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Abstract

Macrogenomic events, in which genes are gained and lost, play a pivotal evolutionary role in microbial evolution.
Nevertheless, probabilistic-evolutionary models describing such events and methods for their robust inference are
considerably less developed than existing methodologies for analyzing site-specific sequence evolution. Here, we present
a novel method for the inference of gains and losses of gene families. First, we develop probabilistic-evolutionary models
describing the dynamics of gene-family content, which are more biologically realistic than previously suggested models. In
our likelihood-based models, gains and losses are represented by transitions between presence and absence, given an
underlying phylogeny. We employ a mixture-model approach in which we allow both the gain rate and the loss rate to
vary among gene families. Second, we use these models together with the analytic implementation of stochastic mapping
to infer branch-specific events. Our novel methodology allows us to infer and quantify horizontal gene transfer (HGT)
events. This enables us to rank various gene families and lineages according to their propensity to undergo gains and losses.
Applying our methodology to 4,873 gene families shows that: 1) the novel mixture models describe the observed variability
in gene-family content among microbes significantly better than previous models; 2) The stochastic mapping approach
enables accurate inference of gain and loss events based on simulations; 3) At least 34% of the gene families analyzed
are inferred to have experienced HGT at least once during their evolution; and 4) Gene families that were inferred to

experience HGT are both enriched and depleted with respect to specific functional categories.
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Introduction

Sophisticated bioinformatics algorithms are required in
order to extract meaningful biological information from vast
comparative genomic data. Gene-content variation among
species isa phenomenon that poses a great research challenge
(Bergand Kurland 2002; Mira et al. 2002; Konstantinidis and
Tiedje 2004; Koonin and Wolf 2008). Gene content varies
among genomes due to both heterogeneity in the number
of paralogous members in each gene family and variation
in the presence of different gene families (i.e., gene-family
repertoire). Investigating the latter is informative for under-
standing genome biology because variation in the repertoire
of gene families is correlated with evolutionary shifts in pro-
teome functionality. Variation of gene families across genomes
results from either gene gains or losses. The availability of
hundreds of sequenced microbial genomes has led to the re-
alization that such macroevolutionary events are a dominant
evolutionary force shaping microbial genomes.

A well-studied mechanism for gene gain is horizontal
gene transfer (HGT) (Syvanen 1994; Garcia-Vallve et al.
2000; Ochman et al. 2000; Koonin et al. 2001). The acqui-
sition of novel gene families via HGT is a dominant factor in
microbial evolution (Doolittle et al. 1990; Nelson et al. 1999;
Gogarten and Townsend 2005; Choi and Kim 2007). Thus,
accurate modeling and inference of HGT is vital for under-
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standing such phenomena as speciation, adaptation to new
ecological niches, and the evolution of novel functions
(Syvanen 1994; Jain et al. 2003; Lake and Rivera 2004).
Several computational methods for detecting HGTs
exist today. The first category of such methods uses com-
positional disagreement between a gene and the genome in
which it resides as predictors of horizontal transfer (e.g.,
atypical G + C content or codon-usage patterns). Notably,
due to sequence amelioration, such methods are limited to
detecting recent transfers (Lawrence and Ochman 1997),
and their success hinges on the donor and recipient having
different sequence characteristics (Koski et al. 2001; Wang
2001). The second category utilizes phylogenetic conflicts
as predictors of HGT. Gene trees reconstructed from the
assembly of specific orthologs are compared with species
trees (Lyubetsky and V’yugin 2003). These methods are
limited to genes that exist in most members of the phylo-
genetic group studied, where extreme sequence divergence
(saturation) and extreme conservation (no phylogenetic
information) hinder HGT detection (Graybeal 1994).
Others and we have developed methodologies for ana-
lyzing gene-family gain and loss events in general (e.g, Snel
et al. 2002; Mirkin et al. 2003; Hao and Golding 2004; Lake
and Rivera 2004; Spencer et al. 2005, Spencer. 2007; Cohen
et al. 2008; McCann et al. 2008). In such methodologies, the
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presence and absence of all gene families in all studied
species, that is, the phyletic pattern, are analyzed where
presence indicates that at least one homolog from a certain
gene family is identified in a given genome. Notably, there
are several existing models that take into account the num-
ber of members within gene families, but given their
computational complexity, they are less common (Gu
and Zhang 2004; Hahn et al. 2005; Csuros and Miklos
2006; Spencer et al. 2006; Iwasaki and Takagi 2007). The
evolution of phyletic pattern is governed by transitions be-
tween presence and absence, where a gain transition re-
flects either de novo appearance (“birth”) or HGT of
a gene from a family previously absent in the acceptor ge-
nome. Similarly, a loss transition corresponds to deletions
of all members of a gene family. Notably, accurate tests for
HGT inference based on probabilistic-evolutionary models
of phyletic data are not yet available.

