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Infection by herpes simplex virus type 1 (HSV-1) can cause clinical symptoms in the peripheral and central nervous system.
Recurrent ocular shedding can lead to corneal scarring and vision loss making HSV-1 a leading cause of corneal blindness due
to an infectious agent. The primary site of HSV-1 latency is sensory neurons within trigeminal ganglia. Periodically, reactivation
from latency occurs resulting in virus transmission and recurrent disease. During latency, the latency-associated transcript (LAT)
is abundantly expressed. LAT expression is important for the latency-reactivation cycle in animal models, in part, because it
inhibits apoptosis, viral gene expression, and productive infection. A novel transcript within LAT coding sequences (AL3) and
small nonprotein coding RNAs are also expressed in trigeminal ganglia of latently infected mice. In this review, an update of viral
factors that are expressed during latency and their potential roles in regulating the latency-reactivation cycle is discussed.

1. Introduction

At least 90% of the population are infected with herpes
simplex virus type 1 (HSV-1), and infection can cause a
variety of disorders [1, 2]. Recurrent ocular HSV-1 is the
leading cause of infectious corneal blindness in industrialized
nations [3]. In a murine model, ocular infection appears
to induce autoimmune disorders leading to corneal antigen
destruction and stromal keratitis [4]. HSV-1 infections also
cause gastrointestinal disorders, esophageal disorders, and
approximately 25% of all genital herpes infections [5, 6].

HSV-1 is the most commonly identified cause of acute,
sporadic viral encephalitis in the U.S. accounting for 10%–
20% of all cases [7]. It is estimated that there are approxi-
mately 2,000 new cases per year in the U.S. HSV-1 and HSV-2
can cause acute necrotizing encephalitis in infants, children,
and adults. Encephalitis due to HSV-2 in newborn infants is
a widespread disease in the brain and commonly involves a
variety of other organs in the body including skin, eyes, and
lungs [8].

Herpes simplex virus- induced encephalitis (HSE) is
characterized by severe destruction of temporal and frontal
lobe structures, including limbic mesocortices, amygdala,
and hippocampus. Without antiviral therapy, the mortality
rate is as high as 70%, but even after antiviral therapy
20% of these patients die. Despite early treatment, chronic
progressive tissue damage in magnetic resonance imaging
can be found up to 6 months following the onset of
symptoms. Approximately 2/3 of the HSE cases occur
because of reactivation from latency [9], which explains why
there is high morbidity and long-term complications despite
antiviral treatment [10–12].

HSE is often associated with necrotic cell death resulting
from virus replication and inflammatory changes secondary
to virus-induced immune response [13]. However, there is
not a perfect correlation between virus burden in the brain
and the severity of histological changes and neurological
symptoms. Furthermore, a small number of HSE patients
are negative for HSV-1 DNA early in the course of infection
suggesting that factors other than virus replication are
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involved in pathogenesis. The finding that mice lacking
toll like receptor 2 (TLR2) are less susceptible to HSV-1-
induced encephalitis than wild type mice or mice lacking
TLR4 implies that TLR-2-mediated cytokine responses are
detrimental to the host [14]. In addition, two children
with HSE lack the intracellular protein UNC-93B and have
impaired interferon responses [15]. It appears that the ability
of the host to appropriately respond to HSV-1 infections in
the brain is crucial for preventing HSE.

2. The Latency-Reactivation Cycle

2.1. The Latency-Reactivation Cycle Has 3 Distinct Steps.
Despite a vigorous immune response during acute infection,
HSV-1 establishes latency in ganglionic sensory neurons,
typically trigeminal ganglia (TG) or sacral dorsal root ganglia
[16, 17]. Although TG is a primary site of latency following
ocular, oral, or intranasal infection [18–20], latent HSV-1
can also be detected in human adult nodose ganglia and
the vagus nerve [5, 6]. Up to 40% of sensory neurons can
be latently infected [21–25]. HSV-1 genomic DNA has also
been detected in the central nervous system of a significant
percentage of humans [18, 26, 27].

The steps of the latency-reactivation cycle have been
operationally divided into three major steps: establishment,
maintenance, and reactivation (Figure 1). Establishment of
latency includes entry of the viral genome into a sensory
neuron and acute infection. Viral gene expression is then
extinguished, with the exception of the latency-associated
transcript (LAT). For further details regarding viral gene
expression during acute infection and establishment of
latency, see Section 2.2.

Maintenance of latency is a phase that lasts for the life
of the host and is operationally defined as a period when
infectious virus is not detected by standard virus isolation
procedures. In general, abundant expression of viral genes
that are required for productive infection does not occur.
LAT is abundantly expressed during this stage of latency.

