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SUMMARY
Existing joint models for longitudinal and survival data are not applicable for longitudinal ordinal
outcomes with possible non-ignorable missing values caused by multiple reasons. We propose a
joint model for longitudinal ordinal measurements and competing risks failure time data, in which
a partial proportional odds model for the longitudinal ordinal outcome is linked to the event times
by latent random variables. At the survival endpoint, our model adopts the competing risks
framework to model multiple failure types at the same time. The partial proportional odds model,
as an extension of the popular proportional odds model for ordinal outcomes, is more flexible and
at the same time provides a tool to test the proportional odds assumption. We use a likelihood
approach and derive an EM algorithm to obtain the maximum likelihood estimates of the
parameters. We further show that all the parameters at the survival endpoint are identifiable from
the data. Our joint model enables one to make inference for both the longitudinal ordinal outcome
and the failure times simultaneously. In addition, the inference at the longitudinal endpoint is
adjusted for possible non-ignorable missing data caused by the failure times. We apply the method
to the NINDS rt-PA stroke trial. Our study considers the modified Rankin Scale only. Other
ordinal outcomes in the trial, such as the Barthel and Glasgow scales can be treated in the same
way.

1. INTRODUCTION
In clinical trials longitudinal ordinal outcomes are commonly encountered and quite often
some observations are missing due to dropout or death. If the probability of dropout or death
is related to the unobserved observations, the missing mechanism is often called missing not
at random (MNAR) or non-ignorable [1]. One example is the clinical trial of intravenous
recombinant tissue-plasminogen activator (rt-PA) in patients with acute stroke [2]. In this
study, patients treated with rt-PA were compared with those given placebo to look for an
improvement from baseline in the score on the Modified Rankin Scale, an ordinal measure
of degree of disability with categories ranging from no symptoms, no significant disability
to severe disability or death. During the follow-up patients could dropout, die or experience
treatment failure. A treatment failure occurs if the patient remains in severe disability after
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treatment initiation. Both death and dropout could result in non-ignorable missing values in
the Modified Rankin Scale because these events are highly related to the disease condition
of the patients. The problem is further complicated by the fact that treatment failure, death
and dropout are potentially correlated. It is suggested by the clinicians to use treatment
failure and death to provide additional information on the treatment efficacy. In this trial we
are interested in estimating the treatment effects on both the longitudinal measurements of
the Modified Rankin Scale and the risk of treatment failure or death. The estimates need to
be adjusted for possible non-ignorable missing data in Modified Rankin Scale and
informative censoring of treatment failure or death by dropout.

Non-ignorable missing data problem in longitudinal studies has motivated a growing
literature on joint analysis of the repeated measurements and the missing data mechanism. A
great body of work exists for normal-distributed longitudinal measurements in the setting of
linear mixed effects models or marginal models [3-9]. These were also extended to
generalized longitudinal measurements with exponential family distributions [10,11,12].
However, the approaches cannot be used for longitudinal ordinal outcomes which are
encountered very often in medical studies. There have been very limited efforts to extend the
joint analysis to longitudinal ordinal measurements. Molenberghs, Kenward, and Lesaffre
proposed a model for longitudinal ordinal data with nonrandom drop-out, which linked the
multivariate Dale model for longitudinal ordinal data to a logistic regression model for drop-
out [13]. A pattern-mixture model was developed by Kaciroti et. al to analyze clustered
longitudinal ordinal data with non-ignorable missing values [14]. These methods assume
finite, discrete missing data patterns and thus are not applicable to the aforementioned
NINDS rt-PA stroke trial where the death time is continuous and there are multiple reasons
leading to non-ignorable missing data. For the NINDS rt-PA stroke trial, a competing risks
framework is essential to distinguish treatment failure/death from dropout because failure or
death is an important clinical endpoint to evaluate the treatment efficacy in addition to the
longitudinal measurements of Modified Rankin Scale. To the best of our knowledge, we are
the first to consider competing risks failure times to deal with possible non-ignorable
missing values in the longitudinal ordinal measurements.

In this article we formulate a joint model which consists of the following two components:
(1) a partial proportional odds model for the longitudinal ordinal outcome, which extends
the model proposed by Peterson and Harrell [15] to correlated ordinal observations. Such
extensions have been studied by Hedeker and Mermelstein [16,17]. The partial proportional
odds model is built upon the popular proportional odds model for ordinal data [18], but
allows non-proportional odds for a subset of the predictors. It is a more flexible approach
and at the same time provides a useful tool to test the proportional odds assumption. (2) a
cause-specific hazards model for the competing risks failure times data to allow for multiple
risks at the survival endpoint [19], in which we incorporate a frailty to take into account
correlations between the failure times. We further show that the frailty can be identified
from the data. The two sub-models are associated through the joint distribution of the
random effects in (1) and (2) so that the event time processes (e.g., missing data mechanism)
can depend on both observed and missing measurements in the longitudinal endpoint. Our
joint model not only enables one to make inference for both the longitudinal ordinal
outcome and the failure times simultaneously, but also adjusts estimated quantities of the
longitudinal measurements for possible non-ignorable missing data caused by the failure
times. Our model further extends the previous methods in that it considers multiple failure
types with potential correlations at the survival endpoint.