Evolutionary transitions between presence and absence
of gene families were first analyzed using the Dollo parsi-
mony criterion (Kunin and Ouzounis 2003; Mirkin et al.
2003) and later using the more statistically justified max-
imum likelihood (ML) paradigm (Huson and Steel 2004;
Zhang and Gu 2004; Hahn et al. 2005; Hao and Golding
2006). In early ML-based models, all gene families were as-
sumed to evolve under the same evolutionary rate (Marri
et al. 2007). This is an oversimplified description of gene-
family gain and loss dynamics given the high variance in the
tendency of various gene families to undergo such events
(Nakamura et al. 2004; Lerat et al. 2005). This simplification
was recently alleviated by the development of among-
gene-family-rate variation models, which were shown to
significantly better fit observed phyletic-pattern data
(Cohen et al. 2008; Hao and Golding 2008).

Some gene families tend to be more transferred (gained)
than others, and the same is true regarding the tendency of
gene families to be lost (e.g., Jain et al. 2002; Krylov et al.
2003). This implies that both the gene-family gain rate and
loss rate may vary across gene families. Such heterogeneity
of gain and loss rates can be described using probabilistic
models that allow the stochastic process to vary across
gene families, that is, mixture models (MM:s). Specifically,
accounting for rate variation only, rather than variation of
the stochastic process itself, may fail to accurately describe
the evolution of gene families with exceptional gain/loss
rate ratio. This observation calls for the development of
MMs for the analysis of phyletic-pattern data. Notably,
MMs were shown to be very helpful in the analysis of
DNA and protein-sequence data (e.g, Huelsenbeck and
Nielsen 1999; Lartillot and Philippe 2004).

In the analysis of sequence evolution, evolutionary mod-
els are used to infer the probability and expectation of
branch site—specific transitions using a methodology
termed stochastic mapping (Nielsen 2002; Huelsenbeck
et al. 2003; Minin and Suchard 2008a). This methodology
was shown to be accurate and robust in respect to possible
model misspecifications (O’Brien et al. 2009). Here, we uti-
lize our novel models for describing gene family gain and
loss dynamics, as well as an analytic implementation of
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stochastic mapping (Minin and Suchard 2008a), to develop
a novel methodology that can reliably infer gain and loss
events during the evolution of gene families.

Our methodology is also suitable for accurately quanti-
fying the transferability of gene families. This quantification,
in turn, allows studying the selection forces dictating the
probability of fixation of a newly transferred gene family.
It is usually accepted that the tendency of a gene family
to undergo HGT depends on the protein function (e.g,
Nakamura et al. 2004). Gene families associated with me-
tabolism were shown to be more transferable than those
related to information processing (Rivera et al. 1998; Jain
et al. 1999). However, the dependency between transfer-
ability and gene function is currently debated as it has also
been claimed that HGT is nearly neutral to all gene
functions (Choi and Kim 2007).

In this paper, we develop a MM for phyletic-pattern anal-
ysis and show that it better fits phyletic-pattern data. This
model is integrated in a stochastic mapping method that
enables accurate detection of lineage-specific gain and
loss events. We use this methodology for HGT inference
and show that it can accurately quantify gene-family trans-
ferability. Weapply our method to analyze 4,873 gene families
across 66 genomes and test the dependence between gene-
family transferability and function (i.e,, biological process).

Materials and Methods

Evolutionary Models of Gene-Family Gains and
Losses
The evolution of gene-family content along a given phylo-
genetic tree is modeled using probabilistic-evolutionary
models. The data are represented as a matrix D, in which
rows (1,...S) represent genomes and columns (1,...F)
represent gene families. In this matrix, D = 1 if gene family
fis present in the genome of species s, and Dy = 0, other-
wise. All gene families are assumed to evolve along a
phylogenetic tree. The evolution of each gene family fol-
lows a continuous time Markov process over a two-state
alphabet {0,1}, assuming independent evolution among
gene families. Notably, in this representation, the evolution
of gene families, rather than orthologous genes, is modeled,
and thus, a character “1” is assigned to a specific gene fam-
ily regardless of the number of paralogs in this gene family.
The probability that character i will be replaced by
character j along a branch of length t is denoted Py(t)
and can be computed by [P(t)]; = [th];j where Q is the
instantaneous rate matrix. More specifically, Q is given
in the following form:

(¥ 5) "

where g = Qq_,; denotes the gain rate parameter and | =
Qq ¢ denotes the loss rate parameter. Py(t) in this case is cal-
culated analytically (Ross 1996).

This basic model is most likely unrealistic, because it im-
plicitly assumes that all gene families evolve with the same
Q. Adding a gene-family specific rate generalizes this model
and allows for a more realistic description of gene-family
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evolution (Cohen et al. 2008; Hao and Golding 2008). We
term this model M1 + T.

Gain-Loss Mixture Models

In the above model, the rate matrix Q is assumed to be
identical for all gene families, up to a multiplication factor.
To alleviate this assumption, we suggest a model, in
which a small number of different Q matrices is assumed
(Qi1,- - »Qx, k,)- Here, Kg represents the number of allowed
gain rates, K| represents the number of loss rates, and thus
all K X K; combinations of gain and loss rates are modeled
(i.e, the MM is composed of K x K; stochastic process
components). We do not estimate all these matrices from
the data but rather assume that both the gain and loss rates
are sampled from two independent gamma distributions:
gain ~ I'(oy, Bg) and loss ~ I'(a, f3y), where oz and f3 are the
shape and scale parameters, respectively, and «/f is the
mean of the distribution. Notably, for the loss distribution
oy = P\ The reason we do not allow f to be a free param-
eter is to avoid redundancy with branch-length optimiza-
tion. The gamma distribution is used as it is flexible enough
to capture a large set of unimodal distributions, yet it
requires only a few parameters. This distribution is widely
used to model among-site rate variation for sequence anal-
ysis (Yang 1993; Rogers 2001; Susko et al. 2003). In practice,
a discrete gamma distribution with equal probabilities is
assumed, so that the prior probability of each rate matrix
is p(Qy) = (Kg K)~". All results presented in this work were
computed with K, = K; = 4, which was found to balance
well between running times and accuracy. The stationary
frequencies of matrix Q; are obtained by mq;;(1)= gi/(g; + 1))
where g; is the ith gain rate category, and |; is the jth loss
rate category. This model is termed MM1.