Reactivation from latency is initiated by external stimuli
(stress and immunosuppression, e.g.) that stimulate viral
gene expression. Abundant viral gene expression is detected
in sensory neurons and infectious virus can be isolated from
TG, eye swabs, and/or nasal swabs. It is not clear whether a
neuron that undergoes reactivation and produces infections
virus survives and resumes latency or is killed. For further
discussion of factors that regulate reactivation from latency,
see Sections 2.4–2.6. The ability of HSV-1 to reactivate from
latency results in recurrent disease and virus transmission.

2.2. Viral Gene Expression during

Productive Infection versus Latency

2.2.1. Viral Gene Expression during Productive Infection.
Binding and entry of HSV-1 to cells are mediated by
viral glycoproteins and cellular factors [28–30]. A cellular
mediator of viral entry (HveA or HVEM) is primarily
expressed in activated T cells and belongs to the tumor
necrosis factor receptor family [31]. Entry of HSV-1 into

epithelial and other nonlymphoid cells is mediated by
an unrelated membrane glycoprotein that resembles the
poliovirus receptor (HveB and HveC) [32]. HveC is active
as an entry mediator for all herpesviruses examined to date,
HSV-1, bovine herpesvirus 1 {BHV-1}, and pseudorabies
virus, {PRV}. HveC is abundantly expressed in neurons and
can block viral entry in several neuron-like cell lines [32].
After uncoating, the viral genome is present in the nucleus
and viral gene expression ensues.

HSV gene expression is temporally regulated in three
distinct phases: immediate early (IE), early (E), or late (L)
[33]. IE transcription does not require protein synthesis
and is stimulated by VP16 [34]. E gene expression is
dependent on at least one IE protein, and generally E genes
encode nonstructural proteins that play a role in viral DNA
synthesis. L gene expression is maximal after viral DNA
replication, requires IE protein production, and L proteins
comprise the virion particle.

Five IE genes encode ICP0, ICP4, ICP22, ICP27, or
ICP47. ICP4 [35–38] and ICP27 [39–41] are required for
virus growth in tissue culture. In general, ICP4 represses
IE gene expression [37, 42–46] and activates E or L gene
expression by interacting with RNA polymerase II tran-
scription factors [46, 47]. ICP27 redistributes small nuclear
ribonucleoprotein complexes, interferes with splicing of IE
transcripts, and promotes E and L poly A site selection [48–
51]. ICP47 prevents transport of antigenic peptides into the
endoplasmic reticulum [52] and is crucial for neurovirulence
because it inhibits CD8+ T cell responses [53]. ICP0 can
activate expression of all classes of viral genes, in part because
it increases steady-state levels of mRNA [54].

ICP0 also binds several cellular proteins: (1) elongation
factor 1α [55], (2) cyclin D3 [56], (3) an ubiquitin-specific
protease [57, 58], and (4) PML [59–62]. Interactions between
ICP0 and chromatin-remodeling enzymes activate viral
transcription. For example, a histone deacetylase inhibitors
enhance viral gene expression and productive infection
[63, 64]. Secondly, ICP0 alters a complex that inhibits
gene expression (REST/CoREST/histone deacytlase repressor
complex) [65]. Finally, HSV-1 ICP0 interacts with HDAC2
[66] and blocks histone deacetylation to stimulate viral gene
expression [65, 67]. Since ICP0 has recently been shown
to remove histones from viral chromatin during productive
infection [68], it is tempting to suggest that ICP0 has a
similar function during reactivation from latency. These
activities of ICP0 promote virus replication in differentiated
cells [69].

2.2.2. Viral Gene Expression Is Extinguished after Infection
of Sensory Neurons. Following infection of rodents, rabbits,
or humans with HSV-1, productive infection is initiated in
the mucosal epithelium. Virus particles or subparticles then
enter sensory neurons and are transported intra-axonally to
the sensory ganglia. Since HSV-1 infection typically occurs
via the oral, ocular, or nasal route, the 5th cranial nerve,
trigeminal ganglia (TG), is a primary site for latency [18, 19].
Extensive viral gene expression and replication occur within
TG for approximately a week following infection of animal
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Figure 1: Steps in the latency-reactivation cycle of HSV-1. For details, see the text.

models that support HSV infection [70, 71]. Productive viral
gene expression that occurs in TG appears to be different
than what is seen in cultured cells [72]. Infectious virus
can readily be detected in homogenates prepared from TG
during acute infection. However, it is difficult to conclude
whether this infectious virus is the result of productive
infection in sensory neurons or the result of transport from
peripheral sites of infection. Replication is not required
for establishment of latency because mutants that cannot
replicate will establish latency, but at a reduced level [73–81].

