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Abstract
Analysis of natural selection is key to understandingmany core biological processes, including the emergence of competition,
cooperation, and complexity, and has important applications in the targeted development of vaccines. Selection is hard to
observe directly but can be inferred from molecular sequence variation. For protein-coding nucleotide sequences, the ratio
of nonsynonymous to synonymous substitutions (ω) distinguishes neutrally evolving sequences (ω = 1) from those sub-
jected to purifying (ω < 1) or positive Darwinian (ω > 1) selection. We show that current models used to estimate ω
are substantially biased by naturally occurring sequence compositions. We present a novel model that weights substitutions
by conditional nucleotide frequencies and which escapes these artifacts. Applying it to the genomes of pathogens causing
malaria, leprosy, tuberculosis, and Lyme disease gave significant discrepancies in estimates with ∼10–30% of genes affected.
Our work has substantial implications for how vaccine targets are chosen and for studying the molecular basis of adaptive
evolution.
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Introduction
Application of ω to identify balancing natural selection act-
ing on Major Histocompatibility Complex genes (Hughes
andNei 1988) stimulated thewidespread use of this statistic
to identify genes involved in the evolution of new function
(Messier and Stewart 1997); protection against pathogens
including Plasmodium (Hall et al. 2005), HIV (Iversen et al.
2006), and influenza (Mes and van Putten 2007); evolution
of drug resistance in pathogens (Seoighe et al. 2007); and
to provide decision support in vaccine design (Mes and
van Putten 2007). Its estimation is an integral part of most
published genome projects, and estimates are included in
routine reports generated from genome portals (Hubbard
et al. 2009).

In the most popular approaches to estimating ω,
continuous-time Markov processes are used to model sub-
stitutions between codons. Substitutions are specified by
an instantaneous rate matrix (Q ) with parameters repre-
senting the frequencies of different nucleotides or codons
in the end state sequence being changed to (π) and rate pa-
rameters that represent the relative rate of different kinds
of codon change (e.g., ω and κ—the ratio of transition to
transversion substitutions). In these models, when ω = 1,
Q purportedly represents the neutral process. The complete
specification of Q is used to compute the probabilities of
substitution from any one codon to any other codon (for
review, see Liò and Goldman 1998).

Codon models used to estimate ω must be correctly
calibrated, that is, ω should equal 1 for neutrally evolv-
ing sequences, and ω should not be confounded by base

composition or other properties of the sequences being
compared. Two types of model are currently used to esti-
mate ω, which differ in their definition of π; one defines π
from nucleotide frequencies (NF; Muse and Gaut 1994) and
the other from codon frequencies (CF; Goldman and Yang
1994). Thus, for example, Q (AGC,AAC), the element of Q
corresponding to the codon change AGC → AAC, is de-
fined as π(A)κω in NF models and π(AAC)κω in CF mod-
els, where π(A) and π(AAC) are the frequencies of A and
AAC, respectively. The NF model therefore has 57 fewer pa-
rameters than the CFmodel. Thesemodel forms are defined
more thoroughly in Theory and Methods.

In NF models, equilibrium codon frequencies are the
product of nucleotide frequencies (adjusted to account
for stop codons). However, nucleotides, even in noncod-
ing regions, are subject to context effects of neighboring
nucleotides and do not evolve independently (Blake et al.
1992; Karlin et al. 1998). In coding regions, nonmultiplicative
codon frequencies may originate from context-dependent
substitution processes, selection on synonymous sites
(Chimpanzee Sequencing and Analysis Consortium 2005),
or both. The influence of natural selection on codon usage
ismost pronounced inmicrobial genomes (Sharp et al. 2005;
dos Reis andWernisch 2009). Because codons never occur at
frequencies that can be derived multiplicatively from their
composite nucleotide frequencies, NF models will typically
exhibit poorer fit to data than CF models (Lindsay et al.
2008) and may give biased estimates of ω.

Although the codon frequencies under CF models
will better match the observed frequencies, the estimate
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ofω is confoundedby components ofπ (Lindsay et al. 2008).
For example, for the codon change AGA → AGT, in the
case that the three sites evolve independently, the end state
weighting under theNFmodel is just π(T). For the CFmodel
applied in this context, the additional product π(A)×π(G)
is included because π(AGT) = π(A)× π(G)× π(T). So be-
cause the CF instantaneous rate matrix is defined for sin-
gle nucleotide events, multiplying ω by the frequency of
the entire neighborhood, rather than just the ending state,
causesω estimates to behave in a counterintuitiveway. Crit-
ically, the CF model can indicate context effects that do not
exist (Lindsay et al. 2008), which may cause CF to gener-
ate estimates of ω �= 1 even for neutrally evolving DNA
sequences.