Nonstationary Models: Independent Character
Frequencies at the Root

The M1 + I"and MM1 models both assume that the char-
acter frequencies at the root are equal to the stationary
ones (Tq = Troot)- We have additionally implemented
models M2 + I' and MM2, in which we allow Ttrpot to
differ from 7, adding a single free parameter to each
model. Notably, for the MM1 model, each of the stochastic
process components has a different stationary character
distribution, and therefore different character frequencies
at the root, whereas for MM2, the character frequencies at
the root are free to differ from the stationary ones, but the
estimated root frequencies are assumed to be the same for
all stochastic process components.

Likelihood Computation

The likelihood of gene family f in the data is computed
given the tree topology and set of branch lengths denoted
by T and t, respectively:

Ki

=Y YT eQp@) @)
i=1j=1

The log likelihood of the entire data (F gene families) is then
F
logl = Z logLy. (3)
f=1

Likelihood computations are achieved using Felsenstein’s
(1981) pruning algorithm adapted for nonstationary sto-
chastic models (Yang and Roberts 1995; Galtier and Gouy
1998; Boussau and Gouy 2006). All free parameters of the
model are estimated such that they maximize the likelihood
of the data using Brent’s (1973) optimization scheme. For
each model, its free parameters were estimated one at a time
in an iterative manner. To avoid local likelihood maxima,
random starting points were used during the optimization
process.

Likelihood Correction Accounting for
Unobservable Data

A column of zeros represents gene families that are absent
in all taxa and are not observable. The likelihood must be
corrected for these unobservable data (Felsenstein 1992):

+) _ Ly

’-JE )= T (4)
where )fis the corrected likelihood term for gene family £, Ly
is the likelihood as computed in equation (2), and LS is the
probability to generate an unobservable pattern given the
model and tree. Let D, denote a column of zeros (the unob-
servable pattern). L7 is thus the likelihood of obtaining D,
given the model and tree. For the MMs,

K K

() = Dot DL Pr(Dy|T, t,Q;)p(Q;)
f Ky ; .
1= S, 3% Pr(Do|T, t,Qy)p(Q))

We note that for data extracted from the clusters of ortholo-
gous groups of proteins (COG) database (used in this analysis),
orthologs are identified by three-way patterns of sequence sim-
ilarity among genomes, so a gene family does not appear in the
COG database unless it occurs in at least three genomes. In
these data, in addition to the zeros pattern (D,), patterns in
which the gene family is present in only one or two species
are unobservable as well. Let O be the set of all unobservable
patterns, that is, the set of all columns, in which there are less
than three 1s. To correct for the unobserved data, we must now
compute L7 accounting for all possible unobservable patterns
(for the 66 genomes analyzed here, the set of unobservable pat-
terns includes a column of zeros, 66 columns in which there is
a single 1, and all the remaining entries are “0,” and 2,145 col-
umns with exactly two 1s). Denoting by Lp(f) the probability of
the pth unobserved pattern, the probability of obtaining an un-
observed pattern becomes

L =30l (6)

pe0

L

L(+)f is thus computed as in equation (4), but in the denom-
inator, we now sum over all unobservable patterns.

Gain and Loss Computation for Each Gene Family
We compute the posterior expectation of the gain and loss
rates for each gene family using the following equations:
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N1{0,1}

0 and 0: Scenario probability = 0.18, Expected number of gains = 0.23
. 0and 1: Scenario probability = 0.33, Expected number of gains = 1.1
1 and 0: Scenario probability = 0.098, Expected number of gains = 0.1

1 and 1: Scenario probability = 0.39, Expected number of gains = 0.3

Fic. 1. Toy example. Shown is the computation of the posterior expectation of the number of gain events for the branch connecting nodes N1
and N2. The total expectation equals 0.53 and is computed as the weighted sum over four scenarios: N1 = 0and N2 = 0, N1 = 0and N2 = 1,
N1 =1and N2 = 0,and N1 = 1and N2 = 1. The gain and loss rates of the Q matrix used for this computation are 0.35 and 0.7, respectively, and
TrooT=0.5. For each scenario, the most plausible event leading to a gain event is depicted.