2.2.3. IE Promoters Are Differentially Regulated in Sensory
Neurons Relative to Nonneuronal Cell Types. Several studies
using transgenic mice that contain IE promoters linked
to a reporter gene have concluded that IE promoters are
differentially regulated by neuronal specific factors. For
example, the HSV-1 ICP4 promoter is active in Schwann
cells, but not sensory neurons in TG [82]. As expected,
the ICP4 promoter in transgenic mice is activated in TG
neurons following infection with HSV-1. In contrast to the
ICP4 promoter, transgenic mice containing the ICP0 or
ICP27 promoters are active in certain neurons within the
brain and TG [83]. The ICP0 promoter is also differentially
regulated in TG neurons depending on the age of the mouse.
The ICP0 promoter contains a cis-acting element that can
bind a neuronal specific transcription factor, Olf-1, which
is differentially and developmentally expressed in specific
subsets of sensory neurons [84] suggesting that the Olf-1 site
plays a role in activating ICP0 promoter activity in certain
neurons.

All IE promoters contain a common cis-acting sequence
(TAATGARAT) that is required for VP16-mediated trans-
activation [34, 85]. VP16 must interact with two cellular
proteins, Oct-1 and HCF, to efficiently induce IE promoter
activity. A cellular transcription factor, Zhangfei, binds to

HCF and prevents activation of the ICP0 promoter [86].
Another cellular transcription factor, Luman, also binds
to HCF and sequesters HCF in the cytoplasm of sensory
neurons, suggesting that Luman has a role in latency [86].
Zhangfei and Luman have basic domain-leucine zippers
(bZIP) regions, acidic activation domains, and consensus
HCF-binding motifs, yet have little amino acid similarity.
In nonneuronal cells, HCF has a nuclear localization [87],
but in sensory neurons it appears to be predominantly
localized to the cytoplasm [88]. If the relative levels of
Luman and Zhangfei are high, the availability of “free”
HCF that could interact with VP16 would be reduced
and consequently IE gene expression would be repressed.
It has also been hypothesized that VP16 is not present
in sufficient quantities in the nucleus of infected sensory
neurons to stimulate efficient productive infection [88].
However, inducible expression of VP16 in the context of the
viral genome or in transgenic mice did not lead to enhanced
viral replication [89].

Other cellular transcription factors expressed in sensory
neurons (Brn-3.0 and N-Oct3, e.g.) have the potential to
regulate IE gene expression [90, 91]. Brn-3.0 binds to
noncoding sequences in the HSV-1 genome, but the binding
sites for Brn-3.0 are not identical to those for Oct-1 or other
related transcription factors that also include Brn-3.1 and
Brn-3.2 [92]. Brn-3.0 is important in the peripheral nervous
system of mice because null mutations in the brn-3.0 locus
result in neonatal death with defects in sensory ganglia and
specific central nervous system nuclei [93, 94]. brn-3.2 is
required for differentiation of certain retinal ganglion cells
[95]. One study has concluded that Brn-3.1 and 3.2 have
opposite effects on a target promoter [96]. Considering that
the Brn3 family of transcription factors is expressed in the
peripheral nervous system, these proteins may regulate HSV
gene expression during the latency-reactivation cycle.
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Following infection of primary neurons, ICP0 does not
appear to accumulate in the nucleus of infected cells [97].
An independent study also concluded that the function of
ICP0 is impaired in human neuronal-like cells because a
nuclear structure (ND10) that ICP0 interacts with is different
compared to nonneuronal cells [98]. The same neuronal-
like cells do not support efficient viral replication, in part,
because ICP0 expressing plasmids do not activate viral
transcription efficiently. These studies argue that ICP0 does
not function efficiently in neuronal cells and thus productive
infection is inhibited.

2.2.4. The LAT Promoter Is Neuronal Specific. In sharp
contrast to other HSV-1 promoters, the promoter that directs
expression of the latency-associated transcript (LAT) is
activated in sensory neurons (see Figure 2 for a schematic of
the HSV-1 LAT promoter). Two separate promoter fragments
that are upstream of the start site of LAT, latency-associated
promoter 1 and 2 (LAP1 and LAP2), can cis-activate a
reporter gene in transiently transfected cells [99, 100].
Several studies have demonstrated that sequences spanning
the TATA box, LAP1, are critical for directing LAT expression
in sensory neurons [99, 101–104]. LAP2 promoter has been
proposed to promote expression of the stable 2 Kb LAT
expression during productive infection of cultured cells.
LAP2 may also play a role in promoting long-term expression
of LAT in sensory neurons or may activate expression
of novel transcripts during specific stages of infection in
sensory neurons. Although the LAT promoter elements have
neuronal specificity in transient transfection assays, they
can also direct expression of a reporter gene in nonneural
cells [105–109]. This may reflect the abundance of cellular
transcription factor binding sites within the LAT promoter
(Figure 2(c)). Many of these transcription factors are present
in nonneural cells and can activate the LAT promoter in
transiently transfected cells. For example, the two CRE
binding sites in the LAT promoter are functional because
cAMP activates the promoter [110, 111]. The CRE motif that
is proximal to the TATA box is important for expression in
neurons, and its presence has a positive effect on reactivation
from latency [111–113]. Furthermore, Sp1, YY1, USF, and
CAAT are frequently found in RNA polymerase II promoters
that are not neural specific. Neuronal specific factors have
been identified that bind to the LAT promoter [111–113].
The finding that the IE protein, ICP4, binds to DNA
sequences downstream of the TATA box and represses the
LAT promoter is one important reason why LAT is not an
abundant transcript during productive infection [107].

