉 and σ (TDMIsurro) denote the mean value of TDMI of the surrogate data and its
standard deviation, respectively (Shen et al., 2003). If the value of S was larger than 1.65, the
hypothesis was rejected with a 0.95 level of significance. For LTDMI, the uni-variate surrogate
test was applied. According to Schreiber and Schmitz (2000), at least 19 surrogate time series
are needed to test with a 0.95 level of significance. Thus, we generated 19 surrogate data for
each surrogate test.

To verify the validity of the hypotheses testing to identify the relationship between two time
series without any prior information on their generating systems, we applied our method to
simulated data obtained from independent, linear, and nonlinear models, respectively. All
methods described in this paper were implemented by MATLAB.

After calculating TDMI value and testing our hypotheses, we can conclude that there is linear
or nonlinear information flow. For example, if NIXY of two time series is positive and their
connectivity comes from nonlinear connectivity, we suppose that the nonlinear information
flows from X to Y.

2.5. Wavelet spectral estimation
Since beta band interaction has been observed during maintained contraction in EEG studies
(Halliday et al., 1998; Kristeva-Feige et al., 2002; Mima et al., 2000), we make the power
fluctuation time series using Morlet wavelet transformation. Fourier or wavelet transform
based methods have been used to obtain time-frequency representation of a signal, with the
wavelet transform particularly useful to analyze time-varying processes (Daubechies, 1990;
1992; Percival and Walden, 2000). Time-frequency representation was constructed from a
Morlet wavelet decomposition which provides an optimal concentration in time and frequency
(Tallon-Baudry et al., 1997; Qin et al., 2004; Qin and He, 2005). Morlet wavelets w(t, f) are
given by:

(9)

where, σ f = 1/(2πσt), . The relation f / σf was set to 5.

The wavelet was convolved to the signal xq (t) from the qth epoch at time instant t and every
frequency f. Then the square norm of the convolution was the time-varying energy [Exq(t, f)]
of the signal at a specific frequency:

(10)

Beta (15 to 25Hz) and gamma (30 to 50Hz) power were chosen in the present study, and these
beta and gamma power activities were created separately by averaging across epochs (here,
10) within each subject. Before applying Morlet wavelet transformation, EEG was down-
sampled to 500Hz. After generating the beta and gamma power fluctuation time series using
Morlet wavelet transformation, we calculated TDMI and LTDMI values between EEG and
sEMG for a 100 ms delay time with steps of 2 ms.
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Fig. 4 shows the whole procedure to be done to EEG and sEMG..

3. Results
3.1. Application to simulation data

TDMI values are shown in Fig. 5a as a function of time lag. There is no information flow
between the two time series, because the two null hypotheses of both surrogate tests have never
been rejected at any time lag. From this result we can suppose that these two time series are
independent from each other. This result means that TDMI method successfully identify two
time series generated from independent model. We can identify the relationship between two
independent time series even in LTDMI values (Fig. 5b). Independent time series can be easily
identified by not only TDMI but also LTDMI, because these two time series have no
connectivity between them at all.

Fig. 6a indicates TDMI values as a function of time lag from two time series generated from
the linear model. As Fig. 6a shows, NIXY is negative; that is, the dominant information flows
from Y to X in our linear model as expected. At some time lag, information flow from X to Y
can be seen. However, information flow from Y to X is always larger than those from X to Y;
thus, the net information flow NIXY is negative, which means that the main information flows
from Y to X. In addition, TDMI values from Y to X have passed the first surrogate test but never
passed the second surrogate test, which means that there is connectivity between two time
series and this property comes from a linear connectivity between them rather than nonlinear
one according to our hypotheses tests. Eventually, we can conclude that the linear information
flows from Y to X in this example without any prior knowledge of dynamical relationship
between these two time series.

Fig. 7a indicates TDMI values as a function of time lag from two time series generated from
a nonlinear model. Fig. 7a demonstrates that NIXY is negative; that is, the dominant information
flows from Y to X in our nonlinear model as expected. In addition, TDMI values from Y to X
have passed both of the two surrogate tests, which means that nonlinear connectivity results
from information flows from Y to X. Through these results, we conclude that the nonlinear
information flows from Y to X in this case.