Here we demonstrate that ω estimated from both exist-
ing codon model forms are strongly affected by sequence
composition, and we present a novel model form that
avoids this flaw. We confirm the predicted sensitivities of
the existing model forms using simulated data. We further
demonstrate that the properties that cause these models
to err are common in nature, particularly so in pathogen
genomes. By an analysis of real biological sequences, we es-
tablish that the new model form is the most robust to the
complexity of naturally occurring neutral evolutionary pro-
cesses, confirming it as the most reliable choice for inferring
the mode of natural selection.

Theory and Methods

A New Codon Model Form
We propose overcoming the drawbacks of the CF and NF
models with an alternative model where substitution rates
are weighted by the frequency of a nucleotide at one codon
position, conditional on the nucleotides at the other two
codon positions. For example, the change TAC → TAT is
weighted by the frequency of T at the third codon position,
conditional on TA at codon positions 1 and 2. This con-
ditional nucleotide frequency (CNF) model has the same
number of π parameters as the CF model and shares its
property of readily achieving the observed codon frequen-
cies, but because, like the NFmodel, it weights substitutions
by nucleotide frequencies, it avoids the confounding effect
of sequence composition on ω.

We only consider reversible Markov substitution pro-
cesses on trinucleotides where every event involves exactly
one nucleotide. The rate of substituting a = i1i2i3 by a dis-
tinct b = j1j2j3 has the form

Q (a , b ) =

⎧⎨
⎩
r(a , b )π(b ), a and b differ in exactly one

position,

0, otherwise,
(1)

where π is the equilibrium frequency vector and r is a
symmetric matrix. This parameterization is called tuple
frequency (TF) in Lindsay et al. (2008), but because our
chief interest is in codons, we call it CFtri. We propose an
alternative parameterization of the models, called CNFtri

(conditional nucleotide frequency):

Q (a , b ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

rc(a , b )π1|j2,j3(j1), i1 �= j1, i2 = j2, i3 = j3,

rc(a , b )π2|j1,j3(j2), i1 = j1, i2 �= j2, i3 = j3,

rc(a , b )π3|j1,j2(j3), i1 = j1, i2 = j2, i3 �= j3,

0, otherwise,
(2)

where rc is symmetric and π1|j2,j3(·) is the conditional fre-
quency of the first position given that the second and third
nucleotides are j2 and j3, etc., computed from the equilib-
rium frequency vector π.

Using the definition of conditional probability, for exam-
ple, π1|j2,j3(j1) = π(j1j2j3)/π2,3(j2, j3), it can be readily seen
that equations (1) and (2) define the same models and that
a given CNFtri model can be specified as a CFtri by

r(a , b ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

rc(a , b )/π2,3(j2, j3), i1 �= j1, i2 = j2, i3 = j3,

rc(a , b )/π1,3(j1, j3), i1 = j1, i2 �= j2, i3 = j3,

rc(a , b )/π1,2(j1, j2), i1 = j1, i2 = j2, i3 �= j3,

0, otherwise,
(3)

and vice versa.
In equation (2), replace the conditional frequencies

π1|j2,j3(j1), π2|j1,j3(j2), and π3|j1,j2(j3) by πnu(j1), πnu(j2), and
πnu(j3), respectively, where πnu is a set of nucleotide fre-
quencies. This defines a restricted set of models, called
NFtri (nucleotide frequency). If we have a CNFtri form
with a homogeneous multiplicative π, that is, π(a) =
πnu(i1)πnu(i2)πnu(i3) for some πnu, then it is in NFtri be-
cause conditional frequencies reduce to πnu terms. Thus,
NFtri is a “simple” special case of the parameterization CNFtri
but not CFtri.

The symmetric part r or rc in themodels, with 96 free pa-
rameters, makes it challenging to fit even large genomic data
sets. An obvious solution is to make r or rc “nucleotide like”,
that is, the terms are determined only by the nucleotide
changes, so that there are only six parameters in r or rc. We
call these submodels CFtri,GTR, CNFtri,GTR, and NFtri,GTR, re-
spectively. The reason for using the subscript GTR (general
time reversible model; Lanave et al. 1984) is as follows. The
reversible nucleotide process GTR has rates

q(i , j ) = rnu(i , j )πnu(j ), i �= j , (4)

where rnu is symmetric andπnu is the nucleotide equilibrium
frequency vector. By a simple extension of the argument in
Lindsay et al. (2008), three independent nucleotides evolve
with

Q (a , b ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

rnu(i1, j1)πnu(j1), i1 �= j1, i2 = j2, i3 = j3,

rnu(i2, j2)πnu(j2), i1 = j1, i2 �= j2, i3 = j3,

rnu(i3, j3)πnu(j3), i1 = j1, i2 = j2, i3 �= j3,

0, otherwise,
(5)

which is in NFtri,GTR. Conversely, every NFtri,GTR is a nu-
cleotide GTR process. The parameterizations and models
are summarized in table 1.
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Table 1. Trinucleotide Model Notation.

