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Abstract
We present a unified method to generate conformational statistics which can be applied to any of the
classical discrete-chain polymer models. The proposed method employs the concepts of Fourier
transform and generalized convolution for the group of rigid-body motions in order to obtain
probability density functions of chain end-to-end distance. In this paper, we demonstrate the proposed
method with three different cases: the freely-rotating model, independent energy model, and
interdependent pairwise energy model (the last two are also well-known as the Rotational Isomeric
State model). As for numerical examples, for simplicity, we assume homogeneous polymer chains.
For the freely-rotating model, we verify the proposed method by comparing with well-known closed-
form results for mean-squared end-to-end distance. In the interdependent pairwise energy case, we
take polypeptide chains such as polyalanine and polyvaline as examples.
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1 Introduction
Conformational studies on polymer chains have been applied to a number of areas, such as
polymer science and biophysics, including protein folding [1,2]. An important quantity in
conformational studies is the end-to-end distance distribution, or probability density function
(PDF) of end-to-end distance. From the ensemble average of end-to-end distance, or its
distribution, many observable quantities can be predicted, including the radius of gyration, the
viscosity of dilute polymer solutions, local concentration, scattering of radiation, etc [3].
Another interesting issue that depends on the end-to-end distance distribution is the reaction-
limit rate, which is one of the crucial factors in loop formation in polypeptide chains [4]. It has
also been shown that the end-to-end distance distribution is important in obtaining force-
extension relations and elastic properties of semiflexible polymers [5–7]. Well-known works
by the Mark group have shown that elastic properties of polymer networks with and without
filler particles can be derived from the end-to-end distance distribution of a polymer chain
[8]–[12]. In order to determine this probability distribution, one needs a theoretical model for
a polymer chain. Several phantom models of polymers have been developed to analyze their
statistical behavior. These can be categorized into two main groups.
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The first group consists of continuous chain models, which need mechanical properties such
as bending/twist stiffness and persistence length, etc. (see [1,13,14]). Representative examples
of this group are the Kratky-Porod model or worm-like chain (WLC) model, Yamakawa helical
wormlike chain model, and Marko-Siggia model [14–17]. For example, attempts have been
made to generate end-to-end distance distributions with the WLC model [18–20]. These works
employ mathematical techniques from quantum physics to compute end-to-end distance
distribution theoretically, and compare those with the results from Monte Carlo simulation.
Also, Zhou has shown that loops in proteins can be modeled using the WLC model [21]. In
another work, end-to-end distance distribution functions for polyelectrolyte chains have been
derived using a charged WLC model, together with excluded volume effects [5]. Recently, one
unified methodology has been reported by which one can describe probability density functions
with respect to all continuous models with quadratic energy function [22]. Also Zhou and
Chirikjian have succeeded in generating probability density functions for bent semiflexible
polymers with this general approach [23].

The second group consists of discrete chain models (see [1,13]). For example, the freely-jointed
model, freely-rotating model, independent energy model, and interdependent pairwise energy
model (the last two are also called Rotational Isomeric State (RIS) model) fall into this category.
Among these models, the RIS model is treated as the most general one [3]. The end-to-end
distance distribution for the freely-rotating model is known analytically [24]. However, no
work has been done regarding explicit and exact calculation of end-to-end distance distribution
functions for RIS model. As for RIS model, there have been some works for generating the
distribution function [25–28]. Their method, called statistical inference method, is to utilize a
least quare inference from a combination with the characteristic function, which is the classical
Fourier transform of the spherically symmetric part of the end-to-end distance distribution to
obtain even moments of end-to-end distance, and appropriately assumed probability function.
This method, though it has been known to be sufficiently good for symmetric chains, does not
directly apply for asymmetric chains [29], and in some cases it does not give accurate results
as reported in their paper [26]. Other widely-used methods are numerical techniques
considering full atoms in both polymer chains and solvents. One such technique is molecular
dynamics (MD) simulation [30,31]. This method, however, has one big drawback that the
computational cost is too high. Monte Carlo (MC) simulation has been preferred instead to
obtain end-to-end distance distribution (e.g., [32]). Another method incorporates the RIS model
(especially the interdependent pair-wise energy model) into MC [3]. In this work, one can
generate many possible conformations of a polymer chain within the framework of the RIS
model. Also, the largest eigenvalue method can be incorporated into this work to obtain the
end-to-end distance distribution functions of long polymer chains ([33] and the references
therein). A recent attempt combines MD and MC together such that MD is applied first to
obtain an energy distribution with respect to torsional angle space and then MC and RIS models
are applied for computation of mean end-to-end distance [34]. However, in general, MC also
has some drawbacks, one of which is that it is not good for describing the “tails” of some
probability density functions [35]. A very general theoretical methodology has been published
using the generalized convolution on the group of rigid-body motions [35].