This paper is organized as follows. Section 2 describes the joint model and its likelihood
function, and further shows that all the components at the survival endpoint, especially the
frailty, are identifiable. Section 3 proposes an EM algorithm for the maximum likelihood
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estimates of the joint model and a profile likelihood approach for standard error estimation.
Section 4 contains an application of the method to the the NINDS rt-PA stroke trial. Some
simulation studies are provided in Section 5. The final section contains a discussion.

2. THE JOINT MODEL AND THE LIKELIHOOD FUNCTION
Our joint model consists of two linked sub-models: (1) a partial proportional odds model for
the longitudinal ordinal repeated measurements; (2) a cause-specific hazards model for the
competing risks failure time data. Sub-model (1) is an extension of the partial proportional
odds model proposed by Peterson and Harrell [15] to allow for multiple observations on
each study subject by incorporating subject-specific random effects. If we have n subjects
under study, each with ni observations, i = 1, . . . , n, let Yij denote the jth response for
subject i, where Yij takes values in {1, . . . , K} for some integer K ≥ 2, Xij a p × 1 vector of

predictors,  a s × 1 vector, s ≤ p, containing a subset of the p predictors for which the
proportional odds assumption may not be satisfied, and Wij a q × 1 vector of predictors for
the random effects. The partial proportional odds model for Yij is written as:

(1)

for k = 1, . . . , K - 1, where θ = (θ1, . . . , θK - 1)T with θ1 < θ2 < · · · θK−1, β = β1, . . . , βp)T

are fixed effects of Xij, αk = αk1, . . . , αks)T is a s × 1 vector of regression coefficients and α1

= 0, so that  is an increment associated with the logit of probability Yij ≤ k comparing
to that of Yij ≤ 1, and bi ~ Nq(0, Σb) is a vector of random effects for subject i. Let the vector

.

We assume a proportional cause-specific hazards sub-model for the competing risks failure
time data. Let Zi(t) denote the associated l × 1 vector of time-dependent predictors and Ci =
(Ti, Di) denote the survival data on subject i, where Ti is the failure time or censoring time,
and Di takes value from {0, 1, . . . , g}, with Di = 0 indicating a censored event and Di = d
showing that subject i fails from the dth type of failure, where d = 1, . . . , g. The sub-model
for Ci is specified as

(2)

for d = 1, . . . , g, where λd(t; Zi(t), ui, γ, ν) is the instantaneous failure rate due to type d at
time t given Zi(t) and the frailty ui and in the presence of all other failure types, λ0d(t) is a

completely unspecified baseline hazard function for risk d,  is a vector of
fixed unknown regression coefficients, and ν = (ν1, . . . , νg)T collects the coefficients of the
frailty ui for the g competing risks. This model is an extension of the cause-specific hazards
model for competing risks survival data [19] by including subject-specific random effects ui.
The random effects ui can be interpreted as unobservable traits that are shared by all the g
event processes on the same subject and induce correlations among different failure types.
Note that we do not assume the latent failure times are independent conditional on ui and the
covariates, and allow existence of other sources of correlations among the failure times that
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are not accounted for in (2). Throughout, the censoring mechanism is assumed to be
independent of the survival time. Dependent (or informative) censoring can be treated as one
of the g types of failures. The association between Y and C is modeled by the assumption
that the random effects ui and bi jointly have a multivariate normal distribution:

The parameter ν1 is set to 1 to ensure identifiability. A Wald’s test can be used to test the
null hypothesis H0: Σbu = 0 for the association between Y and C. It is easily seen that the
joint model reduces to separate analysis of the two endpoints if Σbu = 0. The correlation
between bi and ui can also be derived from Σbu and this, together with the magnitude of ν,
can be used used to determine the strength of association between Y and C. We further
assume Y and C are independent given the latent random effects ai and the covariates. Note
that our joint model allows measurements in Y after event times, which is necessary in the rt-
PA stroke trial since the Modified Rankin scale can be observed after treatment failure.

For competing risks failure data, it is well known that the distribution of (T, D) is the
identified minimum and that the joint distribution of the underlying failure times is not
identifiable from the data [20]. Under the assumptions that variation with observed
regressors {exp(Z(t)T γd), d = 1, . . . , g} contains a non-empty open set in  and that the
expectation of the frailty term exp(u) is finite, Abbring and van den Berg proved that the
parameters of a mixed proportional cause-specific hazards model are identifiable based on
competing risks survival data [21]. Their arguments can be applied to establish the
identiability of the parameters in our Model (2). They also established the identifiability of
the joint distribution of the latent failure times by further assuming independence between
the latent failure times conditional on the covariates and random effects. In the paper we
only need to be concerned with identifying the parameters of the mixed proportional cause-
specific hazards model, rather than the joint distribution of the latent failure times, from the
observed competing risks survival data. Therefore, we do not require the independence
assumption between the latent failure times.

Let Ψ = (θ, β, α, γ, ν, Σ, λ01(t), . . . , λ0g(t)) collects all the parameters in (1) and (2), where Σ
is the variance-covariance matrix of ai. We assume that the missing values in the
longitudinal measurements caused by reasons other than the events are missing at random.