~—

Ke  Ki
1
§= 3D 8 PrDT.. Q) p(Q) o

i=1j=1

lr= iZﬁ- - Pr(DyT, t, Q) - p(Qy) -#Df). 7)

i=1j=1

The Posterior Expectation of the Number of Gains
and Losses along a Branch

The posterior expectation of the number of gains and los-
ses along a certain branch for a specific gene family can be
computed. We first explain the computation for the simple
case of a single Q matrix and then extend it to the MM. The
computation for a toy example is shown in figure 1. Let
b denote a branch connecting nodes n, and n,. Without
loss of generality, we only show the computation of the
posterior expectation of gain events:

ZI Pr(Ngi(b

i=1

E(No(b)|Dy) = =i|Dy). (8)

Here, Ny;(b) denotes the number of gain events occurring along
the branch b. This expression can be computed as follows:

Pr(No1(b) =i, Dy)
Pr(Dy)

E(Not(b)[Dy) = > i

i

B Z Z Pr(Np:(b)

i xye{o1}

ZPrDﬁno X,Ne =)

. ZI . Pr Nm
i

= Z Pr(no = x, n; = y|Dy) -
Xy

=i,Df,ng =x,n; =y)
Pr(Dy)

=l|n0 =x,n =y)

E(No1(b)lno =x,n;=y). (9)
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The first factor, Pr(no=x,n;=y|Dy), is computed using the
pruning algorithm (Felsenstein 1981), adapted for nonstation-
ary stochastic models. This factor corresponds to the “scenario
probability” in the toy example of figure 1. The second factor,
E(No1(b)|no=x, n;=y), is computed analytically for stochastic
processes with binary alphabet (Minin and Suchard 2008a).
This factor corresponds to the “expected number of gains”
in the toy example of figure 1. In the MMs, the posterior
expectation is computed as a posterior average over all possible
Q matrices:

(10)

E(No1(b)|Dy) is an estimate of the number of gain events in
a specific lineage b in a specific gene family f. Thus, the total
number of gain events for a gene family is the sum of gain
events over all lineages and the total number of gain events
for a lineage is the sum over all gene families. The posterior
probability of at least one gain event in a specific lineage in
a specific gene family is computed in a similar fashion (Minin
and Suchard 2008a).

Phyletic Pattern Data and Reference Phylogeny

The presence and absence of gene families for each species
were extracted from the updated version of the COG
database (Tatusov et al. 2003). The data set includes
4,873 gene families spanning 66 species: 50 Bacteria, 13
Archaea, and 3 Eukaryota. The reference tree topology was
taken from the “tree of life” (Ciccarelli et al. 2006). Notably,
for few species, the COG data set and the Ciccarelli tree
used different National Center for Biotechnology Informa-
tion (NCBI) taxonomy IDs, denoting different substrains. In
these cases, we assumed that different substrains have the
same placement on the species tree. This assumption was
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Table 1. Comparison of Evolutionary Models Used for the
Analysis of Phyletic Patterns.

MLE of Maximum
Model Log-
Model Assumptions Parameters Likelihood
M1+ I Rate ~ I'(a), g = 0.54 —91,962.8
TlrooT = TQ | = 6.61
a = 073
M2 +I"  Rate ~ I'(x) g= 0.12 —90,293.7
[ = 2.08
a = 0.87
Hzoor(1) = 045
MM1 Gain ~ I'(ay Bg), g = 035 ~91,873.9
loss ~ I'(ev)), B; = 5.63
TTRoOT = TQ o = 0.86
MM2 Gain ~ I'(a, By), a; = 0.32 —89,590.1
loss ~ I'(e)), B = 9.87
o = 1.0

Hgoor(1) = 059

MLE denotes maximum likelihood estimate.

validated by inspecting the positions of both substrains in
NCBI's common species tree. For each model, branch
lengths were estimated based on the phyletic data using
the ML framework. The branch lengths in all models were
normalized with respect to the rate matrices, so that a unit
branch length corresponds to one expected gain—loss
event per gene family at stationarity (e.g, Yang et al
1994; Yang and Roberts 1995). For the models in which
the character frequencies at the root are allowed to differ
from the stationary ones, the position of the root must be
determined. Thus, for these models, we find the position of
the root by maximizing the likelihood of the data given the
root position. As a control, we also repeated the analysis
with the NCBI taxonomy tree topology (Wheeler et al.
2004).

A Simulation Study—Testing the Accuracy of
Gain Inference

We have evaluated the performance of our stochastic
mapping—based method to reconstruct gain and loss
events using simulations. The simulations were performed
by drawing the waiting times and transition events based
on the underlying Markov process. All the substitution
events were recorded for each gene family, for each branch.
The genomes resulting from the simulations were used as
input to our methodology for the inference of gain and loss
events. To be consistent with the COG data, all resulting
patterns with less than three 1s were removed from the
analysis. Thus, unobservable patterns in the simulations
mimic unobservable patterns in the real data. Based on this
scheme, we were able to estimate the accuracy of our
model-based mapping method. The stochastic simulations
that produced the sequences were based on the same phy-
logeny we use for analyzing the phyletic patterns. In each
simulation run, the gain and loss rates for each gene family
were randomly sampled from a uniform distribution over
the range [0.01, 2] and [0.01, 5], respectively. The root fre-
quency for each run was sampled uniformly in the range

[0.01, 0.99]. Notably, the parameter ranges are assumed to
cover most biologically plausible values. The resultant
genomes were analyzed under M1 4 I', M2 + I, MM1,
and MM2 optimizing the models’ free parameters. Next,
the posterior number of gains and losses for each gene
family and each branch were computed and compared
with the “true” recorded events. In addition, we estimated
the accuracy when the gain and loss rates for each gene
family were randomly sampled from the gamma distribu-
tions estimated for the COG data set.