In this paper, we present a unified method to analytically and exactly generate the probability
density function (PDF) of any of the classical discrete-chain polymer models. The presented
method is based on the generalized convolution concept [35], and combines it with ideas from
noncommutative harmonic analysis [13]. Our proposed method can originally generate full 6-
D PDF of relative end-to-end position and orientation of a polymer chain. Then the PDF of the
end-to-end distance becomes a marginal 1-D PDF. Hence, our method can be applied to both
symmetric and asymmetric chains. It will also be shown that, unlike other methods, the
proposed method can be applied to any type of pairwise potential energy in RIS model. For
more specific demonstrations, we apply the method to the case of the freely rotating model,
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independent energy model, and interdependent pairwise energy model. For this reason, we
describe the basic mathematics required to understand the formulation in the first section. In
subsequent sections, we formulate the proposed method according to three different models,
and demonstrate the efficient implementation of the method and its application to polypeptide
chains. Finally, numerical examples follow thereafter.

2 Notation and Terminology
In this section we present the basic mathematics which will be used in our entire paper.

2.1 Fourier Transform for SE(3)
In this section, we give a brief review of the Fourier transform for the rigid-body motion group.
For detailed definitions and explanations, see [13].

The special Euclidean group, SE(3), is defined as a set which contains translations and rotations
in three-dimensional Euclidean space. Let g be an element of SE(3), then g = (r, R) can be
written in matrix form as

Multiplication of any two such matrices results in a matrix of the same form. SE(3) is a Lie
group under matrix multiplication. Here, R ∈ SO(3) is a rotation in three-dimensional space,
and is parametrized using ZXZ Euler angles as

where ROT[ei, ϕ] denotes the rotation matrix describing the rotation by ϕ about the axis parallel
to the unit vector ei. r ∈ ℝ3 represents translation in three-dimensional space, and is also
parametrized by means of spherical coordinates as

Matrix elements of the irreducible unitary representations of SE(3), , are defined
as [13,36]

(1)

In the above definition, the rotational part,  are matrix elements of the irreducible unitary
representations for SO(3), which are defined as [37,38]
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(2)

where α, β, and γ are ZXZ Euler angles and  is a generalized associated Legendre
function, which can be calculated by the following integral

(3)

or one can obtain by the following relation using the Jacobi polynomials

(4)

The translational part in Equation (1) is expressed as

(5)

where

and

Here we use  as an imaginary unit to distinguish it from the index i. One can also use
the following series form to calculate the translational part of the matrix elements of IURs for
SE(3):

(6)
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where C(k, 0; l′, s|l, s), C(k, m−m′; l′, m′|l, m) are Clebsch-Gordan coefficients,  are
spherical harmonic functions, and jk(pr) is the kth spherical Bessel function. According to
[37], Clebsch-Gordan coefficients are defined as

(7)

where

Finally, we are at the stage of defining the Fourier transform for SE(3). Based on the above
formulae, the matrix elements of the Fourier transform of a function F(g), wherein g = (r, R)
∈ SE(3), is obtained by the following relation

(8)

where dg = dRdr with dR = (1/8π2) sinβ dα dβ dγ and dr = r2 sinθ da dθ dφ.