For the notation, we write Yi = (Yi1, . . . , Yini)
T, , and C = (C1, D1, . . . ,Cn,

Dn)T. Let πij(k) stand for the probability that Yij ≤ k given the covariates and the random
effects, and thus πij(K) = 1 and πij(0) = 0 for all i and j. The observed-data likelihood
function for Ψ is therefore
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(3)

Here we rely on the assumption that Yi and Ci are independent conditional on the covariates
and the random effects.

3. ESTIMATION AND INFERENCE
The observed-data likelihood is difficult to maximize directly because of integration with
respect to the latent random effects ai. The procedure can be simplified using the complete-
data likelihood conditional on the random effects:

(4)

The maximum likelihood estimates of Ψ can be obtained by an EM-algorithm which iterates
between an E-step in which the expected logarithm of the complete-data likelihood (4) is
computed conditional on the observed data and the current estimates of the parameters, and
an M-step in which the new parameter estimates are calculated by maximizing this expected
log-likelihood. The cumulative hazards of the baseline functions in λd are chosen to be step
functions with jumps at observed event times. We need to solve score equations in the
maximization step. There are no closed-form solutions for θ, β, α, γ, and ν, for which we use
a one-step Newton-Raphson algorithm. These parameter estimates in the M-step depend on
the conditional expectations of functions of ai, which are evaluated in the E-step in each
iteration. The algorithm iterates between the E-step and the M-step until the estimates
converge. Please refer to the Appendix for more detail.

The dimension of our maximum likelihood estimates of Ψ increases with the sample size
due to the non-parametric feature of the baseline hazard function λ0d, which motivates a
profile likelihood approach for the standard error estimates of the parametric components θ,
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β, α, γ, ν, and Σ, in which the baseline hazards functions have been profiled. We propose to
approximate its variance-covariance matrix of Ω = (θ, β, α, γ, ν, Σ) by inverting the
empirical Fisher information obtained from the profile likelihood. Let l(i)(Ω ̂; Y, C) denote
the observed score vector from the profile likelihood on the ith subject evaluated at Ω̂. The

observed information matrix of Ω can be approximated by .

4. ANALYSIS OF THE NINDS rt-PA TRIAL
The NINDS rt-PA trial of intravenous recombinant tissue plasminogen activator (rt-PA) in
patients with acute ischemic stroke compares rt-PA with placebo using a randomized
double-blind design. A total of 624 patients entered the study and were randomized to one of
the two groups of 312 patients each. Among other measures of efficacy, the modified
Rankin scale was recorded at baseline, 7–10 days, 3 months, 6 months, and 12 months post
stroke onset. The measure is in an ordinal scale and some of the categories were pooled
using the following: 1 = no symptoms or no significant disability despite symptoms, 2 =
slight disability, 3 = moderate disability or moderately severe disability, 4 = severe disability
or dead. Although death is in one of the levels, we do not impute missing data after death in
the modified rankin scale, but take care of the time to death in the survival endpoint. Out of
the 624 patients, 25 dropped out before 12 months (14 in rt-PA group and 11 in the placebo)
and 168 died (78 in rt-PA group and 90 in the placebo group). A treatment failure occurs if
the patient remains in severe disability in two consecutive observations after randomization.
We observed 54 treatment failures, of which 17 died later. The average number of visits is
4.25, and the percent of missing data in the modified Rankin Scale at 12 months is 30%. The
missing data after death or dropout could be non-ignorable since patients with a higher
Rankin score would be more likely to die or drop out of the study because of low efficacy of
the treatment.

In this example we illustrate the application of the joint model using a subset of the patients
whose disease subtypes are small vessel occlusive disease, large vessel atherosclerosis /
cardioembolic stroke, or unknown reasons. The following covariates were considered in
modeling the longitudinal ordinal modified Rankin scale post stroke onset: treatment group
(rt-PA or placebo), the three subtypes of acute stroke (small vessel occlusive disease, large
vessel atherosclerosis or cardioembolic stroke, and unknown reasons), modified Rankin
scale prior stroke onset (based on the original definition without collapsing categories), and
time since randomization. We adopt unstructured time trend using three dummy variables,
time3, time6, time12, for 3, 6, and 12 months respectively, so that the measure at 7 – 10
days serves as reference. There are 587 patients included in the analysis and their baseline
characteristics and changes in modified rankin scale over time are summarized in Table 1.
The disease subtypes and the baseline modified rankin scale are distributed evenly between
the groups, but the rt-PA group has significantly lower modified rankin scale after treatment
initiation. For both groups, the modified rankin scale decreased over time. The Kendall’s tau
correlations among the modified rankin scale at 7–10 days, 3, 6, and 12 months are in
between 0.65 – 0.87 (p-values < 0.0001).

In the joint model, we are interested in modeling two competing risks at the survival
endpoint, the time to dropout (risk 1) and the time to death or remaining in severe disability
(risk 2). We combine death and remaining in severe disability in one risk because both of the
events are strong evidence of low treatment efficacy. One dummy variable ”group” is
created treating the placebo treatment arm as the reference group, and another two dummy
variables ”small vessel” and ”large vessel or cardioembolic stroke” are generated to
represent the two blocks, treating the block ”unknown reasons” as the reference. We carried
out the likelihood ratio test to assess the fit of the proportional odds assumption by
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expanding the vector  and testing α = 0, and identified divergence of the block effects from
the proportional odds assumption.