Long-term expression of LAT has also been examined
in the context of the viral genome [122–125]. These studies
have demonstrated that LAP2 sequences function as a long-
term enhancer (Figure 2(c)) in latently infected mice. LAP2
also appears to maintain LAP1 promoter activity. Although
DNA sequences within the LAT promoter activate RNA
expression in sensory neurons, neuronal specificity does not
appear to be contained into a single cis-acting motif. As
expected, the LAT locus is transcriptionally active during
latency and is associated with acetylated histones, whereas
ICP0 expression is repressed and hypoacetylated [126].

2.3. Viral Gene Expression Is Restricted during

Latency to the LAT Locus

2.3.1. LAT Is Abundantly Expressed in Sensory Neurons during
Latency. LAT is abundantly transcribed in latently infected
neurons of mice, rabbits, or humans [1, 104, 114, 115, 127–
131]. Mice, rabbits, or humans latently infected with HSV-
1 express LAT, and LAT is predominantly detected in the
nucleus. LAT is complementary to ICP0 and overlaps the
ICP0 transcript (Figure 2(b)), suggesting that LAT inhibits
ICP0 expression by an antisense mechanism. Although the
ability of LAT to repress ICP0 expression may be important,
LAT sequences that promote spontaneous reactivation in a
rabbit ocular model do not overlap ICP0 [132]. The simplest
interpretations of these data are that LAT has more than one
function or the ability of LAT to repress ICP0 expression is
not that important in the small animal models used to study
latency.

Detection of thymidine kinase and ICP4 transcripts, in
addition to LAT, in TG of latently infected mice [133] appears
to be the result of spontaneous reactivation or unsuccessful
reactivation from latency [134, 135]. Viral genome positive
neurons that are LAT negative can be detected in latently
infected mice [24]. Since in situ PCR was used to detect
viral DNA, but in situ hybridization was used to detect LAT,
neurons expressing low levels of LAT were likely missed.

Splicing of the 8.5 Kb LAT transcript yields an abundant
2 Kb LAT and an unstable 6.5 Kb LAT [109, 114, 128]
(Figure 3). Correct splicing of the 2 Kb LAT is necessary
for establishment and maintenance of latency [139, 140].
In general, the stable 2 Kb LAT is not capped, is poly A-
appears to be circular, and is a stable intron [141, 142].
Although LAT is predominantly detected in the nucleus,
it is also present in the cytoplasm [143–145] and is asso-
ciated with polyribosomes [143, 146] or splicing factors
[143].

2.3.2. Small Nonprotein Coding RNAs Are Encoded within the
LAT Locus. Small noncoding RNAs can regulate gene expres-
sion [147, 148], promote neuronal differentiation [149], or
inhibit apoptosis [150]. There are numerous types of small
noncoding RNA: short interfering (si) RNA [151], small
temporal RNA [152], heterochromatic siRNA [153], tiny
noncoding RNAs [154], and micro-RNAs (miRNAs) [155].
miRNAs are nonprotein coding RNA molecules that are
synthesized in the nucleus as 70–90 nucleotide precursors,
and then processed into 21–23 nucleotide single-stranded
RNA by the Dicer nuclease in the cytoplasm [155]. Dicer
also processes siRNA. Following the discovery of 5 miR-
NAs encoded within the Epstein-Barr virus genome [156],
miRNAs have been identified in Kaposis sarcoma-associated
virus [157–159], mouse gammaherpesvirus 68 [157], human
cytomegalovirus [157, 160, 161], HSV-1 [156, 162], Marek’s
disease virus [163], and simian virus (SV40) [164].