The inverse Fourier transform is defined as

(9)

or in component form as

(10)

The convolution of two functions on rigid-body motion group F1(g), F2(g) is defined as

(11)

where h, g ∈ SE(3). The geometric meaning of this convolution is that the second function is
swept and weighted by the first. For example, if the full distribution of positions and
orientations of two adjacent segments of a polymer chain are known (see Fig. 1), then the
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concatenation of the segments yields a chain with distribution F1 * F2. Note that generally the
order of concatenation matters for inhomogeneous chains and F1 * F2 ≠ F2 * F1 if F1 ≠ F2.
This convolution of functions on the group can be calculated by direct sequential products of
Fourier transform of each function as

(12)

Note that unlike the case of the classical convolution theorem the order of multiplication
matters.

2.2 PDF of end-to-end distance
In this section, we derive the probability density function of end-to-end distance for discrete-
link polymer models using the Fourier transform obtained in the previous section. The PDF of
end-to-end distance, denoted as f(r), is, in fact, a marginal 1-D PDF of the 6-D PDF of relative
end-to-end position and orientation, denoted as F(g) where g = (r, R) ∈ SE(3). The final form
of the result to be derived can be found in the literature [13,22,23]. However, since those do
not contain detailed derivations, we derive it in this section.

The inverse Fourier transform of F̂ can be obtained using Eqs. (9) or (10). To obtain the
probability density function of end-to-end distance, let us first consider the integral over SO
(3) of F(g)

(13)

If we separate and write for the last integral, then it becomes

where . In order for this integral to have non-zero value, one can easily
find that j = 0, and m = 0. The integral on β, then simply becomes

Here we use the relation , where Pl is the lth Legendre polynomial, and
substitute cosβ into x. The integral of each Legendre polynomial becomes zero when l ≠ 0.
Hence we find the condition that l = 0. Looking at the range of summation, one can also find
that s = 0 should be satisfied. Therefore Eq. (13) can be expressed in a compact form as
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(14)

If we integrate Eq. (14) over the surface of a unit sphere and multiply by r2, then the result will
be the probability density function of end-to-end distance. Let that probability density function
be denoted as f(r), then it is of the form

(15)

Since [l′, m′|p, 0|0, 0](r) consists of such functions as eimφ and Pl′(cosθ) due to the fact that l
= m = s = 0, one can easily find that l′ = m′ = 0 by the similar reasoning with that given
previously. Finally, we can get the end-to-end distribution as

(16)

Here we use the equality  [13].

3 Probability Density Function of end-to-end distance
As mentioned earlier, we examine discrete-chain polymer models. In this section we derive
the probability density function of end-to-end distance for three different discrete-chain
polymer models.

3.1 The freely-rotating model
Let us assume the geometry shown in Fig. 2. Fig. 2 shows a schematic diagram of the ith link.
In that figure, Li corresponds to the length of the ith bond, αi is the ith dihedral or torsional
angle, and β0 is the ith bond angle. Here we use the convention that the local z axis coincides
with each bond. Then the position of the distal end with respect to the proximal end can be
described by means of spherical coordinates, r = [r cos φ sin θ, r sin φ sin θ, r cos θ]T. In this
case, r = Li, and θ = 0. Torsional and bond angles are related to the rotation matrix of the distal
end of link i with respect to its own proximal end, and can be described using by ZXZ Euler
angles RZXZ(α, β, γ), in which case α = αi, β = β0, and γ = 0.

According to the geometry shown, one can find that the appropriate form of the probability
density function for this single link can be described using Dirac delta functions. If we express
it explicitly, it is of the form

(17)

Here, since the position of the distal end has the singularity associated with spherical
coordinates (θ = 0), the φ value does not appear in the above equation. Instead, the effect of
integration with respect to φ is included in the constant, so that consequently, the constant term
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contains 4π/r2sinθ [13]. As for the α angle, which corresponds to the ith torsional angle αi of a
polymer, we assume that rotation around this angle to be uniformly distributed, so that
probability of those angles are . This assumption makes it the freely-rotating chain model.
Then we can take the SE(3)-Fourier transform for the function in Eq. (17) by using Eq. (8).
From [13], one sees that

With the above expression, Eq. (1), the properties of Dirac delta function, and the fact that

 has non-zero value only when m = 0, we can derive the probability density function
of the ith link as

(18)

where r0 means the position vector of distal end with respect to the reference frame attached
to the proximal end. In component form, it can be written as

(19)

only when m = 0. Otherwise, it is zero.