The results of the joint model are shown in Table 2 where at the longitudinal endpoint we

have . Since we could not identify
significant interaction effects between group and the time trend, these terms were not
considered in our final model. As shown in Table 2, there are significant effects of
treatment, modified Rankin scale prior onset, time3, time6, time12, and the interaction
between large vessel or cardioembolic stroke and the treatment. The Rankin scale has a
decreasing trend over time, given that conditional on other covariates and the random
effects, the cumulative odds ratio for Y ≤ k, k = 1, 2, 3, is exp(2.12) = 8.33 at 3 months
compared to 7–10 days post stroke onset (the 95% confidence interval is (5.63, 12.33)), and
is 9.68 and 11.59 at 6 months and 12 months, with the 95% confidence intervals (6.54,
14.32) and (7.53, 17.84), respectively. The block effects do not satisfy the proportional odds
assumption. Compared to the patients with unknown reasons (as stated in the database), the
small vessel patients have lower Rankin scales, and the conditional cumulative odds ratio is
exp(3.49) for Y ≤ 1, and is exp(3.77) and exp(6.14) for Y ≤ 2 and Y ≤ 3. Note that the
estimate 6.14 may not be reliable due to the fact that there are only 4 patients with Y = 4 in
the stratum small vessel. The patients with large vessel and cardioembolic stroke tend to
have higher Rankin scales than the patients with unknown reasons. The treatment is not as
effective for the large vessel or cardioembolic stroke patients as for the patients with
unknown reasons, and there is no significant difference in the treatment effects between the
patients with small vessel and those with unknown reasons. For the patients with unknown
reasons, the conditional cumulative odds ratio is exp(1.48) = 4.39 for Y ≤ 1, 2, and 3
comparing rt-PA group to the placebo group (the 95% confidence interval (2.30, 8.39)). In
contrast, in the large vessel or cardioembolic stroke patients, the conditional cumulative
odds ratio is exp(1.48–2.27) = 0.45 (the 95% confidence interval (0.09, 2.31)).

We are not able to observe significant treatment effects at the survival endpoint for either the
time to dropout or the time to death or remaining in severe disability. There appears to be a
higher risk of death or remaining in severe disability in the patients with a higher prior onset
Rankin scale. On the other hand, the patients with small vessel tend to have a lower risk for
this event than those with unknown reasons. The estimate of ν2 is positive, suggesting that
the two risks are positively correlated, i.e., the patients with a higher risk of dropout are
more likely to experience death or remaining in severe disability. There is a negative
correlation (ρbu < 0) between the random intercept bi in sub-model (1) and the frailty ui in
sub-model (2), which indicates that patients with higher Rankin scales tend to have a higher
risk of dropout, death or remaining in severe disability. We also carried out separate analysis
of the longitudinal Rankin scale measurements using either Wilcoxon two sample test or a
partial proportional odds model assuming ignorable missing data mechanism. Significant
treatment effects were found in both methods and the partial proportional odds model
produced similar estimates as our joint model. However, this is not always the case in the
presence of non-ignorable missing data. In the next section we show using simulation
studies that the separate analysis of the longitudinal ordinal data could give rise to biased
estimates and poor inference when there are non-ignorable missing data.

5. SIMULATION STUDIES
Tables 3 and 4 summarize the simulation results on 200 Monte Carlo samples with the
sample size n = 200 and 500, respectively. We generated data from Model (1)-(2) with K =
3. For each simulated dataset, we apply both the joint model and the separate analysis of the
longitudinal outcome and the competing risks survival times using Model (1) and (2),
respectively. The covariate vector Xij = (tij, xi, tijxi)T, where tij = 0, 0.5, . . . , up to 4 (may be
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censored by the failure times) is the visit time, xi ~ Bernoulli(0.5) is the treatment group

indicator, and tijxi is the interaction between the two. We further set  and Wij = 1, so
that bi is the random intercept for subject i and its variance is . The true values of the
parameters β, α, θ and  are given in Tables 3 and 4. We simulated two competing risks

with λ01 = 0.15, λ02 = 0.25, Zi(t) = (zi, xi)T with zi ~ N(2, 1), and . The random
intercept bi in Model (1) and ui have a bivariate normal distribution with correlation ρbu. The
censoring time τi for subject i was generated from an exponential distribution with mean 10.
We could only observe one failure type on each study subject, depending on which happens
first. Furthermore, censoring could occur if τi is smaller than both failure times. In our
simulation the rate of risk 1 is around 44%, risk 2 is around 37%, and the censoring rate is
around 19%. The simulated bias, standard error and the 95% confidence interval coverage
probability (CP) are given in Tables 3 and 4.

Compared to the joint model, the separate analysis produces relatively large bias in the time
trend β1 and the interaction with the treatment β3. With the negative correlation between bi
and ui (ρbu < 0)and the positive correlation between the two failure times (ν2 > 0), the
subject with a higher ordinal outcome tends to have a higher risk of experiencing both
failures and thus leave the study early, so that that the observed time trend is under-
estimated (note that we model the probability of Yij ≤ k), which results in a low confidence
interval coverage for β1. Because the treatment lowers the ordinal outcome, there would be
unbalanced event rates between the two groups, the estimated difference in the time trend
(β3) is also biased. These biases will not vanish as we increase the sample size to 500 and
the CP for β1 is even poorer. The separate analysis of the competing risks data also
underestimates ν2 when n = 200 and produces larger empirical standard errors for γ. In the
joint analysis the missing data mechanism has been modeled together with the longitudinal
measurements so that we are able to obtain almost unbiased estimates of β. Furthermore, by
combining information from the longitudinal endpoint, it is more efficient in estimating γ
and ν2. Overall the joint model performs better asymptotically (n = 500) with smaller mean
square errors for all the parameters. At last, we observe that estimation of  requires a
relatively large sample size in both the joint model and the separate analysis.

