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Botulinum neurotoxin (BoNT) is a protein toxin (∼150 kDa), which possesses a metalloprotease activity. Food-borne botulism is
manifested when BoNT is absorbed from the digestive tract to the blood stream and enters the peripheral nerves, where the toxin
cleaves core proteins of the neuroexocytosis apparatus and elicits the inhibition of neurotransmitter release. The initial obstacle to
orally ingested BoNT entering the body is the epithelial barrier of the digestive tract. Recent cell biology and molecular biology
studies are beginning to elucidate the mechanism by which this large protein toxin crosses the epithelial barrier. In this review, we
provide an overview of the structural features of botulinum toxins (BoNT and BoNT complex) and the interaction of these toxins
with the epithelial barrier.

1. Introduction

The botulinum neurotoxin (BoNT, Mr. ∼150 kDa, types A
to G), which is produced by various strains of the anaerobic
spore-forming bacteria Clostridium botulinum, C. butyricum,
and C. baratii, is one of the most toxic proteins to humans.
BoNT is the etiologic agent that causes botulism, a severe
neurological disease characterized by flaccid paralysis. The
most common mechanism of botulism poisoning is through
oral ingestion of the toxin contaminated in food. The lethal
dose of BoNT for humans is not known but has been
estimated in primate studies; the estimated lethal amount
of crystalline type A toxin (main ingredient is 19S toxin,
see chapter II-1) for a 70 kg human is approximately 0.09–
0.15 ug intravenously or intramuscularly, and 70 ug orally
(reviewed in [1]). BoNT binds specifically to neuronal cells,
enters the cytoplasm, and then cleaves the core proteins
involved in the vesicular fusion machinery by its metallopro-
tease activity, thereby blocking the release of neurotransmit-
ters (reviewed in [2]). When produced by the bacterium, the
BoNT is found in complexes (BoNT complexes, progenitor
toxins) associated with nontoxic components (reviewed in
[3–7], Figures 1(a) and 2).

To cause disease, orally ingested BoNT in the complexes
must take a long journey to reach their targets, the peripheral
nerves (Figure 1(b)). The initial obstacle to orally ingested

BoNT entering the body is the epithelial barrier of the
digestive tract. Although the molecular mechanism by which
this large protein toxin crosses the epithelial barrier is not
completely defined, recent studies have led to a progressive
understanding of the interaction of BoNT and BoNT
complexes with the epithelial barrier.

Here, we describe the structure-activity relationship of
botulinum toxins (BoNT and BoNT complexes) and cover
recent advances in our understanding of the transport
pathway followed by these toxins from the gut lumen to the
general circulation across the epithelial barrier.

2. Structural Aspects of Botulinum
Neurotoxin Complex

2.1. Overview of Molecular Composition of BoNT Complex.
Botulinum neurotoxin (BoNT/NTX/7S toxin) is classified
into seven serotypes, BoNT/A through BoNT/G, on the basis
of their immunological properties. In addition, the variation
observed in BoNT protein sequences within the serotypes,
at least in serotype A–F, has resulted in designations of
BoNT subtypes within a serotype [11–15]. For example, five
subtypes of BoNT/A (termed A1–A5) have been identified.
Subtypes are defined as differing by at least 2.6% at the amino
acid level [11, 12]. These subtypes BoNT are produced by
the bacterium as complexes (BoNT complexes/progenitor
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Figure 1: Botulinum neurotoxin complexes and food-borne botulism. (a) Schematic structure of botulinum neurotoxin (BoNT) complexes.
(b) The pathway followed by BoNT complexes from the lumen of the intestinal tract to the cytosol of the peripheral nerve terminal in food-
borne botulism. Orally ingested BoNT complexes (12S and 16S toxins) must cross the intestinal epithelial barrier to cause the food-borne
botulism. After absorption from the small intestine, the botulinum neurotoxin complexes enter the lymphatic system, then the blood stream
[3, 8]. In the lymphatic circulation and blood, BoNT exists as a free form dissociated from the complex [3, 9] and binds specifically to
neurons [2, 10]. Inhibition of neurotransmitter release occurs via a four-step mechanism, (1) binding, (2) endocytosis, (3) translocation,
and (4) cleavage of the SNARE proteins [2].
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Figure 2: Features of types A to G BoNT complexes. Type A (A1) BoNT is produced by C. botulinum in three forms: 12S, 16S, and 19S
toxins. Types B, C, and D BoNT are produced in two forms: 16S and 12S toxins. Types E, F, (and A2) BoNT are produced as 12S toxin. Type
G BoNT complex is produced as 16S toxin (reviewed in [3, 6, 7]).