Since we get the Fourier transform of the probability density function of the ith link derived
above, now we can obtain the Fourier transform of an N-link polymer by utilizing the
generalized convolution on SE(3), which is simply expressed in Eq. (12). Let us denote the
Fourier transform of an N-link polymer as F̂. This can be obtained simply by multiplying each
Fourier transform in reversed order as

(20)

when we apply the above arguments to obtain the end-to-end distance distribution. Since we
only need to consider the case when s = 0, Eq. (19) can be further simplified to the following
form

(21)

only when m = 0. Otherwise,  becomes zero. In the above equation, the Clebsch-
Gordan coefficient can be calculated by the following simple formula [39]
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when a+b+c = 2g, where g is a positive integer. When a+b+c = 2g +1, the corresponding
Clebsch-Gordan coefficients have zero values. Then by utilizing Eqs. (20) and (16), we can
obtain the probability density function of end-to-end distance for the N-link polymer chain.

3.2 The independent energy model
In this model, the potential energy is expressed as

. With this in mind, we define the PDF of the ith link as

(22)

where g = (r, R(α, β, γ)) ∈ SE(3) and the partition function Z is defined as

. The Fourier transform of this function becomes

(23)

Using the fact that  vanishes except when j = −m, |m| ≤ l′, Eq. (23) is further
simplified to the following form

(24)

only when |m| ≤ l′. If not, the above Fourier transform becomes zero. After that, by using Eqs.
(20) and (16) we can obtain the end-to-end distance distribution.

3.3 The interdependent pairwise energy model
As we did in the freely-rotating model and in the independent energy model, let us assume the
geometry shown in Fig. 2. The difference now is that
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(25)

First, we define the following. Let d(g−α) be , and ∫SE(3)−α = ∫γ∫β∫θ∫φ∫r, i.e.,
only ∫α(·)dα is missing in the integration and measure. We also define

. Then referring to [13], we can define

(26)

By the same analogy as in the previous case, due to the fact that the integral  has
non-zero value only when j = −m only for |m| ≤ l′, it becomes

(27)

Now, let us consider the Boltzmann-weighted convolution of the ith and i+1st links of the form

(28)

If we take the SE(3)-Fourier Transform of the convolution, then it is written as

(29)

Here we use g′ = h−1 ◦ g, dg′ = dg, Us(g′−1 ◦ h−1) = Us(g′−1)Us(h−1), and . By
means of Eqs. (26) and (27), Eq. (29) can be written in the compact form

(30)

Suppose that there are N links, and let the number density of the distal end be numF, then the
Fourier Transform gives
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(31)

where α = (α1, ···, αN) and . Then the Fourier Transform of the PDF
can be obtained by normalization as

(32)

where the partition function Z is defined as

(33)

Now, we employ a similar method as in [13,35]. First, let us define for i + 1 < l − 1

(34)

Then, for example assuming that we divide the total chain into two segments (α0, ···, αi) and
(αi+1, ···, αN), the Fourier Transform of the number density numF becomes

(35)

In practice, we can break the whole chain apart into segments with 2 or 3 monomers. More
specifically, let us define

(36)

Then Eq. (34) becomes

(37)

and we can apply this equation sequentially to reach Eq. (35). After that, we can apply the same
normalization as in Eq. (32). Then the end-to-end distance distribution f(r) can be calculated
from Eq. (16).
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Note that, in order to obtain the partition function Z, we can apply the same method described

above. Specifically, if we use 1 instead of  and  in Eq. (36), then the
convolution-like function eventually gives the partition function.

4 Efficient Implementation
In numerical work, computational cost is often a critical issue. In this section, we mention
efficient methods for calculating the end-to-end distribution with the proposed method.