A study by Umbach et al. [136] concluded LAT is
a miRNA precursor that encodes four miRNAs, and two
within LAT promoter sequences (Figure 3(a)). One of these
miRNAs, LAT miR-H6, inhibits ICP4 protein levels but not
ICP4 RNA levels. ICP0 protein levels, but not RNA levels,
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Figure 2: Location of genes within the HSV-1 repeats. (a) UL and US denote the unique sequences of the long (L) and short (S) components
of the genome. The boxes depict repeat sequences. (b) Transcription map of the repeat region. Location and orientation of LAT [114, 115],
ICP0, γ134.5 [116, 117], ORFP [118], L/STs [119] are indicated by solid lines. Partially mapped transcripts (αX and βX) are denoted by
dashed arrows [120, 121]. (c) The LAT promoter contains numerous cis-acting sites that can be bound by cellular transcription factors.
Binding of ICP4 to the ICP4 binding site in the LAT promoter inhibits promoter activity [107]. In transient transfection assays, the LAT
promoter can be divided into a strong promoter (LAP1) and a weaker promoter (LAP2) [99, 100]. For details of transcripts encoded by LAT,
see Figure 3.

are inhibited by another LAT miRNA, miR-H2-3p. The
authors conclude that suppression of ICP0 and ICP4 by these
miRNAs “facilitates the establishment and maintenance of
viral latency.” Since the six LAT-specific miRNAs are not
located within the first 1.5 kb of LAT coding sequences,
they may only play a supportive role during the latency-
reactivation cycle in small animal models of infection. The
fact that LAT-specific miRNAs inhibit ICP0 or ICP4 suggests
that they enhance the establishment or maintenance of
latency. In the context of the latency-reactivation cycle in
small animal models, it is unlikely, they are crucial when
compared to the first 1.5 kb of LAT coding sequences.

Two additional small RNAs (s-RNAs) are encoded within
the first 1.5 kb of LAT coding sequences (LAT s-RNA1 and
s-RNA2) [138] (Figure 3(b)). Expression of LAT s-RNA1
and s-RNA2 is readily detected in trigeminal ganglia of
latently infected mice [165]. LAT s-RNA2 inhibits ICP4
protein expression, but not RNA expression. LAT s-RNA1
inhibits productive infection approximately 1,000-fold in
transient transfections assays, whereas LAT s-RNA2 only
inhibits productive infection 5-fold [165]. These LAT s-RNAs
may not be miRNAs because they lack Dicer cleavage sites
and a mature miRNA band that migrates between 21 and
23 nucleotides was not detected. LAT s-RNA1 and s-RNA2
would not have been identified using the methods described

by Umbach et al. [136] because they size selected RNA species
migrating between 17 and 30 nucleotides, and LAT s-RNA1
is 62 nt long and LAT s-RNA2 is 36 nt long.

2.3.3. Novel Transcripts Are Expressed within LAT Coding
Sequences. Sequences that encompass LAT also encode sev-
eral additional transcripts. For example, novel transcripts
within the LAT promoter region have been reported [166].
More recently, a transcript and protein, UOL (Upstream
of LAT), was identified that is encoded within the LAT
promoter regulatory region [167]. Deletion of UOL does not
dramatically reduce the spontaneous reactivation phenotype
in rabbits [168]. Another transcript, antisense to LAT (AL),
is expressed within the first 1.5 kb of LAT coding sequences
and the start site of the LAT promoter and appears to encode
a protein [169] (see Figure 3 for location of UOL and AL).

Two small ORFs that are also antisense to LAT (AL2
and AL3) have been identified within the first 1.5 kb of LAT
coding sequences (Figure 3(b)). A transcript within the first
1.5 kb of LAT coding sequences (AL3) is expressed during
productive infection and in trigeminal ganglia of latently
infected mice [170]. Like AL, AL3 is antisense with respect
to LAT. An AL3 protein was also detected in cells transfected
with an AL3 expression vector, and in trigeminal ganglia of
infected mice. Conversely, an AL3 protein was not detected
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during productive infection, in part, because the 5′ terminus
of the AL3 transcript is downstream of the first in frame
methionine of AL3. It is not currently known whether a
transcript encompassing AL2 is expressed during productive
infection or during latency. It remains to be seen whether
AL2 or AL3 plays a role in the latency-reactivation cycle of
HSV-1.

2.4. LAT Regulates the Latency-Reactivation Cycle. As dis-
cussed above, the latency-reactivation cycle of HSV-1 can
be operationally defined in 3 steps: establishment of latency,
maintenance of latency, and reactivation from latency
(summarized in Figure 1). In a human being, latency is
maintained for the life of the host, indicating that a well-
conceived strategy exists that allows for periodic reactivation,
while maintaining the viral genome in sensory neurons.

Numerous HSV-1 mutants that do not express detectable
levels of LAT have been constructed and tested in animal
models [17, 171]. Although a couple of studies have sug-
gested that LAT plays no role in a latent infection [172, 173],
most have concluded that LAT is important but not required.

LAT enhances establishment of latency in mice [174, 175]
because certain LAT-mutants contain lower levels of viral
DNA in murine TG relative to wild type virus [21, 176].
Furthermore, LAT enhances establishment of latency in the
rabbit eye model and consequently reduces reactivation from
latency [177]. The finding that LAT represses productive viral
gene expression in TG of mice during acute infection [178,
179] supports the studies concluding that LAT facilitates
establishment of latency. When considering the role that LAT
plays in reactivation from latency, its role in establishing
latency must be taken into consideration.