Testing Whether a Gene Family Had Undergone
an HGT Event

We have used the MM2 model to develop a method for
testing whether a given gene family had undergone at least
one HGT event (although the method can work with any
other model). Our test is based on the observation that
a single gain event across the entire phylogeny may reflect
de novo appearance of a gene family. Thus, our test aims to
detect those gene families in which the data suggest at least
two gain events. Specifically, for a given gene family, we
compute the posterior probability for at least one gain
event in each tree branch. If the two highest probabilities
are higher than a given threshold—this gene family is clas-
sified as “transferable” (undergone HGT). In order to deter-
mine this threshold we simulated data sets under MM2,
where the gain and loss rates were sampled from the
gamma distributions with parameters equal to those
estimated from the real data. The threshold was fixed such
that on these simulated data, the rate of false positive
classification of transferable genes is lower than 0.05.

Program Availability

The evolutionary models and inference methods were
implemented in C++. Source code, Windows executable,
makefile for Unix machines, and brief manual are available
in http://www.tau.ac.il/~talp/phyletic_patterns.html.

Results

Nonstationary MMs for the Analysis of Phyletic
Patterns

Several probabilistic models in increasing order of complex-
ity were implemented. The simplest (M1 + I') assumes
a single rate matrix (one free parameter for the gain rate
and one for the loss rate). An additional free parameter is
used to model rate variability among gene families. On
a data set of 4,873 gene families across 66 species, the
maximal log likelihood obtained under this model was
—91,962.8. This model, however, assumes that the ratio
of gain and loss rates is the same across all gene families,
although biological intuition suggests that some gene
families tend to be either gained or lost significantly more
than others. Indeed, the mixture model (MM1) that allows
for the gain and loss ratio to vary across gene families fits
the data significantly better than M1 + I', with maximal
log-likelihood differences in the orders of dozens (table 1).
The justification for MMs that allow for independent
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Fic. 2. The empirical distributions of gain and loss rates. The empirical distribution of gain rates (red) and loss rates (blue) were computed for
all 4,873 COG gene families. The bins denoted by the symbols “1” and “1” represent the loss rate of the 63 gene families that are present in all
species and the loss rate of the 288 gene families that are present only in the three eukaryotes, respectively.

distributions for gain and loss rates is evident in figure 2,
where the empirical distributions of gain and loss rates of
the COG gene families are presented (the computations of
the gain and loss rates are based on eq. 7 above).

The MM1 model assumes that the stationary character
frequencies are equal to those at the tree root. Allowing the
root frequencies to differ from the stationary ones
significantly improves the fit of the model to the data
(a difference of hundreds of log-likelihood points, compar-
ing models MM1 and MM?2, table 1). Interestingly, in one
aspect, MM2 is less flexible compared with MM1: The root
frequencies of all rate matrices are assumed to be the same
in MM2, whereas in MM1, each rate matrix is associated
with its own root frequencies. Our results show that in
terms of model fitting, the contribution of nonstationary
character frequencies at the root (MM2) is more significant
than the contribution of allowing different character fre-
quencies at the root for each rate matrix (MM1) (table 1).

Accuracy of Branch-Specific Inference of Gain and
Loss Events

A computational method to infer the posterior expecta-
tion of the gain and loss events for each gene family
and for each tree branch was developed (see Materials
and Methods). This method is especially useful when
analyzing microbial genomes as it points to putative
HGT (gain) events. We evaluated the accuracy of our novel
method to infer gain and loss events for a given gene family
along a specific branch using simulations. Generating a data
set of the same size as the real data set analyzed above, we
tested the performance of our method over a wide range of
parameters. Notably, the distributions of the gain and loss
rate parameters that were used to generate the data were
different from those estimated from the real data (see
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Materials and Methods). This was done in order to avoid
evaluating the method under favorable conditions, in
which the model used for the inference is the same as that
used to generate the data. For comparison, we also simu-
lated the data with gain and loss rate parameters sampled
from the estimated gamma distributions. This comparison
allows us to quantify the error under favorable conditions
(the inference is done assuming the correct type of distri-
bution used to generate the data, yet the shape and scale
parameters are evaluated in each simulation run). Receiver
operating characteristic (ROC) curves were used to evalu-
ate the performance of the inference methodology under
each of these settings. The performance of the inference
under all models ranges from an area under the curve
(AUC) of 0.85 (M1 + I') to 0.96 (MM2) (fig. 3). Notably,

1
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False Positive Rate

Fic. 3. ROC curve for the inference of gain events. The accuracy of
the stochastic mapping method to infer gain events for a given gene
family along a specific branch was evaluated using simulations.
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AUC values obtained for the MMs (both over 0.95) are
higher than those obtained for models with only rate var-
iability (both 0.85), indicating that accounting for hetero-
geneity in the gain and loss rate ratio among gene families
results in more accurate inference of gain and loss events. In
contrast, allowing the root frequency to differ from the sta-
tionary one had little impact on the accuracy of the infer-
ence (<0.06% change in the AUC).