To further compare the performances of the joint model and the separate analysis under a
more general senario, we conducted a second set of simulations in which the random effects
ai were generated from a multivariate t-distribution with degrees of freedom d.f. = 5, but the
data were analyzed on the basis of the assumptions specified in Models (1)-(2). We know
that the t-distribution has longer tails than the normal distribution, and the latter is included
as a special case as the d.f. goes to infinity. The results of the simulations are given in Tables
5 and 6. We do not show the estimates for the random components since the estimates and
the true parameter values are no longer comparable under model misspecification. Similar to
the results in Tables 3 and 4, bias in the estimates of β1, β3 and ν2 is identified in the
separate analysis, but now ν2 tends to be over-estimated, and its bias does not vanish as the
sample size increases to 500. The joint model in general produces more accurate point
estimates than the separate analysis. The standard error estimation methods in both
approaches are not robust to model misspecification as some parameters show poor
confidence interval coverage probabilities, especially as the sample size gets large. The
separate analysis tends to have larger variances (or SE) in the parameter estimates for the
fixed effects at the longitudinal endpoint than that in Table 3. However, the impact of the
model misspecification on the variances of the estimates in the joint model is minimal.
Comparisons of the mean square errors between the two approaches again suggest that the
joint model performs superior to the separate analysis.
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6. DISCUSSION
The proposed model extends existing methods to handle longitudinal ordinal data with
possible non-ignorable data using a partial proportional odds model, adopts competing risks
framework for the missing data mechanism, and therefore is more general in terms of
distinguishing different events that cause missing data in the study. On the basis of the
arguments given in Abbring and van den Berg [21], it is easy to show that all the parameters
at the survival endpoint are identifiable. Our joint model enables one to make inferences for
both endpoints simultaneously, while at the same time adjusting estimated quantities of the
longitudinal measurements for possible non-ignorable missing data caused by the failures.
Using simulations we show that the joint analysis performs better than the separate analysis,
even under model misspecification where the underlying distribution of the random effects
ai has longer than normal tails. Employment of the partial proportional odds model also
enables us to test the fit of the proportional odds assumption for the ordinal measures. If the
sample size permits, one could start with the full partial proportional odds model by setting

 and backward eliminate the non-significant covariates from . In our joint analysis
settings, the correlations among the longitudinal ordinal data are modeled through the
random effects, which makes it difficult to obtain the fitted correlations as one of the outputs
of the model fitting process. If it is of interest to the investigator, marginal models for
multivariate ordinal data could be used instead. Because our joint model involves infinite
dimensional parameters in the baseline hazard functions, a rigorous treatment of the
asymptotic properties of the maximum likelihood estimates warrants future research.

Model selection, as in any regression setting, is an important problem in joint analysis.
However, this issue has not been fully addressed in the joint modeling literature. In the
application to the stroke study, we use likelihood ratio test to assess the fit of proportional
odds assumption by expanding the covariate vector . This problem can not be easily
tackled by the popular model selection criteria, such as the Akaike information criterion
(AIC), since it is difficult in the presence of nonparametric baseline functions of the cause-
specific hazards. In particular, in semiparametric models like our joint model, the number of
nuisance parameters in the baseline hazard functions increases with the sample size. The
partial likelihood approach for Cox models is also inapplicable due to the correlation with
longitudinal measurements introduced by the frailty term. Some authors have presented
profile likelihood methods for model selection in the context of frailty models [22], which
can be extended to the joint model. It is possible to extend their work to joint models. Future
research in this direction is warranted.
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Appendix. The EM Algorithm

E-step
In the E-step of the (m + 1)th iteration, conditional on the observed data and the parameter
estimates from the mth iteration, we evaluate
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(5)

The integrals can be evaluated using Gaussian-Hermite quadrature.

M-step
Use E to stand for Eαi|Yi, Ci, Ψ(m). We have, for Σ,

(6)

(7)

and

(8)

Suppose there are qd distinct failure times due to the dth cause and write td1 ≤ . . . ≤ tdqd for
d = 1, . . . , g. Let R(tdj) be the risk set at time tdj, and ndj be the number of failures due to
cause d at time tdj. The cumulative baseline hazard function for cause d is

(9)

No closed-form solutions exist for θ, β, α, γ, and ν, which are updated by a one-step Newton-
Raphson algorithm in each iteration:

(10)

where k = 1, . . . , K - 1, with  and  being
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(11)

(12)

(13)

with  and  being

(14)

(15)

(16)

where k = 2, . . . , K - 1, with  and  being

(17)
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(18)

(19)

where d = 1, . . . , g, with  and  being

(20)

(21)

(22)

where d = 2, . . . , g, with  and  being

(23)

(24)