Frequency General r Nucleotide r With Selection

Trinucleotide CFtri CFtri,GTR CFtri,GTR,s
Conditional nucleotide CNFtri CNFtri,GTR CNFtri,GTR,s
Nucleotide NFtri NFtri,GTR NFtri,GTR,s

NOTE.—Frequency: state frequencies used to weight exchanges; General r : r
is constrained only to be symmetric (eq. 3); Nucleotide r : r is specified by
nucleotide terms only; With Selection: introduces an analog of ω into the
model. CFtri and CNFtri are different parameterizations of the same models.
CFtri,GTR and CNFtri,GTR are different models: nucleotide GTR processes
(NFtri,GTR) are simple special cases of CNFtri,GTR but are not contained in
CFtri,GTR.

CNFtri,GTR specializes very easily to give the nucleotide
GTR processes, NFtri,GTR: just let π be homogeneous mul-
tiplicative. However, NFtri,GTR is not even in CFtri,GTR unless
π is quite special, for example, uniform. If we try to repre-
sent equation (5) in CFtri,GTR, πmust be homogeneous mul-
tiplicative, so that

rnu(A , C )πnu(C ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q (AAA ,AAC )
= r(A , C )πnu(A )2πnu(C ),

Q (CAA , CAC )
= r(A , C )πnu(A )πnu(C )2,

which is inconsistent unless πnu(A ) = πnu(C ). The nu-
cleotide GTR processes are in general not in CFtri,GTR; rather,
they appear in CFtri as cumbersome special cases.

We now describe a fundamental flaw in the CF mod-
els by introducing “selection” to trinucleotide substitution
processes. Let CFtri,GTR,s denote the extension of CFtri,GTR to
encompass the influence of selection, multiplying “nonsyn-
onymous” rates with a constant positive ω. Thus, CFtri,GTR
is a subset corresponding to ω = 1. Define CNFtri,GTR,s and
NFtri,GTR,s similarly. Suppose the true process is GTR (with
nonuniform πnu). This is a neutral process in CNFtri,GTR and
NFtri,GTR but not in CFtri,GTR as shown in the previous para-
graph. Thus, the standard theory does not conclude that
the likelihood ratio test (LRT) statistic for CFtri,GTR within
CFtri,GTR,s has an asymptotic χ21 distribution. In contrast, the
null distribution of the LRT statistic for CNF is asymptoti-
cally χ21. In addition, we expect the estimation of ω = 1 to
be consistent with CNF but not with CF.

Codon models are derived from trinucleotide models
by dropping the stop codons. The abbreviations for codon
models are consistent with the trinucleotide models, by
dropping the subscript ‘tri’. The CFGTR model is defined
by equation (1) with a sense codon frequencies π consist-
ing of 61 entries; this is the family pioneered by Goldman
and Yang (1994). CNFGTR is defined by equation (2) with
conditional probabilities computed from a sense codon fre-
quencies. Lastly, NFGTR, specified with some nucleotide fre-
quencies πnu, is a generalization of the family pioneered by
Muse and Gaut (1994). The subscript HKY after Hasegawa
et al. (1985) is used instead of GTR in the special case where
the r or rc terms take only two possible values, depending
onwhether the substitution is a transition or a transversion.
The codon parameterizations and models are summarized
in table 2.

Table 2. Codon Model Notation.

Frequency General r Nucleotide r

Codon CF CFGTR
Conditional nucleotide CNF CNFGTR
Nucleotide NF NFGTR

NOTE.—Column headers are as per table 1. CF and CNF are different param-
eterizations of the same models. CFGTR and CNFGTR are different models.
The special case of CNFGTR when π is homogeneous multiplicative is CNF× .
NFGTR is not CNF× because of the stop codons.