toxins) associated with nontoxic components (nontoxic
neurotoxin-associated proteins, NAP) (reviewed in [3–7]
Figures 1(a) and 2). Three forms of BoNT complexes, 12S
toxin (M toxin/M-TC), 16S toxin (L toxin/L-TC), and 19S
toxin (LL toxin/LL-TC), are the major forms in cultures of

the bacteria. 12S toxin is composed of a BoNT and a nontoxic
nonhemagglutinin (non-toxic non-HA, NTNH, also called
as NTNHA; 130 kDa). 16S toxin is composed of a BoNT, an
NTNH, and several hemagglutinin (HA) proteins. 19S toxin
has the same components as 16S toxin and is presumed to be
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a dimer of two 16S toxins linked by one of the HA proteins
[16]. C. botulinum type A (A1) strain produces 12S, 16S, and
19S toxins. Type B, C, and D strains produce 16S and 12S
toxins. Type A2, E, and F strains only produce 12S toxin. Type
G strain produces only 16S toxin (reviewed in [3, 6, 7]). Toxin
types A, B, E, and F cause botulism in both humans and
animals, whereas types C and D cause botulism mainly in
animals, but very rarely in humans. Type G toxin producing
organisms have been experimentally isolated from soil, but
no naturally occurring outbreaks of botulism caused by type
G toxin have been reported (reviewed in [1, 7]).

In this review, when it is not suitable to use the precise
terms, BoNT and BoNT complex (i.e., BoNT plus NAP),
we will use the term “botulinum toxin” which means either
BoNT or BoNT complex.

2.2. Structure and Activity of BoNT. BoNT is synthesized
as single-polypeptide chains of ∼150 kDa but must be
posttranslationally modified by a bacterial or tissue protease
for activation (reviewed in [2]). The active form of the
toxin consists of a light chain (L, 50 kDa) and a heavy chain
(H, 100 kDa). The chains remain covalently and reversibly
linked by a disulphide bond until exposed to reducing
conditions, such as in the nerve cytosol. The L chain is
a zinc endopeptidase, which cleaves the SNARE proteins
VAMP (vesicle-associated membrane protein/synaptobrevin;
cleaved by BoNT/B, D, F, and G), which is located in
SV (synaptic vesicles), and SNAP-25 (25 kDa synaptosome
associated proteins; cleaved by BoNT types A, C, and E) and
syntaxin (cleaved by BoNT/C), which are expressed mainly
in the plasma membrane [2]. The H chain is composed
of two domains and serves as the vehicle that delivers the
L chain into the cytosol of neuronal cells. The carboxy-
terminal part of the H chain (Hc) is mainly responsible
for neurospecific binding via its interaction with specific
gangliosides and protein receptors (dual-receptor model,
reviewed in [2, 10]). Regarding protein receptors, synaptic
vesicle protein 2 (SV2) has been proposed to be a protein
receptor for BoNT/A (all three isoforms SV2A, B and C
[17], SV2C [18]), BoNT/E (SV2A and B [19]) and BoNT/F
(SV2A, B and C [20]), while synaptotagmin I and II (Syt-
I an -II) have been identified as protein receptors for both
BoNT/B and BoNT/G [21–27]). In contrast, BoNT/C and
BoNT/D seem to only interact with gangliosides (GD1b and
GT1b) and phosphatidylethanolamine, respectively [28].
The aminoterminal part of the H chain (HN) is thought to
mediate translocation of the L chain from the lumen of an
acidic intracellular compartment into the cytosol [29–31].

Information from the crystallographic structures of
BoNT [32–37], cocrystallographic structures of BoNT with
their SNARE substrates [38–40], and cocrystallographic
structures of BoNT with receptors [41–44] have revealed the
details of these interactions at the atomic level.