Because the model requires that the elements in θ satisfy θ1 < θ2 < · · · < θK−1, we start the
EM algorithm by setting the initial values of θ in the increasing order. In each M-step, we
monitor the order of the updated θ and switch the values of some components to maintain
the monotonicity. However, in our simulations and the real data analysis we have not
encountered situations where we need to switch values.
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Table 1

Baseline characteristics of study subjects and changes in modified rankin scale over time (we show the mean
(standard deviation) and the frequency (%) for modified rankin scale and the disease subtypes, respectively)

rt-PA group (n = 292) Placebo group (n = 295) p-value

Disease subtypes

small vessel 31 (10.62%) 30 (10.17%)

large vessel or cardioembolic stroke 181 (61.99%) 184 (62.37%) 0.9804a

Modified rankin scale

modified rankin scale prior onset 0.27 (0.73) 0.29 (0.80) 0.9872b

modified rankin scale (7–10 days) 2.55 (1.20) 2.90 (1.07) 0.0006b

modified rankin scale (3 months) 1.97 (1.07) 2.27 (1.02) 0.0017b

modified rankin scale (6 months) 1.91 (1.04) 2.18 (1.04) 0.0060b

modified rankin scale (12 months) 1.81 (1.01) 2.13 (1.04) 0.0015b

a
The p-values are calculated using Chi-square test

b
The p-values are calculated using Wilcoxon rank-sum test
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Table 2

Results from the joint analysis for the NINDS study

Estimate (SE)

Longitudinal outcome

proportional odds (PO)
(cumulative prob of Y ≤ k, k = 1, 2, 3)

group 1.48† (0.33)

modified Rankin scale prior onset −1.67† (0.27)

time3 2.12† (0.20)

time6 2.27† (0.20)

time12 2.45† (0.22)

small vessel × group −0.74 (1.26)

large vessel or cardioembolic stroke × group −2.27† (0.76)

partial PO (cumulative prob of Y ≤ 1)

small vessel 3.49† (0.68)

large vessel or cardioembolic stroke −1.04† (0.44)

partial PO (cumulative prob of Y ≤ 2)

small vessel 3.77† (0.68)

large vessel or cardioembolic stroke −1.36† (0.39)

partial PO (cumulative prob of Y ≤ 3)

small vessel 6.14† (1.15)

large vessel or cardioembolic stroke −0.64 (0.49)

Cause-specific hazards

Risk 1: dropout

group 0.23 (0.47)

modified Rankin scale prior onset 0.06 (0.42)

small vessel 0.55 (0.57)

large vessel −0.29 (0.51)

small vessel × group 0.04 (1.14)

large vessel or cardioembolic stroke 0.30 (1.02)

Risk 2: death or remaining in severe disability

group −0.46 (0.27)

modified Rankin scale prior onset 0.53† (0.17)

small vessel −2.07† (0.79)

large vessel 0.37 (0.27)

small vessel × group 0.35 (1.49)

large vessel or cardioembolic stroke 0.81 (0.54)

Random effects

σb
2

34.66 (3.94)
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Estimate (SE)

σu
2

0.51 (0.07)

ρ bu −0.997† (0.19)

ν 2 3.12† (0.51)

†
p-value < 0.05

Stat Med. Author manuscript; available in PMC 2011 February 28.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Li et al. Page 17

Ta
bl

e 
3

C
om

pa
ris

on
 o

f t
he

 jo
in

t m
od

el
 a

nd
 th

e 
se

pa
ra

te
 a

na
ly

si
s o

f t
he

 lo
ng

itu
di

na
l o

ut
co

m
e 

(n
 =

 2
00

)

Se
pa

ra
te

Jo
in

t

Pa
ra

m
et

er
T

ru
e

B
ia

s
SE

C
P

B
ia

s
SE

C
P

M
SE

S/
M

SE
J

Lo
ng

itu
di

na
l

 
Fi

xe
d 

ef
fe

ct
s

 
 β

 1
−
1

0.
32

2
0.

30
1

0.
79

5
−
0.

02
0

0.
15

5
0.

97
0

7.
95

4

 
 β

 2
1.

5
0.

03
0

0.
35

2
0.

94
0

0.
01

4
0.

29
4

0.
96

0
1.

44
1

 
 β

 3
0.

8
−
0.

21
6

0.
52

8
0.

93
5

0.
03

9
0.

28
7

0.
99

0
3.

87
9

 
 α

 2
0

−
0.

02
3

0.
28

5
0.

95
0

−
0.

00
8

0.
23

6
0.

97
5

1.
46

6

 
 θ

 1
−
0.

5
0.

01
7

0.
16

1
0.

96
0

−
0.

01
0

0.
16

5
0.

95
0

0.
95

9

 
 θ

 2
1

0.
02

3
0.

17
8

0.
95

5
0.

01
5

0.
15

3
0.

95
0

1.
36

3

 
R

an
do

m
 e

ff
ec

ts

σ b
2

1
−
0.

05
9

0.
58

9
0.

90
0

0.
02

1
0.

34
6

0.
95

5
2.

91
6

Su
rv

iv
al

 
Fi

xe
d 

ef
fe

ct
s

 
 γ 

11
0.

8
−
0.

01
5

0.
15

2
0.

95
0

0.
06

2
0.

16
3

0.
96

5
0.

76
7

 
 γ 

12
−
1

0.
01

4
0.

30
8

0.
95

0
−
0.