3.2. Application to experimental data
Fig. 8 presents the TDMI curve as a function of delay. It is normalized by the maximum value.
Overall, TDMI from EEG (C5) to EMG is larger than TDMI from EMG to EEG.

Fig. 9 shows grand averaged topographic map of wLTDMI. This map shows that all
information flows from EEG to sEMG, because NIXY values of all EEG and sEMG couplings
are positive. Particularly, the dominant information flows from contralateral sensorimotor area
to sEMG in the beta band during right wrist extension task. This result is in line with the result
reported by Mima et al. (2001) in terms of linearized information flow.

Grand averaged topographic maps of total, nonlinear and linear wTDMI are shown in Fig. 10.
We can detect dominant information flow from mainly contralateral sensorimotor areas to
sEMG in total wTDMI map. In addition, the information flow from some areas other than
contralateral sensorimotor areas are resolved as well (Fig. 10a). However, almost all of these
information flows included the nonlinear wTDMI map (Fig. 10b) except the strong linear
information flow from contralateral sensorimotor areas to sEMG (Fig. 10c). These results
suggest that there are linear and nonlinear information flows as well from contralateral
sensorimotor cortex to muscle, whereas mainly nonlinear information flows from the rest of
brain regions to muscle.
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Another noticeable result is that the main locations that give strong information output in Fig.
10c are very similar with the main locations in Fig. 9. This is consistent with Mima et al.
(2001)’s result. That is, linear information flow from contralateral sensorimotor cortex to
muscle during a weak tonic contraction is observed either in LTDMI calculated from eq. (7)
or in linear wTDMI obtained from our hypotheses tests, which mean that we can guess the
linear information flow pattern by using our hypotheses tests even without exact calculation.
On the other hand, we can not detect significant connectivity regarding gamma band
connectivity.

4. Discussion
In the present study, we presented a model-free method to detect the direction of information
flow between two time series and to determine whether the information flow comes from linear
or nonlinear connectivity by using an information theoretic measure. The ability to detect linear
and nonlinear information flow was tested on simulated data. Our method was able to correctly
detect the direction of information flow and identify the relationship between two time series
generated from distinct models, that is, independent, linear and nontrivial models without a
prior knowledge of dynamics of their generating systems.

Many functional or effective methods have been introduced to address the connectivity issue.
According to Friston et al. (1993a), functional connectivity is defined as the temporal
correlation between spatially remote neurophysiological events, whereas effective
connectivity is defined as a causal relation, that is, the influence that one neural system exerts
over another either directly or indirectly (Friston et al., 1993b). Generally, effective
connectivity depends on the chosen model, although they are able to detect causal relation in
multivariate neurophysiological signals. Structural Equation Modeling (SEM) introduced by
McIntosh and Gonzalez-Lima (1994) requires a prior specification of a predefined model, and
Directed Transfer Function (DTF) proposed by Kaminski and Blinowska (1991) is based on
multivariate autoregressive (MVAR) model. Although DTF can be used to estimate
simultaneously the direction and spectral properties of the interaction between signals
(Kaminski et al., 2001), that is, spectral information flow, it only provides linear information.
Hinrichs et al. (2006) pointed that it would be preferable to have a model-free measure of
temporally varying causal interactions that would permit the detection of linear as well as
nonlinear connectivity. A promising measure from information theory known as directed
information transfer (DIT), initially introduced by Saito and Harashima (1981), has been used
to identify causal interactions in fMRI, EEG, and MEG studies (Hinrichs et al., 2006; 2008).
As similar approaches, a model-free causality measure (Chavez et al., 2003) and a linear variant
of the DIT measure (Liang et al., 2001) have been used to investigate connectivity. Although
these previous studies provided a novel method as a measure of model-free causal interactions
which include functional and effective connectivity, they could not distinguish linear and
nonlinear information flows in the estimated connectivity patterns.