2.3. NTNH and HA Proteins. The nontoxic components
(NAP) of 12S and 16S toxins are composed of an NTNH
and an NTNH with several HA proteins, respectively. All
these components and a BoNT are associated with each
other by noncovalent binding. The BoNT dissociates from

NAP in slightly alkaline conditions (higher than pH 7.2∼8)
(reviewed in [3]).

NTNHs are produced by all types (strains) of C.
botulinum and are the most conserved proteins in the
botulinum neurotoxin complex (their amino acid identity
level is 76∼83.5%) (reviewed in [5]). The biological and
structural roles of NTNH are not completely understood,
although it is believed that they confer resistance to prote-
olysis in the gastrointestinal tract (reviewed in [3], for type
D NTNH [45]).

The HA component consists of three different proteins:
HA1 (also referred to as HA-33 in types C and D, HA-34
in type B, and HA-35 in type A, based on their molecular
weight), HA2 (also referred to as HA-15 in type A, HA-17 in
types C and D, and HA-18 in type B), and HA3 (also referred
to as HA-70, a precursor form of HA3a and HA3b) [6]).

The 12S toxin is composed of a BoNT and an NTNH at a
1 : 1 ratio (reviewed in [3, 6, 45]). 16S toxin results from the
assembly of a BoNT, an NTNH, and HA proteins (HA1, HA2,
and HA3) at a presumed 1 : 1 : 6 : 3 : 3 [46] or 1 : 1 : 4 : 4 : 2
ratio [47, 48].

The X-ray crystallographic structures of HA1 (type C
[49, 50], type A [51]), HA1-HA2 complex (type D [46]),
and HA3 (type C [52]) have been determined. Furthermore,
recent transmission electron microscopy studies of type D
16S toxin suggest an ellipsoidal-shaped structure with 3
extended arms [46]. Other such studies will provide valuable
information for understand the precise three- and four-
dimensional structures of 12S and 16S toxin, although the
crystallographic structures of these BoNT complexes have
not yet been elucidated.

3. Mechanism of the Passage of Botulinum
Toxins through the Digestive Tract

3.1. Site of Absorption of Botulinum Toxins. Botulinum toxin
cannot penetrate intact skin, but the toxin is absorbed from
mucosal surfaces or a wound (reviewed in [1]). In food-
borne botulism and in intestinal botulism (infant and adult,
botulinum toxins are produced from C. botulinum and other
BoNT producing clostridia, which colonize the lumen of
intestine), the toxins are absorbed from the digestive tract.
During naturally occurring food-borne botulism, abdominal
cramp, nausea, vomiting, or diarrhea are often reported.
These gastrointestinal symptoms are thought to be caused
by other bacterial metabolites and may not occur if pure
botulinum toxins are contaminated in foods (reviewed in
[1]).

Experiments using ligated intestinal loops of animals
and purified botulinum toxins showed that the upper small
intestine was found to be the most important site for
absorption of these toxins (reviewed in [3, 8]). Further in
vivo experiments using recent imaging technology under
physiological conditions (no ligation) will provide a more
detailed understanding of the sites of the absorption of
botulinum toxin in the intestine. After passing through the
intestinal epithelium, the toxins first appear in the lymph and
then in the blood (reviewed in [3, 8]). Botulinum toxin can
also be absorbed from various mucous membranes, such as
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the mucous membranes of buccal cavity [53], stomach [54],
and respiratory systems [55].

3.2. NAP Enhance the Oral Toxicity of BoNT by Their
Protective Effects. The BoNT alone isolated from BoNT
complexes was found to be only slightly toxic to mice when
administrated orally. Its oral toxicity increases with the
incremental association of the BoNT with the NAP (for a
review, see [3]). Among six toxin serotypes (A to F), the type
B (strain Lamanna) shows the most marked tendency, 16S
toxin is about 1000 times more potent than 12S toxin, and
12S toxin is about 20 times more potent than BoNT in mice
experiments [3]. Although the overall mechanism leading
to the higher efficacy of the BoNT complexes is not fully
understood, Sakaguchi’s group has documented that their
greater efficacy is due to the protective effect toward BoNT of
the NAP from the low pH and proteases in the digestive tract
[3]. Sakaguchi’s group also reported that BoNT complexes do
not dissociate in the digestive tract, including the duodenum
in spite of the pH being around 7.0 [56], and the whole
toxin complexes seem to be absorbed from the intestine into
the lymphatics in rat ligated duodenum loop assay [9]; then
molecular dissociation occurs immediately after BoNT com-
plexes are absorbed into the lymphatics [9] (reviewed in [3]).