Among the three different models presented in this paper, the computational speed for the
freely rotating and the independent energy model cases is faster than that of the interdependent
energy model. We can store the Fourier transform of each link in advance as functions of the
frequency factor p, then can apply Eq. (12) to obtain the end-to-end distribution of a given
polymer. This process is nothing more than matrix multiplication.

However, when it comes to the interdependent energy model case, the situation is not as simple
as the two other cases. As one can see from Eq. (37), one needs double integration at each step.
For example, assume that we divide one torsion angle into n cells. Then the number of points
in each αi becomes n +1. Each process of matrix multiplication and summation in Eq. (37)
needs O(n4) computations. The main problem is that if we use n = 50 or greater than that (n =
100, for example), which is required in most cases because one needs a large value of n to
avoid aliasing effects in the Fourier transform, then O(n4) is really a huge number, which means
that the direct implementation of Eq. (37) is not an efficient way to implement the method for
the interdependent energy model case. For this reason, we present more efficient ways of
implementing the interdependent energy model.

First, we compute the Fourier series of ui,i+1(αi, αi+1) = e−Ei,i+1(αi,αi+1)/kBT. Then it becomes

(38)

In practice, if we use a band width, B, for approximating the exponential of the energy function,
then we can utilize the exponential of the energy function as

(39)

Here the Fourier coefficient i,i+1ûm,n is defined as

Also a closer investigation of Eq. (27) gives

(40)
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where

(41)

for |m| ≤ l′. Otherwise it becomes zero. If we express it in matrix form, it becomes

(42)

where  means the diagonal matrix whose diagonal element is eimαi. Let us assume that
there are 8 links in a given segment of polymer. We can construct the following by means of
Eqs. (36) and (39)

(43)

Similarly, we can construct for the 3rd and 4th links as

(44)

Then  can be expressed, by Eq. (42), as

(45)

where each mi represents the index in Eq. (42) for the ith link. Due to the fact that the integral

 has non-zero value only when m = 0, this can be simplified further to the following
form

(46)

where
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(47)

where δj,k is a Kronecker delta. Here 1,2ûj1,k1, 3,4ûj2,k2, and 2,3ûj,k represent the Fourier
coefficients for E1,2(α1, α2), E3,4(α3, α4), and E2,3(α2, α3), respectively. Similarly,

(48)

With Eqs. (46) and (48), we can obtain the following

(49)

where

(50)

Here 4,5ûj,k is the Fourier coefficient for E4,5(α4, α5). If there are more than 8 links, then one
can repeat Eqs. (49) and (50) to obtain  where N is the number of links. At the final step,
we can obtain numF̂s by

(51)

The partition function Z can be calculated similarly with all ’s replaced by 1 in the above
procedure.

The above approach has an advantage compared to the direct double integration in that we do
not need to perform integration. Instead, we can only select the set of indices which makes the
integration of eimα part nonzero. Then, the total computational cost for each summation and
matrix multiplication processes becomes O(B4 × a2), where the maximum value of a is O(B).
In practice, the number of B as 4 ~ 7 can give a good approximation of the exponential of
energy function. Another issue is that, since ui,i+1(αi, αi+1) is already expressed in terms of
harmonics, we do not need a large value of Nb, which is the band width in the Fourier transform
for SE(3), compared with the case where the original energy function is used. Since the
computational cost also depends on the size of Fourier transform matrix for SE(3), one can
find that the approach presented in this section is much faster than direct double integration
approach.
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5 Application to Polypeptide Chains
We can also apply our proposed method to polypeptide chains. Polypeptide chains have
interesting features compared with other general chains, such as polyethylene, etc. We depict
the diagram of polypeptide chain structure in Fig. 3. First, the torsion angle around the C–N
bond is nearly fixed to be 180°. The torsion angle between Cα and C is called ψ angle, and that
between N and Cα is called φ angle. The allowable range of values for the angle pair (ψ, φ) is
obtained from the Ramachandran plot [40]. This also shows that the behavior of a polypeptide
chain can be described using interdependent pairwise energy model. In fact, this is already
known as “the Flory isolated-pair hypothesis” [1,41]. Although it turns out that this isolated-
pair hypothesis requires some modification [41], it still serves as a good approximation to
describe the behavior of polypeptide chains. In this section, we apply our proposed method to
obtain end-to-end distance distribution of polypeptide chain models defined by the
Ramachandran plot.