As expected, an even higher performance (AUC higher
than 0.98) is obtained when inference is performed using
MM?2, and the data simulation is performed by sampling
gain and loss rates from gamma distributions (fig. 3,
MM2*). Importantly, these performance comparisons
under various models demonstrate that the inference of
gain and loss events is highly robust to model misspecifi-
cations. Because in reality, the true distributions of gain and
loss rate parameters are unknown, henceforth, we report
performance analysis under MM?2, under unfavorable
conditions (the data are generated using a different distri-
butions than those used for the inference). Furthermore, in
subsequent analyses, we limit the false positive rate to 0.05.
This enables a recall rate (true positive gain events) of 0.72.
This value corresponds to a posterior probability threshold
of 0.2 that at least one gain event has occurred in the spe-
cific branch. A similar performance is obtained for the
inference of loss events (supplementary material, fig. S1,
Supplementary Material online) with AUC over 0.94.

Inference of Events is Robust to Uncertainties in
the Species Tree

In our methodology, the topology of the species tree is as-
sumed to be known. It is important to test how robust our
results are to possible inaccuracies in the assumed species
tree topology. This was estimated by comparing the results
obtained using Ciccarelli's underlying topology (Ciccarelli
et al. 2006) with the results obtained using NCBI’s consen-
sus species tree http://www.ncbi.nlm.nih.gov/Taxonomy/
CommonTree/wwwcmt.cgi. Specifically, we inferred the
number of gain events for each of the 4,873 gene families
under each of the two alternative topologies and com-
puted the Pearson correlation among these two vectors.
Reassuringly, high correlation coefficients were found for
all four implemented models: 0.93, 0.94, 0.96, and 0.88
for models M1+ I', M2 4 I', MM1, and MM2, respectively.
Similar results were obtained when comparing the number
of loss events under both tree topologies. These results
show that our results are relatively robust with respect
to the underlying assumed tree topology.

The Percent of Transferable Genes

Our method for the inference of gain events was utilized to
classify each gene family as either transferable (high poste-
rior probability to have undergone HGT, i.e, at least two
gain events over the entire tree) or not. The classification
methodology ensures a false positive rate of less than
0.05 and enables a recall of 0.85, as determined using
simulations.

Of all gene families, 34.23% were classified as transfer-
able. This estimation is highly conservative for several
reasons. First, simulations according to which the test
threshold was determined (see Materials and Methods)
suggest that limiting the false positive rate to 0.05 resulted
in an estimate of ~15% positive cases that were misclassi-
fied as nontransferable. Second, we demand at least two
gain events, although in fact, in some of the gene families,
a single gain event probably reflects HGT rather than de
novo birth. Third, our requirement for two branches, each
having high posterior gain probability, is somewhat
arbitrary and, although proven accurate in simulations,
may render some cases of HGT undetected. For example,
our definition would miss a case in which there is high
probability for a gain event along one branch and small
probability for a gain event along several other branches,
which taken together may suggest HGT. Finally, phyletic-
pattern estimations are conservative because they only
consider HGTs that result in the “birth” of a novel gene
family. Thus, for example, HGTs resulting in the recipient
genomes gaining additional members of existing gene fam-
ilies are ignored.

When we performed the analysis using a less stringent
criterion for transferability, demanding only a single gain
event, 55.69% of gene families were classified as transfer-
able. This definition implicitly assumes that the vast
majority of gain events correspond to HGT. Specifically,
it assumes that most cases of a single-gain event reflect
HGT from donors not present in the data, rather than
de novo appearance. In the following analysis, we adhered
to the more stringent criterion, in order to be more
conservative.

Biological Function Trends within Transferable
Gene Families

Although transferable gene families were found to be
34.23% of the entire set of gene families analyzed, their
percentage was substantially different among some func-
tional categories (table 2). Functional classification was
based on the COG database, which lists 25 categories
grouped into four supercategories: “Information storage
and processing” “Cellular processes and signaling,”
“Metabolism,” and “Poorly characterized.” Among the
supercategories, the first two were found to be significantly
depleted in transferable gene families, whereas the other
two were found to be enriched (P values of 0.00023,
0.00053, 0.028, and 0.1, respectively; Fisher’s exact test; table 2).
Because the enrichment and depletion tests were per-
formed over all 25 COG functional categories, all P values
were corrected for multiple testing using false discovery rate
(FDR) (Benjamini et al. 2001). The inclination of transferable
genes toward metabolic roles rather than information-
related roles is in agreement with current views regarding
HGT functional bias (e.g, Rivera et al. 1998; Nakamura
et al. 2004). The observed trend with respect to “Cellular
processes and signaling” and “Poorly characterized” superca-
tegories is currently less discussed in the literature. We spec-
ulate that the depletion in “Cellular processes and signaling”
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Table 2. Percent of Transferable Gene Families in Functional Categories that Significantly Differ from the Background Percent of All Gene

Families.