It was also reported that NAP plays a role in enhancing
the neurotoxicity of BoNT, by a different mechanism from its
protective effect against the external environment [57–60].

3.3. Transcytosis of BoNT across the Intestinal Epithelial Cells.
In vitro experiments showed that BoNT/A and BoNT/B bind
to polarized human intestinal epithelial cell lines (Caco-2
and T84) and undergo a transcytosis pathway from the apical
to basolateral side [61–65]. The H chain of the BoNT is
involved in binding and transcytosis in the intestinal cells
[62, 64, 66], and gangliosides (GD1b and GT1b series) and
SV2 (or SV2 related protein) on the intestinal cell surface are
possibly involved in this process [64]. It was also reported
that an intestinal crypt like cell line derived from mouse
(m-ICc12), which expresses a higher amount of SV2C (or
SV2C related protein) than Caco-2, showed a higher level of
binding and passage of BoNT/A than Caco-2 [64]. Although
the BoNT transcytosis pathway has not yet been clearly
defined, a recent study found that the BoNT/A C-terminal
part of H chain (Hc) enters preferentially via a Cdc42-
dependent and clathrin–independent pathway in Caco-2 and
m-ICc12 and reaches an early endosomal compartment [66].

3.4. HA Proteins Tether the BoNT to the Microvili of the
Intestinal Epithelium. Several experiments were conducted
to investigate the interaction of BoNT complexes with the
intestinal epithelium. Experiments using ligated intestinal
loops of guinea pigs and type C toxins (BoNT, 12S toxin
and 16S toxin) showed that only 16S toxin has a potent and
selective binding activity to the microvilli of the upper small
intestine via sialic acid residues in cell surface glycoconju-
gates [67]. This finding suggests the important role of the HA
component in intestinal absorption of BoNT. Subsequently,
it was shown that type C 16 S toxin, but not 12S toxin

or BoNT, binds and enters HT-29 cells (a human intestinal
epithelial cell line) via the cell surface sialic acid containing
O-liked glycoproteins [68]. When internalized into HT-29
cells, the type C16S toxin appears to be separated to the
BoNT and NAP in endosome and the BoNT can further
transferred to the Golgi apparatus [69]. In vivo, a substantial
amount of ingested progenitor toxins seem to exist in their
undissociated forms, at least until the BoNT complexes reach
the luminal side of the intestine (see Section 3.2). These
data led us to speculate that the HA in BoNT complex
may play a role in the enhancement of BoNT absorption
from the luminal surface of the intestinal epithelium to the
circulating fluids, probably via transcytosis. Indeed, it was
recently reported that HA1 of the type D 16S toxin may play a
critical role in facilitating the passage of BoNT through Caco-
2 monolayers [70]. However, it was shown that NAP does
not facilitate the transcytosis of BoNT in T84, Caco-2, and
Calu-3 (a human pulmonary cell line) (type A [55, 62, 64]
type B [62]). At present, both of these studies, which propose
directly opposite ideas, were done using mainly in vitro
cell lines and these systems are not always physiologically
relevant. Multilateral approaches using such in situ intestinal
epithelium of the susceptible species will thus be necessary to
role out the function of NAP in the transcytosis of BoNT.

Since it was demonstrated that type C HA of the BoNT
complex has a binding activity to the carbohydrates on
the intestinal epithelial cell surfaces, additional studies have
been carried out to characterize the binding property of
other types of BoNT complexes. In type A, HA-positive
BoNT complexes (mixture of 16S toxin and 19S toxin)
but not 12S toxin show binding activity toward intestinal
epithelial cells and erythrocytes, as in the case of type C
BoNT complexes; whereas, the type A 16S toxin recognizes
galactose residues instead of sialic acid residues in the cell
surface glycoconjugates of these cells [71]. In agreement with
this observation, in erythrocytes, the Galβ1-4GlcNAc moiety
in the cell surface glycoconjugates has been determined as
a major ligand for type A HA-positive BoNT complexes
and HA1 (native HA1 exists in the culture medium) [72].
In the human intestinal cell line, Intestine-407, the Galβ1-
4GlcNAc (N-acetyllactosamine) moiety in the cell surface
oligosaccarides has been determined as a major ligand for
type A HA-positive BoNT complexes [73].