LAT enhances establishment of latency in mice [174,
175] or rabbits [180] because certain LAT mutants contain
lower levels of viral DNA in TG relative to wt virus [21,
176]. LAT represses productive viral gene expression in
TG of mice during acute infection [178, 179] supporting
the concept that LAT facilitates establishment of latency.
The HSV-1 McKrae strain is frequently shed in tears of
infected rabbits as a result of spontaneous reactivation,
and LAT is crucial for spontaneous reactivation [177, 181–
184]. Furthermore, HSV-1 17syn+ strains with deletions in
LAT coding sequences do not reactivate efficiently using the
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rabbit eye model [185, 186]. Although LAT overlaps the
ICP0 transcript, LAT sequences that promote the latency-
reactivation cycle in rabbits do not overlap ICP0 [132].

LAT is also important for in vivo reactivation using two
different rabbit eye infection models. The McKrae strain of
HSV-1 is frequently shed in the tears of infected rabbits as a
result of spontaneous reactivation [177, 181, 183, 184, 187].
In contrast, spontaneous reactivation is severely impaired
if the LAT gene is deleted. However, these same LAT-
mutants grow with the same efficiency as wild-type virus
in cultured cells and in ocular tissue of infected rabbits.
The first 1.5 Kb of the gene encoding LAT is sufficient
for spontaneous reactivation from latency [177] (Figure 3).
Since this region does not overlap ICP0, antisense repression
of ICP0 expression by LAT does not appear to be required
for spontaneous reactivation in the rabbit model. HSV-1
17syn+ strains that have deletions in the LAT promoter and
5′ region of the gene encoding LAT (approximately 1,200
base pair) also do not reactivate efficiently in a rabbit eye
model [185, 186].

It is not clear whether LAT encodes a protein that
regulates the latency-reactivation cycle. Although certain
studies suggested that LAT does not encode a protein [137],
several studies have concluded that a protein encoded within
LAT sequences is expressed [118, 167, 188–192]. These
proteins were suggested to substitute for ICP0 functions
[191, 192], interfere with binding of ICP4 to DNA [190],
or their functions were not described. These proposed LAT
proteins map downstream of the critical first 1.5 kb of the
primary LAT transcript, a region that appears both sufficient
and necessary for LAT’s antiapoptosis activity and its ability
to support a wild type spontaneous reactivation phenotype
[177, 193]. Within the first 1.5 kb of LAT coding sequences,
8 potential ORFs have been identified in the strain McKrae
[137] (summarized in Figure 3(b)). A recent study has
provided evidence that L2 (Figure 3(b)), which is located
in the first 1.5 kb of LAT coding sequences, appears to be
expressed in TG of latently infected mice [194]. In summary,
the gene encoding LAT does not appear to be absolutely
required for latency in small animal models. However, the
importance of LAT may be underestimated using small
animal models and measuring latency in terms of weeks or
months, not decades. The involvement of a LAT encoded
protein in the latency-reactivation cycle is unclear.

2.5. HSV-1 Encodes Several Genes That Regulate Apoptosis

2.5.1. Genes Expressed during Productive Infection Inhibit
Apoptosis. Many viruses induce apoptosis in cultured cells
[195–198]. Killing of infected cells by apoptosis in vivo
can reduce inflammation, alter immune recognition, reduce
burst size, and thus prevent virus spread. Members of
the Alphaherpesvirinae subfamily induce apoptosis after
infection of cultured cells [199–202]. HSV-1 can also induce
or inhibit apoptosis in a cell type dependent manner after
infection of cultured cells [200, 201, 203–205]. Several
antiapoptotic genes encoded by HSV-1 (ICP27, Us3, Us5, gJ,
gD, and LAT) have been identified [200, 201, 203, 204, 206–
212]. Us3 is a protein kinase that, in the absence of other

HSV-1 proteins, inhibits cleavage of BAD and formation of
the proapoptotic form of BAD. Us3 is the only viral protein
required for preventing caspase 3 activation, which is the
“point of no return” following apoptosis induction. The
presence of several HSV-1 antiapoptotic genes suggests that
they have specific roles following infection of humans.

HSV infection can induce apoptosis by several distinct
mechanisms. For example, HSV induces DNA damage, even
in the absence of productive infection [213–217]. DNA
damage is a potent stimulus for apoptosis [217]. When
expressed from baculovirus expression vectors, Us1.5 and
UL13 can activate caspase 3 [218]. As expected, Us3 can
inhibit the proapoptotic activity of Us1.5 and UL13 because
it can interfere with caspase 3 activation.