Functional Categories

Transferable Gene Families Out of the Total Number of Gene
Families in Each Functional Category (P Value)

(A)
METABOLISM
POORLY CHARACTERIZED
Carbohydrate transport and metabolism
Replication, recombination, and repair
General function prediction only
Energy production and conversion
Depleted Functional categories

(B)
CELLULAR PROCESSES AND SIGNALING
INFORMATION STORAGE AND PROCESSING
Translation, ribosomal structure, and biogenesis
Intracellular trafficking, secretion, and vesicular transport
Transcription
RNA processing and modification
Cell motility
Cell cycle control, cell division, and chromosome partitioning

38.93% (0.028)
37.19% (0.1 %)
46.96% (0.011)
46.63% (0.011)
39.03% (0.092 ?)
41.47% (0.1 %)

25.9% (0.00053)
24.9% (0.00023)
12.25% (3.72E—09)
12.03% (1.66E—06)
18.61% (0.00015)
4.0% (0.011)
17.71% (0.012)
19.44% (0.06 *)

(A) Enriched categories (significantly higher than 34.23%). (B) Depleted functional categories (significantly lower than 34.23%). Supercategories are in bold and in upper-

case letters. All P values were computed using Fisher’s exact test.

? Functional categories for which the P value is not significant after FDR correction but lower or equal to 0.1.

may reflect selection against the transfer of housekeeping
genes. The enrichment in “Poorly characterized” gene
families may reflect the fact that genes with overall sparse
taxonomical representation are both frequently inferred
as transferable and tend to be poorly characterized.

Performing this analysis with respect to the entire list of
25 biological process categories enables further under-
standing of the factors that determine transferability. All
functional categories with significant enrichment or deple-
tion of transferable gene families are listed in table 2. The
functional category with the highest percentage of trans-
ferrable gene families is “Carbohydrate transport and me-
tabolism.” Over 46.9% of the gene families within this
functional category were classified as transferable. Interest-
ingly, a few of the enriched functional categories are related
to metabolism and energy production. These biological
functions were previously suggested to be enriched with
transferable gene families (Beiko et al. 2005). We speculate
that the high transferability in these functional categories
plays a critical role in microbial niche adaptation. The
functional category “Replication, recombination, and repair”
was also found to be highly enriched in transferable genes, in
agreement with previous reports (Hsiao et al. 2005; Mau
et al. 2006; Merkl 2006).

Three Information storage and processing functional
categories (“Translation, ribosomal structure, and biogen-
esis,” “Transcription,” and “RNA processing and modifica-
tion”) and two cellular process and signaling ones
(“Intracellular trafficking, secretion, and vesicular trans-
port,” and “Cell motility”) are significantly depleted of
transferable gene families. It should be noted that the
abovementioned information-related categories comprise
only a small fraction of the supercategory Information stor-
age and processing. However, due to the extreme depletion
of transferable gene families in some of these categories
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(especially, the “Translation, ribosomal structure and bio-
genesis” category), the entire assortment of categories that
make the “Information storage and processing” supercate-
gory shows a significant depletion of transferable gene
families.

Highly Transferred Gene Families

The group of transferable gene families is not homogenous.
Some gene families have experienced many HGT events,
whereas some—only one. Notably, the above definition
of transferability lacks a quantitative measure of the ex-
pected number of HGT events. Our method enables us
to infer the posterior expectation of the number of
HGT events for each gene family. We therefore ranked
all the gene families according to the inferred number of
HGT events that have occurred (computed by summing
the posterior expectation of the number of HGT events
over all branches). The number of HGT events for each
gene family is given in supplementary table S1, Supplemen-
tary Material online. For the 25 gene families with the high-
est number of HGT events, the posterior expectation of the
number of HGT events exceeded 7.35. Among these gene
families, eight were categorized as “Poorly characterized.”
Our results thus highlight a subset of the large group of
gene families that are poorly characterized, for which
our predictions suggest their fixation following HGT may
be selected for.

Discussion

In this work, we have devised new probabilistic-evolutionary
models to better describe dynamics of gains and losses of
gene families. We have further developed inference meth-
odology to reconstruct gain and loss events and to statis-
tically test whether a gene family underwent HGT. This
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model-based inference methodology allows accurate and
robust detection of HGT.

In previous models, it was assumed that the rate matrix is
the same for all gene families, up to a scaling factor.
Biologically, this means that if one gene family has experi-
enced more losses, it should also experience more gains,
to the same extent. However, the validity of this assumption
is questionable (e.g., Cole et al. 2001; Jordan et al. 2001). To
capture possible deviations from this assumption, we
developed a more sophisticated model, in which the
evolutionary dynamics are modeled with a mixture of sto-
chastic processes, which in practice allows each gene family
to evolve under separate gain and separate loss rate param-
eters. The evolutionary models were subsequently used to
analyze an extensive phyletic-pattern data set. We show that
MMs are more suitable to explain phyletic-pattern data
compared with simpler models and that an additional im-
provement is achieved when the model allows the root char-
acter frequencies to differ from the stationary ones. Notably,
the mixture models (MM1 and MM2) have the same num-
ber of free parameters as the simpler models (M1 + I" and
M2 + I'), strengthening our conclusion that our MMs better
capture the dynamics of gene-family evolution.

Both the MM1 and the MM2 models are simplified ver-
sions of a true MM, in which the gain and loss rates of each
matrix component, the character frequencies at the root,
and the weight of each such component are all free param-
eters of the model. In our approach, the MMs are less
flexible; however, the need to estimate too many param-
eters from the data is avoided, thus alleviating the risk of
model overfitting and large errors of estimated parameters.
This is avoided by first assuming equal weights for all
components of the MM. Moreover, by assuming that
the gain and loss rates are gamma distributed, a significant
reduction in the number of free parameters is obtained.
Finally, when nonstationary character frequencies in the
root were allowed, we assumed that these frequencies
are the same among the mixture components, again to
reduce the number of free parameters.