Studies using recombinant HA proteins showed that HA1
and HA3b have carbohydrate binding activities with different
specificities [71, 74, 75]. In type C, the HA1 recognizes
NeuAcα2-3 Galβ1- and Galβ1-4 GlcNAcβ1-; whereas, HA3b
(and its precursor form, HA3) recognizes NeuAcα2-3 Galβ1-
[74]. Type C HA1 has been shown to have two β-trefoil
domains and bears similarities with the plant lectin ricin B-
chain in its amino acid sequence [76] and crystal structure
[49]. It has been demonstrated that each of these two β-
trefoil domains (site I and site II) possesses a carbohydrate
binding activity by viewing their X-ray crystal structures in
complex with their carbohydrate ligands and point mutation
analysis [50]. The site I β-trefoil domain bounds wide
variety of sugars, such as N-acetylneuraminic acid, N-
acetylgalactosamine, and galactose, while site II β-trefoil
domain, which is located on the C-terminal side of site I,
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Figure 3: Model for penetration of BoNT complexes through the intestinal epithelial barrier. Step 1: HA of the BoNT complex mediates
binding and transcytosis of a small amount of luminally located BoNT complexes across the epithelium without disrupting the epithelial
barrier (Arrows in yellow, “route i”) [65]. H chain of BoNT also mediates binding and transcytosis of BoNT (Arrows in green, “route ii”)
[61–66]. Step 2: HA which has translocated on the basolateral surface disrupts the epithelial barrier. Types A and B HA proteins disrupt the
paracellular barrier of without causing cytotoxic effects in the epithelial cells of their susceptible hosts [65, 77]. Type C HA proteins possibly
evoke cytotoxic-barrier disrupting activity in the epithelial cells of susceptible animals [77]. Step 3: A large amount of the BoNT complexes
and BoNT accumulates in the serosal side by passing from the damaged epithelial barrier (Arrows in light green, “route iii”) [65].

bounds only galactose and the binding avidity seems to be
lower than that of site I. Regarding HA3, a binding site
for N-acetylneuraminic acid within type C HA3 has been
determined by X-ray crystallography and point mutation
analysis [52]. What is the reason for the existence of multiple
carbohydrate-binding sites with different specificities in the
HA-positive BoNT complexes? Further studies are needed to
clarify whether all of these three carbohydrate-binding sites
are accessible in the complex form, whether, and how these
carbohydrate-binding activities contribute to the passage of
BoNT across the intestinal epithelial barrier.

3.5. HA Proteins Have Novel Activities That Disrupt the
Epithelial Barrier Function. In 2008, we found a novel effect
of the HA component; the type B HA disrupts the paracel-
lular barrier of the intestinal epithelium and facilitates the
transepithelial delivery of BoNT and other macromolecules
both in vitro (human intestinal cell lines) and in vivo (mouse
intestinal loop assay) [65]. On the other hand, this finding
seems not to be in harmony with those reported by Sakaguchi
who found that NAP does not enhance the rate of absorption
of BoNT (in terms of antigenicity) in their in vivo rat
intestinal loop assay [3]. The discrepancy may be due to
species tropism in the action of HA; type B HA disrupts the
paracellular barrier of the mouse, but not rat epithelium in
the intestinal loop assay (manuscript in preparation).

We also found that type A HA proteins have a similar
disrupting activity with a greater potency than type B HA
proteins in Caco-2, T84, and MDCK I (canine kidney
epithelial cell line) [77]. In contrast, type C HA proteins in
the toxin complex (up to 300 nM) have no detectable effect

on the paracellular barrier in these human cell lines [77].
These results indicate the correlation of the species tropism
of HA action with the epidemiology of food-borne botulism.
Therefore, HA action on the intestinal epithelial barrier may
at least partially govern the susceptibility of different species
to the toxicity of orally ingested BoNT complexes, and this
may be an important factor in the pathogenesis of food-
borne botulism.