2.5.2. LAT Inhibits Apoptosis. LAT interferes with apoptosis
in transiently transfected cells and TG of infected mice
or rabbits [139, 219–221]. LAT expressing plasmids inhibit
caspase 8- and caspase 9-induced apoptosis [222, 223], the
two major apoptotic pathways in mammals [224–226]. LAT
also inhibits caspase 3 activation [227]. The antiapoptosis
functions of LAT correlate with promoting spontaneous
reactivation [219, 222]. In fact, inhibiting apoptosis appears
to be the most important function of LAT because three
different antiapoptosis genes [228–231] restore wt levels of
spontaneous reactivation to a LAT null mutant.

LAT s-RNA1 and s-RNA2 (Figure 3) cooperate to inhibit
cold-shock-induced apoptosis in transiently transfected
mouse neuroblastoma cells [165]. Introduction of ATG→
TTG mutations in ORFs within the first 1.5 kb of LAT
coding sequences impairs the antiapoptotic functions of LAT
[232] suggesting that LAT encodes a functional protein or
alters RNA structure. Two of these ATG→TTG mutations
are within LAT sRNA1 and sRNA2, and introducing these
mutations into both small RNAs inhibits their ability to
inhibit apoptosis [165]. Although this suggests that the LAT
sRNAs mediate the antiapoptotic functions of the first 1.5 kb
of LAT coding sequences, there may be additional functions
within this region that have antiapoptosis functions.

2.6. Model Describing How LAT Regulates the Latency-
Reactivation Cycle. Based on published studies, a working
model has been devised to explain how LAT regulates
the latency-reactivation cycle. During acute infection of
TG (1–4 dpi), extensive viral gene expression occurs [70–
72]. The toxic effects of HSV-1 infection, in particular
ICP0 [233, 234], US1.5, and UL13 [218], make neurons
vulnerable to damage and death. The ability of HSV to
induce DNA damage [213, 215, 216, 235] would also
stimulate the mitochondrial pathway of apoptosis [217]. The
antiapoptotic properties of US3, US5, gD, gJ, ICP27, and
LAT would promote neuronal survival during acute infection
[139, 165, 200, 201, 203, 204, 209, 219–223]. Deletion of
LAT might not have a dramatic effect on apoptosis frequency
during the early stages of acute infection because the other
viral antiapoptotic genes are expressed.

During transition from acute infection to latency (estab-
lishment of latency), viral gene expression is extinguished.
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The ability of the LAT micro-RNAs to inhibit ICP0 and ICP4
proteins expression [136] as well as the ability of LAT sRNA1
and LAT sRNA2 to inhibit productive infection [165] are
likely to promote the establishment of latency. Furthermore,
LAT would be the only viral antiapoptotic gene abundantly
expressed during the establishment of latency. Neurons in
which extensive viral gene expression had occurred during
acute infection (permissive neurons) would be vulnerable to
apoptosis in the absence of LAT expression. Nonpermissive
neurons that harbor viral genomes would have suffered low
levels of viral induced damage and thus would have a higher
probability of survival in the absence of LAT. In mice, subsets
of neurons have been identified in TG and the ability of HSV-
1 to infect these neurons is different [236], supporting the
concept that permissive and nonpermissive neurons exist.

The antiapoptosis functions of LAT would also appear
to be crucial for protecting neurons from apoptotic stimuli
during the maintenance of latency because it is the only
viral gene that is abundantly expressed (Figure 1). In fact,
during latency, LAT does have an effect on the number
of surviving neurons following infection of mice [237].
Furthermore, the ability of LAT micro-RNAs [136] and LAT
sRNA1 or LAT sRNA2 [165] to inhibit viral gene expression
and/or productive infection would promote maintenance of
latency. Since LAT sRNA1 and LAT sRNA2 [165] are located
within the first 1.5 kb of LAT coding sequences, these small
RNAs appear to be more important than the LAT micro-
RNAs. However, the ability of the respective LAT noncoding
RNAs to inhibit viral gene expression or productive infection
is not as important as inhibiting apoptosis because three
different antiapoptosis genes restore wt levels of spontaneous
reactivation to a LAT null mutant [228–231].

The response of the central or peripheral nervous system
to trauma, stress, or immunosuppression plays an important
role during reactivation from latency. Stress leads to elevated
corticosteriod levels, which has rapid effects on neural activ-
ity [238, 239]. Dexamethasone, a synthetic corticosteriod,
induces viral gene expression [240], stimulates an HSV-1
origin of replication (Ori-L) in neuronal cells [50], and
alters splicing patterns in the absence of protein synthesis
[241]. Corticosteroids, or other forms of stress or trauma can
induce neuronal neurodegeneration and/or apoptosis [242–
248]. Since reactivation induces productive gene expression,
all HSV-1 antiapoptotic genes would be expressed and
should prolong neuronal survival, thus enhancing virus
production.