07
9

0.
29

7
0.

95
5

1.
00

6

 
 γ 

21
0.

5
0.

00
9

0.
17

0
0.

97
0

0.
04

1
0.

15
9

0.
96

5
1.

07
5

 
 γ 

22
−
1

−
0.

02
4

0.
30

1
0.

97
0

−
0.

07
2

0.
26

9
0.

97
5

1.
17

6

 
R

an
do

m
 e

ff
ec

ts

 
 ν

 2
0.

5
−
0.

19
2

0.
89

4
0.

98
5

0.
04

4
0.

41
9

0.
96

0
4.

71
1

 
 σ

u2
0.

5
−
0.

11
2

0.
41

8
0.

91
0

0.
20

3
0.

47
3

0.
93

0
0.

70
7

C
ov

ar
ia

nc
e

 
 ρ

 bu
−
0.

9
0.

04
8

0.
12

7
0.

99
0

N
ot

e:
 L

ar
ge

 b
ia

s a
nd

 p
oo

r C
P 

ar
e 

hi
gh

lig
ht

ed
 in

 b
ol

df
ac

e.

Stat Med. Author manuscript; available in PMC 2011 February 28.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Li et al. Page 18

Ta
bl

e 
4

C
om

pa
ris

on
 o

f t
he

 jo
in

t m
od

el
 a

nd
 th

e 
se

pa
ra

te
 a

na
ly

si
s o

f t
he

 lo
ng

itu
di

na
l o

ut
co

m
e 

(n
 =

 5
00

)

Se
pa

ra
te

Jo
in

t

Pa
ra

m
et

er
T

ru
e

B
ia

s
SE

C
P

B
ia

s
SE

C
P

M
SE

S/
M

SE
J

Lo
ng

itu
di

na
l

 
Fi

xe
d 

ef
fe

ct
s

 
 β

 1
−
1

0.
31

1
0.

18
9

0.
56

5
−
0.

00
7

0.
10

1
0.

96
0

12
.9

2

 
 β

 2
1.

5
−
0.

00
5

0.
22

8
0.

95
0

0.
01

4
0.

19
3

0.
96

0
1.

38
9

 
 β

 3
0.

8
−
0.

16
9

0.
34

0
0.

90
0

0.
01

2
0.

17
6

0.
98

0
4.

63
2

 
 α

 2
0

−
0.

01
5

0.
16

9
0.

96
0

−
0.

01
4

0.
15

4
0.

94
0

1.
20

4

 
 θ

 1
−
0.

5
0.

02
3

0.
10

0
0.

94
5

−
0.

00
9

0.
10

2
0.

94
5

1.
00

4

 
 θ

 2
1

0.
01

4
0.

11
2

0.
95

0
0.

00
8

0.
10

6
0.

93
0

1.
12

7

 
R

an
do

m
 e

ff
ec

ts

 
 σ

b2
1

−
0.

07
8

0.
33

7
0.

92
0

0.
03

0
0.

22
5

0.
96

0
2.

32
2

Su
rv

iv
al

 
Fi

xe
d 

ef
fe

ct
s

 
 γ 

11
0.

8
0.

00
8

0.
13

7
0.

96
0

0.
02

6
0.

10
9

0.
95

0
1.

45
0

 
 γ 

12
−
1

−
0.

00
7

0.
22

4
0.

95
5

−
0.

03
8

0.
19

5
0.

94
5

1.
27

3

 
 γ 

21
0.

5
0.

00
4

0.
13

9
0.

96
5

0.
02

2
0.

09
4

0.
95

5
2.

07
5

 
 γ 

22
−
1

−
0.

01
5

0.
21

2
0.

94
0

−
0.

03
6

0.
18

0
0.

95
5

1.
34

0

 
R

an
do

m
 e

ff
ec

ts

 
 ν

 2
0.

5
−
0.

04
6

0.
85

9
0.

97
0

0.
02

7
0.

26
8

0.
95

0
10

.2
0

 
 σ

u2
0.

5
−
0.

08
2

0.
42

3
0.

94
0

0.
12

5
0.

28
1

0.
92

5
1.

96
3

C
ov

ar
ia

nc
e

 
 ρ

 bu
−
0.

9
0.

06
1

0.
08

8
0.

97
0

N
ot

e:
 L

ar
ge

 b
ia

s a
nd

 p
oo

r C
P 

ar
e 

hi
gh

lig
ht

ed
 in

 b
ol

df
ac

e.

Stat Med. Author manuscript; available in PMC 2011 February 28.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Li et al. Page 19

Ta
bl

e 
5

C
om

pa
ris

on
 o

f t
he

 jo
in

t m
od

el
 a

nd
 th

e 
se

pa
ra

te
 a

na
ly

si
s o

f t
he

 lo
ng

itu
di

na
l o

ut
co

m
e 

w
he

n 
th

e 
un

de
rly

in
g 

di
st

rib
ut

io
n 

of
 a

i i
s m

ul
tiv

ar
ia

te
 t 

w
ith

 d
.f.

 =
 5

(n
 =

 2
00

)

Se
pa

ra
te

Jo
in

t

Pa
ra

m
et

er
T

ru
e

B
ia

s
SE

C
P

B
ia

s
SE

C
P

M
SE

S/
M

SE
J

Lo
ng

itu
di

na
l

 
Fi

xe
d 

ef
fe

ct
s

 
 β

 1
−
1

0.
39

8
0.