For trinucleotides, NFtri is a special case of CNFtri when
π is homogeneous multiplicative. This is not the case for
codons, that is, when the sense codon frequencies π is pro-
portional to a homogeneous multiplicative trinucleotide
frequency, the special case, denotedbyCNF×, is close to, but
not the same as, NF. Call four trinucleotides that agree in ex-
actly two positions a close quartet. If a close quartet consists
of only sense codons, the exchanges among them have the
same rates under CNF× andNF because the codon frequen-
cies in the former are exactlyπnu. However, this breaks down
if a close quartet contains less than four sense codons. For
example, under NFGTR, Q (TAT, TAC) = rc(T, C)πnu(C),
but under CNF×,GTR, it is

rc(T, C)π3|TA(C) = rc(T, C)
πnu(C)

πnu(T) + πnu(C)

because of the stop codons TAA and TAG.
The selection parameter ω in the codon models plays a

similar role as the context terms featured in dinucleotide
models investigated by Lindsay et al. (2008). Hence, it is not
surprising that pitfalls associated with CF/TF carry over to
the trinucleotide case. Because the stop codons prevent a
complete theoretical argument as presented in Lindsay et
al., here is an approximate approach. A codonmodel should
conclude thatω is 1 if the underlying substitution process is
the nucleotideGTR. Because the codonmodel CFGTR is simi-
lar to the trinucleotide model CFtri,GTR, we expect estimates
of ω from CFGTR to be biased, concluding positive or neg-
ative selection when there is none. Analogously, the good
properties of the codon version of CNFGTR should hold by
virtue of its similarity to the trinucleotide version. We test
these predictions by analyses of simulated data and real in-
tron sequences.

Model Implementation
The CNF substitutionmodel was implemented in PyCogent
(Knight et al. 2007) version 1.4.0.dev, and these modifica-
tions will be added to the PyCogent Sourceforge reposi-
tory on acceptance of this article. The implementation was
checked for accuracy using theoretical relationships among
themodels (see Lindsay et al. 2008). HKY, GTR (formally de-
fined in Theory and Methods), and site class heterogene-
ity variants were all implemented using standard features
of PyCogent. All models applied to an alignment were max-
imized numerically using the PyCogent built-in Powell nu-
merical optimizer with a maximum of five restarts and exit
condition (tolerance) set to 10−8. The equilibrium motif
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probabilities (probabilities of nucleotide, codon, or trinu-
cleotide) were also numerically optimized. This treatment
departs from the convention of estimating these probabil-
ities as counts from the observed sequences. For compar-
ison, we also employed the counts approach. The results
between the two approaches were highly consistent. Un-
less otherwise stated, reported results are from the numer-
ical optimization approach. We fit the null model (ω = 1)
first and then the alternate model (ω �= 1). This procedure
ensures that the log-likelihood for the alternate was always
greater or equal to that of the null. Trinucleotide variants
of the codon models were required for analysis of the in-
tron data as introns contain trinucleotides corresponding
to stop codons. The nucleotide HKY/GTR parameters were
defined as before. Assuming the standard genetic code, we
included an analog of the parameter ω in the trinucleotide
model rate matrix when the trinucleotides exchanged cor-
respond to different hypothetical amino acids and neither
was a hypothetical stop codon.

Alignment of Protein-Coding Genes
Aside from the functionally unclassified Plasmodium genes
(Carlton et al. 2008), all protein-coding sequences were
aligned using the built-in PyCogent codon aligner (Knight
et al. 2007) using the NFHKY model. Aligned codon columns
that contained a non-nucleotide character were removed
and only resulting alignments�600 nt long were retained.

Sampling Protein-Coding Sequences
Genes in the Ensembl release 50 human, chimpanzee, and
macaque genomes annotated as nuclear-encoded one-to-
one orthologs were used. After the codon alignment and fil-
tering step, 12,708 alignments remained.We used the Kyoto
Encyclopedia of Genes and Genomes ortholog lists to iden-
tify one-to-one orthologs between Borrelia burgdorferi, Bor-
relia afzelli , and Borrelia garinii. After the codon alignment
and filtering, 265 alignments remained. The same procedure
was used to obtain 796 alignments from Mycobacterium
tuberculosis and Mycobacterium leprae. The large sample
of Plasmodium vivax and Plasmodium knowlesi genes was
already classified with regard to orthology (Carlton et al.
2008). Using the same protein-coding sequence alignment
filtering process, therewere 2,840 alignments. The orthologs
functionally classified as ligand or not originating from tax-
onomically independent, AT-rich Plasmodium species pairs
(Plasmodium falciparum and Plasmodium reichenowi ; Plas-
modium yoelii and Plasmodiumberghei ) were fromWeedall
et al. (2008).