2.7. Cell-Mediated Immune Responses Are Important for

the Latency-Reactivation Cycle

2.7.1. Infiltration of Lymphocytes to TG during Acute Infection.
Several independent studies have demonstrated that T cells,
CD8+ T lymphocytes in particular, are crucial for controlling
HSV infection in sensory ganglia [249, 250]. During acute
infection, HSV antigen expression increases until 3 dpi in TG
but is undetectable at 7 dpi [251]. Coincident with a decline
of HSV antigen in TG there is an increase in Mac-1+ cells,
macrophages, natural killer cells (NK), and certain CD8+

cells. No cells with characteristic lymphoid cell morphology
can be detected in uninfected TG. After 5 dpi, the number
of CD8+ T cells, F4/80+ cells (macrophages), and γδ T cells
increases dramatically. At 3 dpi, TG neurons that are viral
antigen positive can be detected that are surrounded by
nonneural cells expressing TNF-α, IL-6, or IFN-γ [252]. Cells
that express IL-2 or IL-4 are detected later after infection
when viral antigens are difficult to detect. The number of
cells producing IFN-γ and IL-4 increases between 3 and 7 dpi
but the same cells do not appear to produce both factors
[251]. At 7 days after infection, transcripts encoding IL-2, IL-
10, IFN-γ, TNF-α, or RANTES (regulated upon activation,
normal T cell expressed and secreted mRNA) are detected by
RT-PCR [253]. By ELISA, IL-2, IL-6, IL-10, and IFN-γ are
detected at the same time confirming the RT-PCR results.
The same cellular antigens were not detected in TG from
uninfected mice indicating that these changes were induced
by infection.

2.7.2. Persistence of Lymphocytes in the Peripheral Nervous
System during Latency. If true latency of HSV is established,
cytokine expression in TG would not be detected. However,
several studies have concluded that a persistent cell-mediated
immune response occurs in TG during latency, and that T
cells, CD8+ T lymphocytes in particular, inhibit reactivation
from latency [249–251, 254–258].

The obvious explanation for persistence of immune
effecter cells in TG is that low levels of viral proteins
are expressed and an immune response occurs. A careful
examination of TG neurons for viral gene expression in
HSV-1 latently infected mice (37–47 days after infection)
demonstrated that abundant viral transcripts, viral protein,
and viral DNA replication occur in approximately 1 neuron
per 10 TG [259]. Infectious virus is not detected in these
mice confirming that they were latently infected. Neurons
expressing high levels of HSV-1 transcripts are invariably
surrounded by foci of infiltrating white blood cells. The term
“spontaneous molecular reactivation” has been coined to
describe these rare neurons [259].

2.7.3. Interferon Can Inhibit Reactivation from Latency.
Persistence of the immune system in TG during latency is
believed to play a role in the latency-reactivation cycle. CD8+

T cells that produce interferon-γ play an important role in
preventing reactivation from latency in sensory neurons in
mice latently infected with HSV-1 [256, 257]. Two inde-
pendent studies have also concluded that interferon-α and
interferon-γ control recurrent herpetic lesions [260, 261].
In addition to interferon, lymphocyte-mediated cytotoxicity
could inhibit virus spread in TG. Lymphocyte-mediated
cytotoxicity induces two potent apoptotic pathways: the
granule exocytosis and the Fas-Fas ligand pathways [262,
263]. The granule exocytosis pathway is employed predom-
inantly by CD8+, natural killer, and lymphokine-activated
killer cells. A recent study has demonstrated that release of
granzyme B from CD8+ T cells into latently infected neurons
helps to inhibit reactivation from latency by cleaving ICP4
[264]. Since it is well established that granzyme B activates
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caspase 3 and the intrinsic pathway of apoptosis [265], the
ability of LAT to inhibit apoptosis during maintenance of
latency appears to be important.

3. Conclusions

HSV-1 latency is a complicated virus host interaction that
is crucial for virus transmission, survival in nature, and
recurrent disease. Numerous studies have indicated that
sensory neurons are the primary site for latency. Since LAT
is abundantly expressed in latently infected neurons, it is
not surprising to find that LAT is important for the latency-
reactivation cycle in small animal models. It is currently
not clear whether expression of a LAT protein is important.
Given the fact that several LAT small RNAs, including 6
known micro-RNAs, are expressed during latency implies
that these small nonprotein coding RNAs are important for
life-long ltency in humans. The finding that LAT sRNA1
and sRNA2 cooperate to inhibit apoptosis and also can
inhibit productive infection supports a regulatory role for
these small RNAs during the latency-reactivation cycle. It
is also possible that additional transcripts encoded within
LAT coding sequences (AL, AL3, or UOL) play a role in the
latency-reactivation cycle. It will be necessary to design viral
mutants that do not express these respective factors and then
test the ability of these viruses to reactivate from latency in
small animal models of infection.
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