In addition, we found that type C HA has a barrier
disrupting activity and potent cytotoxicity in nonhuman
originated certain epithelial cell lines (MDCK I, ACL-15,
and RCN-9 derived from rat colon carcinomas) [77]. These
data raise the possibility that type C HA induces damage
in the intestinal epithelium of susceptible animals, which
could allow the toxin complex unrestricted influx into
the systemic circulation. However, this evidence about the
epithelial barrier disruption provoked by type C HA proteins
is limited to in vitro cell lines. Further in vivo studies using
susceptible animals will provide a better understanding of the
pathological roles of this cytotoxic activity.

3.6. Possible HA-Mediated Three-Step Mechanism for the
Intestinal Absorption of BoNT Complex. Our studies indi-
cated that the type A∼C HA proteins present in the 16S toxin
act on undefined host molecules, mainly on the basolateral
surface, and these induce the loss of the epithelial paracellular
barrier without causing cytotoxicity (Types A and B HA) or
the loss of general epithelial barrier function accompanied
by cell damage (Types C HA), which facilitates the effi-
cient transepithelial-absorption of luminal macromolecules
including BoNT [65, 77]. Taking into account these findings
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and other group’s findings, we propose a possible three-
step mechanism by which the toxin traverses the intestinal
epithelial barrier (Figure 3): Step 1, transport of a small
amount of luminally located BoNT complexes [65] or BoNT
alone [61–66] across the epithelium without disrupting the
epithelial barrier via transcytosis; Step 2, disruption of the
epithelial barrier by the HA moiety of the 16S toxin that has
translocated to the basolateral surface [65, 77]; and Step 3,
accumulation of a large amount of BoNT complexes (and
BoNT) in the serosal side by passing through the damaged
epithelial barrier [65]. As previously mentioned, the in vivo
relevance of these steps is at present obscure and necessary to
be confirmed experimentally.

4. Conclusions and Perspectives

In these few years, significant progress has been made in
our understanding of the interaction of botulinum toxin
with the intestinal epithelial barrier. It has become clear
that the type A, B, and C HA proteins in BoNT complexes
possess a potent ability to disrupts epithelial barrier function
and have distinct features in their modes of action. These
findings provide an awareness of botulinum HA proteins
as pathogenic factors that breach the host defense by direct
interaction with the host epithelium, which is presumably
linked to the intestinal transepithelial delivery of BoNT in
food-borne botulism of susceptible species. However, the
molecular mechanisms by which each type of A∼C HA
proteins disrupt intestinal epithelial barriers remain unclear.
Similarly, it is unclear whether the lectin activities of HA 3
and HA1 are involved in these epithelial barrier disrupting
activities. Overall, there are at least three possible routes
taken by botulinum toxin to penetrate the gut epithelium;
route i, HA-mediated transcytosis (“Step 1” described in
chapter III-6, chapter III-4) [65], route ii, H chain-mediated
transcytosis of BoNT alone (“Step 1” described in chapter
III-6, chapter III-3) [61–66], and route iii, the route passing
from the damaged epithelial barrier caused by HA actions
(“Step 3” described in chapter III-6, chapter III-5) [65].
Which route(s) are taken and to what extent are they involved
in the absorption of the toxin in food-borne botulism?
To answer these questions, further studies to elucidate the
molecular interactions that occur between the botulinum
toxin (complex) and the intestinal epithelial barrier and in
vivo validation using appropriate species are necessary. These
studies not only will provide an important insight into the
molecular mechanisms behind the development of food-
borne botulism but also may lead to unique and powerful
opportunities to understand the complicated mechanisms
for the maintenance and regulation of the epithelial barrier
system. Moreover, the mechanisms by which botulinum
toxin traverses the intestinal epithelial barrier could be
exploited to allow delivery of drugs across the epithelium.

A List of Abbreviations

BoNT: Botulinum neurotoxin
HA: Hemagglutinin
NTX: Botulinum neurotoxin

NTNH: Nontoxic nonhemagglutinin
NTNHA: Nontoxic nonhemagglutinin
NAP: Nontoxic neurotoxin-associated protein
TC: Toxin complex.
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