On the other hand, the direction of information flow including linear and nonlinear connectivity
has been detected by using TDMI method. Conventional MI has the intrinsic limitation that it
can not account for the direction of information flow, because it is a symmetric measure. TDMI
method overcomes this shortcoming of MI by employing time in one of the variables to
calculate MI, which makes it an asymmetric measure. TDMI has been used to investigate the
flux of information in clinical (Jeong et al., 2001; Na et al., 2002) and cognitive research
(Ioannides, 2001, Ioannides et al., 2000; Min et al., 2003; Jin et al., 2006a, b). Even though all
of these studies have shown the direction of information flow, linear and nonlinear connectivity
from total connectivity have never been distinguished since they did not play with surrogate
tests.
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Because our aim is to investigate linear and nonlinear information flow by using mutual
information, we combine the pre-existing TDMI methods and surrogate tests. It makes to be
able to detect the direction of information flow by an accepted TDMI method and distinguish
linear and nonlinear connectivity by employing uni- and bi-variate surrogate tests without any
prior knowledge of the dynamic systems generating the signals. Consequently, our method
provides a tool to detect linear and nonlinear information flow between two time series. Thus,
we suggest that it would be a viable model-free measure of temporally varying causal
interactions that is capable of distinguishing the linear and nonlinear information flow.
Although the individual methods are not a newly developed algorithm, the whole methodology
proposed here has an importance in the field of information flow research.

As a result of application to simulation data, the TDMI method gave the plausible results. As
for independent model, to identifying this model is able to be achieved either applying LTDMI
or TDMI, since there is no connectivity at all. In case of linear model, LTDMI can imply
linearized information flow from Y to X (Fig. 6b). One problem is that it does not guarantee
that there is no nonlinear information flow at all, because mathematically, LTDMI takes care
of only linear connectivity. However, we can verify that there is no nonlinear information flow
between these two time series by using our hypotheses tests, since these two time series have
passed the first surrogate test but never passed the second surrogate test. This fact enables us
to conclude their relation. The one case needing special attention is where nonlinear
information flow exists. We can see the information flows from Y to X from LTDMI results as
well (Fig. 7b). However, we should be careful in interpreting this result, especially to conclude
which characteristics comprise this connectivity. In other words, as Chavez et al. (2003)
showed, since these two time series are not independent time series, LTDMI can be detected
when we assume PDF of these two time series are Gaussian distributed. However, through
LTDMI method, we never trace the nonlinear connectivity which might be present. Thus,
LTDMI can potentially lead to a spurious conclusion that linear connectivity is the origin of
the information flow, even though there is a large contribution of nonlinear connectivity in
generating connectivity in this example. In other words, LTDMI can also identify the dominant
information flow between two time series even without knowing the exact model generating
them. However, it is not able to capture all the information when a nonlinear connectivity is
present as we show here and Chavez et al. (2003) mentioned in their paper. On the other hand,
our TDMI method employing uni- and bi-variate surrogate tests successfully provides a tool
to detect the direction of net information and to identify whether it is linear or nonlinear
information flow.