26
6

0.
74

0
−
0.

02
3

0.
15

3
0.

94
5

9.
57

3

 
 β

 2
1.

5
0.

03
6

0.
37

1
0.

98
0

0.
06

4
0.

33
8

0.
98

0
1.

17
4

 
 β

 3
0.

8
−
0.

22
8

0.
56

5
0.

91
0

−
0.

04
1

0.
29

1
0.

96
0

4.
29

8

 
 α

 2
0

−
0.

03
5

0.
31

4
0.

93
0

0.
02

4
0.

22
9

0.
95

0
1.

88
3

 
 θ

 1
−
0.

5
0.

02
7

0.
17

8
0.

94
5

−
0.

02
9

0.
15

6
0.

97
0

1.
28

7

 
 θ

 2
1

0.
03

7
0.

19
5

0.
95

5
−
0.

02
2

0.
15

4
0.

97
0

1.
62

8

Su
rv

iv
al

 
Fi

xe
d 

ef
fe

ct
s

 
 γ 

11
0.

8
−
0.

05
1

0.
19

0
0.

87
0

0.
02

0
0.

16
5

0.
98

0
1.

40
1

 
 γ 

12
−
1

0.
07

9
0.

29
1

0.
91

5
−
0.

04
2

0.
28

3
0.

97
0

1.
11

1

 
 γ 

21
0.

5
−
0.

02
1

0.
17

1
0.

97
0

0.
02

7
0.

15
0

0.
97

0
1.

27
8

 
 γ 

22
−
1

0.
00

4
0.

30
1

0.
97

5
−
0.

03
4

0.
30

0
0.

97
0

0.
99

4

 
R

an
do

m
 e

ff
ec

ts

 
 ν

 2
0.

5
0.

11
4

0.
87

8
0.

95
5

0.
04

9
0.

38
7

0.
96

0
5.

15
1

N
ot

e:
 L

ar
ge

 b
ia

s a
nd

 p
oo

r C
P 

ar
e 

hi
gh

lig
ht

ed
 in

 b
ol

df
ac

e.

Stat Med. Author manuscript; available in PMC 2011 February 28.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Li et al. Page 20

Ta
bl

e 
6

C
om

pa
ris

on
 o

f t
he

 jo
in

t m
od

el
 a

nd
 th

e 
se

pa
ra

te
 a

na
ly

si
s o

f t
he

 lo
ng

itu
di

na
l o

ut
co

m
e 

w
he

n 
th

e 
un

de
rly

in
g 

di
st

rib
ut

io
n 

of
 a

i i
s m

ul
tiv

ar
ia

te
 t 

w
ith

 d
.f.

 =
 5

(n
 =

 5
00

)

Se
pa

ra
te

Jo
in

t

Pa
ra

m
et

er
T

ru
e

B
ia

s
SE

C
P

B
ia

s
SE

C
P

M
SE

S/
M

SE
J

Lo
ng

itu
di

na
l

 
Fi

xe
d 

ef
fe

ct
s

 
 β

 1
−
1

0.
40

0
0.

18
3

0.
40

5
−
0.

02
7

0.
10

4
0.

89
5

16
.7

6

 
 β

 2
1.

5
0.

02
9

0.
23

3
0.

95
0

0.
02

9
0.

20
1

0.
97

5
1.

33
7

 
 β

 3
0.

8
−
0.

27
5

0.
36

2
0.

82
5

−
0.

06
5

0.
18

2
0.

89
5

5.
53

3

 
 α

 2
0

0.
00

5
0.

18
2

0.
94

5
−
0.

00
1

0.
14

9
0.

96
0

1.
49

3

 
 θ

 1
−
0.

5
0.

03
7

0.
10

9
0.

93
5

−
0.

01
1

0.
10

7
0.

93
0

1.
14

5

 
 θ

 2
1

0.
03

6
0.

12
2

0.
94

0
−
0.

00
3

0.
09

7
0.

95
0

1.
71

8

Su
rv

iv
al

 
Fi

xe
d 

ef
fe

ct
s

 
 γ 

11
0.

8
−
0.

03
1

0.
14

4
0.

80
0

0.
01

6
0.

10
9

0.
97

0
1.

78
8

 
 γ 

12
−
1

0.
03

4
0.

24
5

0.
86

5
−
0.

02
0

0.
19

4
0.

94
5

1.
60

9

 
 γ 

21
0.

5
−
0.

00
2

0.
13

8
0.

92
5

0.
01

1
0.

09
4

0.
96

5
2.

12
7

 
 γ 

22
−
1

−
0.

03
1

0.
23

4
0.

92
5

−
0.

02
5

0.
17

8
0.

93
5

1.
72

5

 
R

an
do

m
 e

ff
ec

ts

 
 ν

 2
0.

5
0.

10
3

0.
90

9
0.

87
0

0.
01

9
0.

21
4

0.
95

0
18

.1
3

N
ot

e:
 L

ar
ge

 b
ia

s a
nd

 p
oo

r C
P 

ar
e 

hi
gh

lig
ht

ed
 in

 b
ol

df
ac

e.

Stat Med. Author manuscript; available in PMC 2011 February 28.