Sampling Intron Sequences
Aligned introns from thehuman, chimpanzee, andmacaque
genomes were obtained from Ensembl release 50 using hu-
man gene coordinates. A maximum of 100 alignments from
each of five blocks of human autosomes (1–3, 3–6, 6–10,
10–15, and 15–22) were sampled to ensure representation
across the human genome. Any sequence that may have
evolved by a non–pointmutation process (gaps in the align-
ment and simple tandem repeat sequences) was removed in

a manner that preserved true trinucleotides (Lindsay et al.
2008). Alignments�50 kbp long were retained and divided
into exactly 50 kbp (truncated to 16,666 trinucleotides)
aligned blocks, resulting in 470 alignments.

Simulation of Neutrally Evolving Genes
Simulation of neutrally evolving sequences was done with
different nucleotide and codon compositions using the
following arbitrarily sampled protein-coding genes: pri-
mate orthologs to human gene ENSG00000143520 (∼50%
GC); genes belonging to ortholog group K01873 from
B. afzelli, B. burgdorferi , and B. garinii (∼30% GC);
and an ortholog pair from M. leprae (ML0101) and
M. tuberculosis (Rv3800c) (∼65% GC). To simulate se-
quences with multiplicative codon frequencies, an NF
model with the constraint ω = 1 was fit to the se-
lected real biological alignments and PyCogent’s built-in
alignment simulation function used to simulate 250, 90
kbp long alignments. Simulation of alignments with the
observed codon frequencies was performed using the same
procedure but employing the CNFGTR(ω = 1) model.
For the rate heterogeneity tests, alignments simulated with
CNFGTR(ω = 1) from the ENSG00000143520 alignment
were used.

Statistics
For the standard test of neutrality, the null model was
constrained so ω = 1 and ln Lnull is the maximized log-
likelihood for an alignment. The constraint was removed
from the alternate (ω �= 1) resulting in the maximized log-
likelihood ln Lalt. The likelihood ratio (LR) statistic is then
LR = 2[ln Lalt − ln Lnull]. For sufficiently long alignments,
this LR statistic will be χ21. For the rate heterogeneity test,
the null model allowed ω �= 1, whereas the alternate hy-
pothesis specified two site classes (0 � ω � 1 and ω > 1).
Although thesemodels differ by two free parameters, the χ22
quantiles are conservative due to a boundary effect.

We measured the extent to which codon frequencies
were nonmultiplicative as the χ2 goodness of fit, com-
puted in the standard way from observed codon frequen-
cies counts and counts expected from the normalized
product of nucleotide frequencies. The impact of assum-
ing multiplicative codon frequencies was measured using
the model form CNF× (the CNF form with multiplicative
codon π) which nests within CNF. Themaximum likelihood
estimates of ω (ω̂) were estimated using the GTR variants
of these models and denoted ω̂CNF× and ω̂CNF, respectively.
The difference between these estimateswasmeasured using
an LR. For an individual alignment, ω̂CNF× was determined
from fitting CNF×,GTR and ω̂CNF from fitting CNFGTR. We
then defined a null CNFmodel, constraining ωCNF = ω̂CNF× ,
and maximized the log-likelihood. The difference was mea-
sured under the CNF model as LR = 2[ln L (free ω) −
ln L (ωCNF = ω̂CNF×)].

We measured the extent to which estimates from the
three model forms were significantly different using a mod-
ification of the LR metric described above. The primary dif-
ference for this analysis was replacing CNF× and ω̂CNF× with
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FIG. 1. The effect of nucleotide composition and nonmultiplicative codon frequencies on estimates of ω from simulated neutrally evolving genes.
Sequence simulations were based on an AT-rich gene sampled from Borrelia species, a primate gene with AT% ≈ GC%, and a GC-rich gene
sampled fromMycobacterium species. Average GC% of the simulated alignments is shown. The x axis is ω̂, and the y axis is an estimate of density.
(A ) Data generated from a NFGTR(ω = 1)model resulting in multiplicative codon frequencies. (B ) Data generated from a CNFGTR(ω = 1)model
with observed (nonmultiplicative) codon frequencies from the sampled genes. The dashed vertical line shows the expected neutral value, ω = 1.

NF and ω̂NF or with CF and ω̂CF. We defined an estimate
from NF (ω̂NF)/CF (ω̂CF) as different from CNF (ω̂CNF) when
the LR > 3.84, which corresponds to a probability of 0.05
from χ21.

Alignment GC% was computed as the mean G+C
nucleotide percentage of all sequences.

All scripts and data used in this study are available on
request.

Results and Discussion

Simulated Data Demonstrate Method Sensitivity to
Composition
When the frequencies of trinucleotides (nucleotides
grouped in triplets but not constrained by the genetic
code) are multiplicative, the trinucleotide variants of NF
and CNFmodels (NFtri and CNFtri) are identical, irrespective
of what r terms are included but different from CFtri (see
Theory and Methods). However, because of how NF treats
stop codons, the codon variants of the NF and CNF models
are not identical even with multiplicative π, and thus their
estimates of ω are expected to be slightly different (see
Theory and Methods).