As an experimental application, we investigated CM interaction. Beta band coherence between
contralateral sensorimotor cortex and hand muscles has been observed in humans during
maintained contraction using MEG (Baker et al., 1997, 1999; Brown et al., 1998; Conway et
al., 1995; Kilner et al., 2000; Salenius et al., 1997) and EEG (Halliday et al., 1998; Kristeva-
Feige et al., 2002; Mima et al., 2000). As a well-known fact, coherence does not account for
the direction of information flow. With respect to CM interaction, information flow from the
contralateral sensorimotor cortex to muscle in beta band has been shown by Mima et al.
(2001). Mima et al. (2001) reported that DTF from EEG to EMG is significantly larger than
that from EMG to EEG at 19–30 Hz, and this CM directional information flow in beta band
may reflect the motor control command from the cortex to the muscle during a weak tonic
contraction. The authors employed a well-known effective connectivity measure, DTF based
on MVAR model which can show spectral linear causal relation. Although their result was
able to show information flow, it still had the limitation that it demonstrated only linear
dependence which is insufficient for the study of complex and nonlinear neurophysiological
dynamics (Lopes da Silva, 1991; Popivanov and Dushanova, 1999). We can expect that
neuronal networks include nonlinear behavior owing to the physiological fact that individual
neurons behave in a nonlinear fashion (Le Van Quyen et al., 2003). Thus, previous research
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has treated the brain as a deterministic nonlinear dynamical system (David et al., 2006; Stam
2005). Therefore, motor control may have both linear and nonlinear dynamical characteristics,
which may explain the existence of linear and nonlinear information flow from contralateral
sensorimotor cortex to muscle in order to command and maintain movement in the study. Our
results are in line with the previous results reported by Mima et al. (2001) in terms of linear
information flow in both LTDMI calculated from eq. (7) and linear wTDMI obtained from our
hypotheses tests. In addition, we could show the nonlinear information flows from contralateral
motor cortex to muscle as well. The contribution of the nonlinear information flow from other
areas to muscle to maintain movement is not as large compared with the contribution of that
from contralateral sensorimotor cortex, which may show that the contralateral sensorimotor
cortex has the dominant role in motor control command during weak tonic contraction. Further
study on the functional role of the nonlinear information flow from brain to muscle will be
required in future work.

As for gamma band connectivity, we can not detect significant connectivity to report here.
According to Brown et al.(1998), gamma (or Piper) rhythm can be seen during strong
contraction rather than weak contraction like used in our study. Although Mima et al.,
(2001) reported that the DTF from EEG to EMG was significantly larger than that from EMG
to EEG within 45–50Hz, in terms of information flow using our method gamma connectivity
has not detected, unlikely we can get significant results in beta band.

Gross et al. (2002) reported a spatial separation of efferent drive from primary motor cortex to
muscle and afferent input to sensory cortex during slow finger movements using directionality
index (DI) which quantifies the direction of coupling between two oscillators. DI introduced
by Resenblum and Pikovsky (2001) is derived from the phase relation between two oscillators,
which shows both linear and nonlinear connectivity. However, in contrast to TDMI, it does
not quantify the information flow and it is less suited for a time dependent analysis. Recently,
Chen et al. (2008) reported the coupling between contralateral SM1 and sEMG during a self-
paced finger lifting task using MEG. They proposed the TFCMI method as a model-free
connectivity measure to exploit frequency dependent modulation between neuronal assemblies
capturing both linear and nonlinear couplings of the temporal dynamics of signal power
obtained from wavelet transformation. Even though their measure could detect connectivity,
they did not distinguish linear and nonlinear information flows in the estimated connectivity
patterns just as Hinrichs et al., (2006, 2008) could not. These authors point out that their method
has the limitation that it is not designed to unravel the direction of information flow (Chen et
al., 2008). However, we can address and resolve linear and nonlinear information flow between
cortex and muscle as shown in Fig. 7 and 8, which include wLTDMI and total, nonlinear and
linear wTDMI maps in beta band range. Altogether, our results are consistent with the previous
findings in terms of connectivity between contralateral sensorimotor cortex and muscle, and
supports the hypothesis that motor control command comes from the cortex to the muscle
during weak tonic contraction.

TDMI is a well-know information theoretic measure similar to the transfer entropy (TE)
proposed by Schreiber (2000). He commented that TE is designed to ignore static correlations
due to the common history unlike mutual information. As the real data application of TE, they
computed TDMI and TE for the bivariate time series of the breath rate and instantaneous heart
rate of a sleeping human. Comparison TDMI with TE gives that TDMI shows no difference
whereas TE indicates a stronger flow of information from heart rate to breath rate. As for this
criticism to TDMI, it is better to note the difference between TDMI he used and introduced
here. Main difference is that he just calculated TDMI with one delay time corresponding to
temporal resolution. For instance, in Fig 4 (Schreiber 2000), delay time was 500ms since
sampling frequency was 2Hz. However, we calculated TDMI for a 100 ms delay time with
steps of 2 ms rather than calculating TDMI with single delay time. This means that we look at
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how the shared information by bivariate time series evolves as time goes by, which lead us to
investigate information flow. If we applied the same type of TDMI as one he used in his work,
it could have possibility to mislead us to determine the leading direction of information flow.
However, since we accepted the long delay time, we could reduce the possibility. TE would
be more proper measure to investigate the dynamic information transfer rather than static one.
Comparison our TDMI with TE will take place in our future work.