In the MM2 models, the character frequencies at the
root are allowed to differ from the stationary ones, and
it is assumed that they are the same among the mixture
components. Although this last assumption may be unre-
alisticc MM2 was still found to be superior to MM1. This
could be explained by the substantial differences in the es-
timated character frequencies at the root. In the stationary
models (M1 + I" and MM1), the frequency of 1 at the root
tends to be very low. For M1 + T, the root frequency of 1 is
obtained by dividing the gain rate by the sum of loss and
gain rates and was found to equal 0.082. For MM1, the
computation must account for all components in the
mixture—the mean gain divided by the sum of mean gain
and mean loss rates is 0.035. In biological terms, such a low
presence frequency at the root requires rampant gains in
most gene families. In contrast, when the character fre-
quencies at the root are allowed to be estimated separately,
the frequencies of 1s at the root are much higher: 0.45 and
0.59 for M2 + I" and MM2, respectively. We thus suggest

that the stationary models may “force” unrealistic charac-
ter frequencies at the root, and the alleviation of this
limitation in the nonstationary models resulted in the
observed large increase in likelihood.

These evolutionary models were applied in a method to
infer gain and loss events using a stochastic mapping ap-
proach. Based on a simulation study, we have shown that
the inference method is highly accurate in predicting gain
and loss events for each gene family and for each branch.
Although the probabilistic model described here was
implemented in the context of phyletic pattern, it can
be readily used to analyze any binary-based characters such
as the evolution of restriction sites (Felsenstein 1992),
introns (Csuros 2006; Carmel et al. 2007), and morpholog-
ical characters (reviewed in Ronquist 2004). A possible
extension for our suggested models would be to allow
for the rate matrix Q to vary along the tree (Marri et al.
2007; Spencer and Sangaralingam 2009). In biological terms,
this would allow, for example, a correct description of gene
families that are frequently lost in specific branches,
whereas seldom lost in others, as in the case of parasitic
bacteria (Spencer and Sangaralingam 2009). Similar models
that allow for either the rate or the Q matrix to vary along
the tree were previously proven justified for modeling se-
quence evolution (Fitch and Markowitz 1970; Miyamoto
and Fitch 1995; Galtier 2001; Yang and Nielsen 2002).

The test developed for HGT inference can point to specific
lineages in which a given gene family was gained. More gen-
erally, the stochastic-mapping frameworkalso allows comput-
ing probabilities and expectations of various scenarios related
to the gene family at hand, for example, the global-mapping
expectation of gain eventsalong the entire tree (see Mininand
Suchard 2008b for details). Notably, the method in itself is not
informative regarding the donor of this gene family. Neverthe-
less, once HGT is determined, it is straightforward to search
sequence-based data sets for remote homologs to the newly
gained members of the gene family. A subsequent gene-tree
reconstruction may reveal the donor.

Our analysis suggests that at least 34.23% of all gene fam-
ilies are transferable. This is a higher estimate than previously
reported (e.g, Garcia-Vallve et al. 2000; Beiko et al. 2005; Ge
et al. 2005; Choi and Kim 2007), probably reflecting differ-
ences in the inference methodologies (Lawrence and Och-
man 2002; Ragan 2006). We suggest that phyletic pattern—
based estimates tend to be higher than those obtained by
analyzing sequence data because methods that detect HGT
using atypical “genomic signature” are tailored only toward
recent transfers, whereas “phylogenetic incongruence”
methods are capable of detecting genes that have sufficient
yet not excessive divergence. In support of such a high es-
timate of the fraction of transferable gene families, a recent
paper analyzing gene-sharing networks among prokaryotes
suggests that, on average, approximately 81% of genes in all
genomes were transferred at least once (Dagan et al. 2008).
Additional experimental support for the potential transfer-
ability of a large number of gene families is the work of Sorek
et al. (2007) that showed that only 61 gene families are highly
untransferable into Escherichia coli.
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A reliable methodology for the inference of HGT events
is a first step toward understanding the evolutionary forces
dictating the probability that a newly transferred gene is
fixed in the population of the acceptor. Our analysis sug-
gests that the functional category of the gene family can
often be highly predictive of its fixation probability and that
higher resolution analysis of functional categories may
provide additional insights into the dependence between
protein function and its probability to undergo HGT. For
example, our results suggest that although in general the
number of HGT events in information-related protein fam-
ilies is low, in some specific information-related subcatego-
ries, the number of HGT events is relatively high (e.g,
“Replication, recombination and repair”).

To conclude, the wealth of sequenced microbial
genomes has revolutionized our understanding of the role
played by HGT in shaping genomes. It is now becoming
increasingly established that probabilistic-evolutionary
models may offer the needed gateway toward analysis of
these data. Methods based on such models that are capable
of accurate inference of gain and loss events provide a more
quantitative description of the evolution of gene families in
general and of HGT in particular.

Supplementary Material

Supplementary figure S1 and table S1 are available at
Molecular Biology and Evolution online (http://www.mbe
.oxfordjournals.org/).
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