For the more realistic condition in which codon frequen-
cies are nonmultiplicative, ω estimates obtained using NF
and CNF will differ because NF enforces multiplicative π,
whereas CNF does not. The effect of nonmultiplicative π on

estimates of ω based on CF is difficult to predict because of
the additional sensitivity to composition.

Simulations of neutrally evolving genes confirmed the
predicted sensitivity of CF and NF to sequence composi-
tion. Simulations were carried out with multiplicative and
nonmultiplicative codon frequencies using parameters es-
timated by fitting GTR variants of the NF and CNF mod-
els, respectively, to real sequences with GC% ranging from
30% to 65% (see Theory and Methods). For multiplicative
codon frequencies (simulated under NFGTR(ω = 1)), ω̂
from the NF and CNF models were similar (fig. 1A) with the
largest difference evident for the AT-rich sequences, consis-
tent with the expected bias affecting NF models due to the
AT-richness of stop codons (Theory and Methods). As pre-
dicted (Lindsay et al. 2008), ω̂ obtained under the CFmodel
were strongly affected by composition, moving from <1 to
>1 as sequence composition changed from AT rich to GC
rich (fig. 1A). For nonmultiplicative codon frequencies (sim-
ulated under CNFGTR(ω = 1)), both NF and CF models
substantially over- or underestimated ω with the direction
of departure depending on composition and codon usage
(fig. 1B). These results imply that estimates of ω obtained
under both CF and NF models do not provide reliable evi-
dence of the mode of natural selection.

We did not conduct simulations under the CF model be-
cause the relationship between ω from themodels is shown
by equation (3). This relationship establishes, and the above
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simulations confirm, that ω estimates from the models will
differ in a composition-dependentmanner. Amore suitable
benchmark for assessing consistency of ω estimates from
the models with the neutral expectation is to analyze real
biological sequences that have evolved in a neutral manner
with respect to protein-coding content.

Sensitivity to Real Sequence Composition
The conditions affecting the evolution of real biological se-
quences are more complicated than those used for the sim-
ulation, with several neutral evolutionary factors, including
biased gene conversion (Berglund et al. 2009; Galtier et al.
2009), identified as potentially confounding the estimation
of ω from real protein-coding sequences (supplementary
fig. S1, Supplementary Material online). We sought to as-
sess the robustness of the models to these biases. We chose
primate introns as they experience the same mutagenic en-
vironment as their flanking exons (Green et al. 2003; Duret
et al. 2006; Elango et al. 2008), they are not affected by selec-
tion for protein-coding content, and they are mostly non-
functional (Siepel et al. 2005). Using these sequences, we
were able to demonstrate that ω = 1 (i.e., no effect of
protein-coding selection) fromour newmodel but that pre-
vious models led to inaccurate estimates of ω �= 1. ω was
estimated from intronic sequences using the trinucleotide
rather than codon model variants as introns can include
trinucleotides that are invalid for codon models (see The-
ory and Methods). For each model form, the best perform-
ing (least correlated) of the parameterizations considered
(GTR and HKY; Hasegawa et al. 1985) is shown in figure 2A
(see supplementary fig. S2a, SupplementaryMaterial online,
for the remainder). As predicted, ω was significantly corre-
lated with composition even for the best performing CFtri,s
model (fig. 2). Only ω̂ from NFtri,GTR,s and CNFtri,GTR,s did
not have a significant association with GC% (fig. 2A). The
consistency of the models with the null hypothesis ω = 1
is indicated by the quantile–quantile plots. These confirm
that CNFtri,GTR,s best matches theoretical expectation and
that the other models are more prone to false positives
(fig. 2B and supplementary fig. S2b, Supplementary Mate-
rial online). The strong consistency between CNFtri,GTR,s and
NFtri,GTR,s in these analyses stems from their being trinu-
cleotide models. The codon NF model will exhibit greater
bias due to its treatment of stop codons (Theory andMeth-
ods). Our analysis of intronic sequences combined with the
relationship between the trinucleotide and codon model
forms (Theory and Methods) establishes CNFGTR as the
most robust form for estimating ω.