In addition, we should note the limitations of the method. It is restricted to a bi-variate model,
which means that it is focused on looking at the relationships between two time series although
there are another time series may influence on the network. Since the neural system is composed
of multiple complex circuits, multivariate analysis might be useful to investigate the
relationship among these multiple components (Tsujimoto et al., 2009). This method requires
relatively long stationary time series compared with the use of linear measures such as cross-
correlation or coherence in order to obtain reliable PDF which is an important factor for
calculation of entropy and MI. Even though in the calculation of entropy and MI we added a
corrective term to compensate for the effect of finite data and quantization on the PDF
according to Roulston (1999)’s suggestion, this is a major drawback of this measure because
of the difficulty of recording long time series with maintenance of stationarity in real data
acquisition. Therefore, if the main aim of the research is to distinguish linear and nonlinear
information flow, researchers must consider the amount of data. Otherwise, it may be better
to apply LTDMI method to be able to detect linear information flow even though it does not
have the ability to detect nonlinear information flow. Despite the limitations, our method would
be helpful in understanding information flow between two time series and has potential
application to other research where both linear and nonlinear information flows are potentially
important.
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Fig. 1. Diagram showing information flow
TDMIXY and TDMIYX indicate information flow from X to Y (bold arrow) and vice versa
(arrow). If two systems X and Y mutually communicate with each other, there is information
flow in each direction. The difference between TDMIXY and TDMIYX shows the net flux of
information (NIXY, dotted arrow) which can indicate the direction and amount of information
flow between them. In this paper, all information indicates net information flow.
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Fig. 2.
Original data X and Y and its cross correlation function over delay (Left panel) and surrogate
data of X and Y and its cross correlation function over delay (Right panel) in uni- (Fig. 2a) and
bi-variate surrogate tests (Fig. 2b). When the uni-variate surrogate test has been applied to
original data X and Y cross correlation function of original data and surrogate data are different
from each other (Fig. 2a.). However, when the bi-variate surrogate test has been applied to
original data X and Y, cross correlation function of original data and surrogate data are identical
(Fig. 2b.).
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Fig. 3. Hypotheses testing procedure
1st and 2nd surrogate tests indicate uni- and bi-variate surrogate tests, respectively. If the 1st

null hypothesis has not been rejected, we can conclude that the two time series are independent.
Otherwise, we can conclude that the total connectivity includes linear and nonlinear
connectivity. If the 2nd null hypothesis has been rejected, we can conclude that the original
two time series have nonlinear connectivity between them rather than a linear one. Otherwise,
we can conclude that the total connectivity which has passed the first surrogate test presumably
results from their linear connectivity, because the total connectivity would be either a linear or
nonlinear one.
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Fig. 4.
Schematic diagram. After collecting EEG and sEMG data, preprocessing was applied to get
10 artifact free epochs. CWT performed to obtain beta and gamma power time series. And
then, TDMI and hypotheses tests were applied.
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Fig. 5.
TDMI (Fig. 5a) and LTDMI (Fig. 5b) values as a function of delay from independent model.
X-axis indicates time lag with arbitrary unit (a.u.), and y-axis indicates TDMI or LTDMI
values. Surro1 and surro 2 correspond to uni- and bi-variate surrogate test, respectively.
TDMIsurro1XY (YX) and TDMIsurro2XY (YX) indicate the threshold value of each surrogate
test with a 0.95 level of significance. If TDMIXY (TDMIYX) value exceeds the TDMIsurro1XY
(TDMIsurro1YX), we conclude that the 1st hypothesis is rejected. If TDMIXY (TDMIYX) value
exceeds the TDMIsurro2XY (TDMIsurro2YX), we conclude that the 2nd hypothesis is
rejected. No significant information flow has been detected either in TDMI (Fig. 5a) or in
LTDMI (Fig. 5b). This imply that these two time series are independent each other.
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Fig. 6.
TDMI (Fig. 6a) and LTDMI (Fig. 6b) values as a function of delay from linear model. X-axis
indicates time lag with arbitrary unit (a.u.), and y-axis indicates TDMI or LTDMI values.
Surro1 and surro 2 correspond to uni- and bi-variate surrogate tests, respectively. NIXY is
negative, and TDMI values from Y to X have passed the first surrogate test but never passed
the second surrogate test. Thus, we can guess that the linear information flows from Y to X
without any prior knowledge of dynamical relationship between these two time series.
Although LTDMI can imply that there is linearized information flow from Y to X (Fig. 6b), it
does not guarantee that there is no nonlinear information flow at all. However, our method
shows that there is no nonlinear information flow. At zero delay, TDMIXY and TDMIYX are
identical, because at this point TDMIXY and TDMIYX correspond to MIXY and MIYX.
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Fig. 7.
TDMI (Fig. 7a) and LTDMI (Fig. 7b) values as a function of delay from nonlinear model. X-
axis indicates delay time with arbitrary unit (a.u.), and y-axis indicates TDMI values. Surro1
and surro 2 correspond to uni- and bi-variate surrogate tests, respectively. NIXY is negative,
and TDMI values from Y to X have passed both of the two surrogate tests. Thus, we can guess
that the nonlinear information flows from Y to X without any prior knowledge of dynamical
relationship between these two time series. Although LTDMI can also imply the dominant
information flow between two time series (Fig. 7b), it is not able to capture all information
when a nonlinear connectivity is present.
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Fig. 8.
TDMI curve as a function of delay time. X-axis indicates delay time (ms) and y-axis indicates
TDMI. It is normalized by the maximum value. Bold line corresponds to TDMI from EEG
(here, C5) to sEMG and dotted line corresponds to TDMI from sEMG to EEG.
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Fig. 9. Grand averaged topographic map of wLTDMI in beta band
LTDMI values of beta power fluctuation time series of EEG and sEMG were calculated for
100 ms delay time with steps of 2 ms, and then, all the statistically significant LTDMI values
were summed up at each EEG location to see the overall information flow. Scale bar indicates
wLTDMI value of NIXY (Here, X and Y correspond to EEG and sEMG, respectively). As we
can see, all NIXY at each EEG location are positive, which means that all significant information
flows from EEG to sEMG. And dominant information flows from contralateral sensorimotor
area to sEMG in beta band during right wrist extension task.
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Fig. 10. Grand averaged topographic map of total (Fig. 10a), nonlinear (Fig. 10b), and linear
wTDMI (Fig. 10c) in beta band
TDMI values of beta power fluctuation time series of EEG and sEMG were calculated for 100
ms delay time with steps of 2 ms, and then, all the statistically significant TDMI values were
summed up at each EEG locations to see the whole feature of information flow. Scale bar
indicates wTDMI value of NIXY (Here, X and Y correspond to EEG and sEMG, respectively).
All NIXY are positive in total, nonlinear and linear wTDMI maps, which mean that all significant
information flows from EEG to sEMG. And dominant information flows from contralateral
sensorimotor area to sEMG in beta band during right wrist extension task, likewise, wLTDMI
map shows. Information flow from areas other than contralateral sensorimotor areas are
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included the nonlinear wTDMI map (Fig. 10b) except the strong linear information flow from
contralateral sensorimotor areas to sEMG (Fig. 10c). That is, information flow from
contralateral sensorimotor areas to sEMG has nonlinear as well as linear information. Linear
wTDMI map (Fig. 10c) obtained from our hypotheses tests is very similar with the wLTDMI
map (Fig. 9) calculated from eq. (7). Symmetric scale bar is used in the rest of the figures to
confirm the polarity of NIXY.
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