These analyses further established that estimates of ω
are sensitive to changes in the neutral substitution process.
Genomic regions in primates can exhibit pronounced dif-
ferences in neutral substitution processes (Eyre-Walker and
Hurst 2001) which causes substitutionmodel parameters to
differ between alignments (supplementary fig. S1, Supple-
mentary Material online). More general substitution mod-
els have a greater capacity to absorb variation in the neutral
process between regions. This is borne out by the difference
between the HKY and GTR variants; only the CNFtri,GTR,s

FIG. 2. Comparison of the effects of variation in real neutral processes
onNF, CF, and CNFmodels. All alignments were exactly 49,998 nt long
(see Theory and Methods). (A ) Alignment GC% on the x axis against
ω̂ from the “trinucleotide” models CFtri,HKY,s , NFtri,GTR,s , and CNFtri,GTR,s
on the y axis (the best performing [i.e., least correlated] of the param-
eterizations considered; see Theory and Methods, supplementary fig.
S2, Supplementary Material online). The estimate and significance of
Kendall’s τ measure of association between GC% and ω̂ are shown
for each panel. The dashed horizontal line is ω = 1. (B ) A quantile–
quantile plot using quantiles from χ21 (the expected null distribution)
against quantiles of the LRs from testing the alternate (ω �= 1) against
the null (ω = 1) hypotheses. The dashed diagonal line shows the ex-
pected case when the null hypothesis is correct.

variant was sufficiently general to accommodate how the
neutral process varied between the alignments, returning
ω estimates that were consistent with the null hypothesis.
This result further suggests, however, that lineage-specific
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Table 3. Discordance of Estimates of ω between the NF/CF and
CNF Models.

Lineage NF% CF% Total

Borrelia 30.1 0.0 265
Mycobacterium 9.9 7.9 796
Plasmodium 0.0 14.9 2,840
Primate 1.3 0.9 12,708

NOTE.—Percentage of loci for which ω̂ under NF/CF models differ (LR > 3.84)
from ω̂ under the CNF model. Total: the number of loci examined for the
indicated lineage.

changes in sequence composition (e.g., Greenbaum et al.
2008) or neutral processes for a single alignment may also
affect estimation of ω unless specifically accounted for by
the evolutionary model.

Because equilibrium codon frequencies under the NF
model are multiplicative, estimates of ω under this model
may be biased when this condition is not satisfied (fig.
1B). We tested this on protein-coding genes from bac-
terial (Borrelia and Mycobacterium ), unicellular eukary-
ote (Plasmodium ), and multicellular eukaryote (primates)
lineages. The χ2 goodness-of-fit statistic between ob-
served codon frequencies and those predicted from nu-
cleotide frequencies was used to measure the magnitude
of nonmultiplicative codon frequencies. Bias in ω was de-
termined by comparing ω̂ estimated from CNF× (the
multiplicative form of CNF) with ω̂ estimated from the
standard CNF form using an LR (see Theory and Meth-
ods) with a large LR indicating a large error when
multiplicative codon frequencies are assumed. A posi-
tive correlation between the χ2 and LR statistics was
observed for all lineages (R̂ 2 ranged from∼0.20 for primates
to∼0.58 forMycobacterium, all P < 10−21; see supplemen-
tary fig. S3, Supplementary Material online) indicating that
departure from the assumption of multiplicative CF biases
ω̂, consistent with the theoretical prediction. By compari-
son, a parallel analysis using CF showed much weaker as-
sociations (supplementary fig. S4, Supplementary Material
online).

Model Discordance inωωω Estimates from Pathogens
We assessed the practical significance of model choice by
measuring the proportion of loci for which estimates of
ω differed substantially between the models. The same LR
metric of discordance in ω̂was employed, except in this case
we used NF or CF instead of CNF× (see Theory and Meth-
ods). Using an LR >3.84 as indicating a difference between
ω estimated from CF/NF and CNF models showed that the
three model forms were largely consistent for the primate
data but differedmarkedly for the other lineages (table 3). ω̂
under both CF andNF differed from ω̂ under CNF for∼10%
ofMycobacterium loci, although the reasons for the discor-
dance likely differ between the models. The ∼30% discor-
dance between NF and CNF for Borrelia may arise from the
bias inherent in NF on AT-rich sequence (fig. 1A, see The-
ory andMethods). For Plasmodium genomes, NF was highly
concordant with CNF, whereas the widely used CF model

was ∼15% discordant (table 3). The discordance between
the models when codon frequencies were estimated using
the typically employed counting procedure emphasized the
poorly behavingmodels; the discordance ofNFGTR increased
to ∼40% of Borrelia loci and CFHKY discordance doubled
to ∼30% of Plasmodium loci. These differences may stem
from reduced power of the numerical optimization proce-
dure arising from the variability of the π.

The high error rate for CF applied to Plasmodium
(table 3) arises from systematic underestimation of ω, an
effect that can cause strong candidates for adaptive evo-
lution to be misclassified. The molecular arms race un-
derway between Plasmodium parasites and their hosts
predicts that Plasmodium genes that mediate interactions
with the host should exhibit evidence for adaptation. Our
results (fig. 1A and table 3) suggested that the low GC%
of some Plasmodium genomes, however, will cause CF to
systematically underestimate ω, potentially providing false-
negative evidence of the involvement of genes in host–
parasite interactions. We confirmed this potential in an
analysis of Plasmodium genes classified by experimental ev-
idence as ligands or not ligands and thus likely or unlikely
candidates for adaptive evolution, respectively (Weedall
et al. 2008). Using orthologous gene pairs from Plasmodium
species with AT-rich genomes, ω̂CFHKY (ω estimated from
CFHKY) was systematically underestimated for both the con-
trol and the adaptive candidate genes (points were typically
scattered below the diagonal, fig. 3). In contrast, for a small
number of candidate genes, ω̂CNFGTR lay within the zone in-
dicative of adaptive evolution, supporting an adaptive role
for these genes. Although ω̂ from NF and CNF were largely
indistinguishable (table 3), a general trend toward overes-
timation by NF was evident (an excess of points were scat-
tered above the diagonal, fig. 3).

Hypothesis Tests Affected by Composition
We have demonstrated that the properties of commonly
used substitution models result in systematic errors and
that these can affect test results. This finding is based on
tests involving the comparison of only two or three se-
quences. More powerful tests have been developed that
compare estimates of ω across lineages in a phylogenetic
tree of multiple sequences. Other tests have been devel-
oped based on rate heterogeneity at individual sites that
overcome the loss of power that results when whole genes
are used to estimate ω, but adaptive sequence changes are
restricted to a small fraction of codonswithin genes (Nielsen
and Yang 1998; Yang and Nielsen 2002). Combinations of
these branch and site tests have also been devised (Zhang
et al. 2005).

In principle, the biases demonstrated in our simulations
should affect all tests for selection that incorporate ω = 1
into the null hypothesis, including thesemore powerful ver-
sions. Using the systematic biases of ω evident in themiddle
panel of figure 1B, for example, we would predict CFmodels
to give false positives and NF models to give false negatives,
irrespective of the specific type of test employed.
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FIG. 3. Evidence the CF model is prone to underestimating positive
natural selection in Plasmodium. Plotted are ω̂ from the models indi-
cated by subscript on the x and y axes. The gray region corresponds
to the realm of ω values representing neutral or purifying natural se-
lection. Values of ω outside this zone indicate positive natural selec-
tion. The left and right plot columns are from Plasmodium control and
ligand loci, respectively. Dashed diagonal lines correspond to a slope
of 1.

We tested this prediction for the case of an alternate hy-
pothesis of among-site heterogeneity of ω, using a simple
form of mixture model that specifies two site classes with
neutral positions evolving according to 0 � ω � 1 and
adaptive positions evolving according to ω > 1. Using the
sequences simulated under a single site class CNF model
with∼50% GC (fig. 1B), we found, as predicted, that the CF
formwas conspicuously prone to false positives, whereas the
NF model was weakly conservative (fig. 4).

Conclusions
Because the inferred mode of natural selection is based on
the position of ω relative to 1, the sensitivity of ω̂ under
the CF/NF forms to aspects of sequence compositionmeans
that erroneous conclusions can result from use of these
model forms. This problem is particularly acute in analy-
sis of pathogen genomes, in which extreme sequence com-
position biases are common. As we have shown here for
a modest number of pathogens, choice of method can al-
ter inference regarding the mode of natural selection. Such
erroneous conclusions could impact vaccine design, for in-
stance, by unnecessarily retarding the speed of epitope
mapping or prompt a complete rejection of the powerful

FIG. 4. Incorrect Type 1 error rates for CF and NF in testing the null
hypothesis of one class of sites against the alternate of two site classes.
The sequences were the same as those from figure 1B with GC% ≈
50—simulated under CNFGTR(ω = 1). The dashed diagonal line is the
expected quantile relationship for χ22.

signature of natural selection fromthe vaccinedevelopment
process. The new CNF model we present significantly im-
proves robustness to the diversity of sequence compositions
evident in nature by unifying the generality of the CF form
with the nucleotide composition independence of NF. Our
demonstration of the sensitivity of all models to changes in
the neutral process implies, however, that resolving lineage-
specific adaptive episodes, such as those underpinning host
specificity, may require removing the constraint of time
reversibility from this model class.

Supplementary Material
Supplementary figures S1–S4 are available at Molec-
ular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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