Looking at Fig. 3, as mentioned earlier, unlike other polymers such as polyethylene, etc., the
C–N bond does not have energy interaction with two adjacent bonds, Cα–C and N–Cα. Let the
probability density function of the C–N bond be ωF. If the torsional angle along the C–N bond
is 180°, or π radians, then ωF becomes

(52)

where βω and Lω are bond angle and bond length of C–N bond, respectively. Here the ω angle
is assumed to be 180° or π radians. The Fourier Transform for SE(3) gives

(53)

for |m| ≤ l′. Otherwise, this becomes zero. One can, then, define the following together with
Eq. (26)

(54)

Then we can apply the method in the previous section to this polypeptide chain model. Note
that the polypeptide chain case has much simpler form than general polymer chains due to the
fact that

(55)

That is, each pairwise energy becomes independent. Hence, we can use an energy function
with the following form
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(56)

where

(57)

First we consider 8 residues among the polypeptide chain consisting of N residues. For
convenience, let us assume that N has the form of 2k where k is a positive integer greater than
3. We can construct the pairwise Fourier Transform-like matrices as

(58)

for i = 1, 3. Then

(59)

where

(60)

We can do similarly with the subchain consisting of residues 5 to 8 as

(61)

Then

(62)

where

(63)
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After that, we can repeat until N links are reached. Finally we can obtain the Fourier Transform
of end-to-end distance probability density function F(g) as

(64)

Here 4π2 in the first line is a normalization factor. Because all u(αi, αi+1) are normalized
according to Eq. (56), the integration about the final two angles αN and α1 requires a
normalization factor, which becomes ∫αN ∫α1 dα1dαN = 4π2

6 Numerical Examples
In this section three kinds of examples are demonstrated: the freely-rotating chain, the
independent energy chain, and the interdependent pairwise energy chain.

6.1 The freely-rotating and the independent energy chain model
First let us take an example for the freely-rotating model. In order to verify our model, we
utilize well-known formulas for the freely rotating chain model [1]. According to the Flory’s
theory [1], when all the link lengths are the same and denoted as L, and all the bond angles
have the same values as θ, then the average of the square of the end-to-end distance for the
N-link polymer chain can be calculated as[1,13]

(65)

where α = cosθ. If we further normalize the end-to-end distance with the total chain length
(divide Eq. (65) by N2L2), the equation becomes

(66)

In Fig. 4 are shown the resulting end-to-end distance probability density functions for two
different cases. Here the number of links in the polymer chain is fixed to be 20. If we calculate
the area under the curves, it gives 1.0000, which means that the obtained curves truly represent
the probability density functions. In Table 1 are shown the squares of the end-to-end distance.
One can see that the corresponding results are in excellent agreement with those from Eq. (66).
In the simulations, as the band width for Fourier transform for SE(3) and upper limit of
integration with respect to frequency factor p, denoted as Nb and Lp respectively, Nb = 12 and
Lp = 50 are used in the case of θ= π/4, and Nb = 16 and Lp = 60 are used in the case of θ = π/
6.

As for the next example, we consider the following potential energy

(67)

in units of kJ/mol, which is the torsional potential energy for n-Butane.[3] In Fig. 5 is shown
the torsional potential energy and exponential of the potential energy. This potential energy
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has three minima, gauche+ (near α = 60°), trans (near α = 180°), and gauche− (near α = 300°).
This expression is one general form of torsional potential energy which appears in many of
polymer chains. In Fig. 6 is shown the resulting probability density function of end-to-end
distance for this independent energy model. Looking at part (a), which is the case of the number
of links being 16, one can see that the PDF is described more accurately as the band width for
Fourier transform for SE(3), Nb, and the upper limit for the integration with respect to the
frequency factor p, Lp, get larger. Especially, Nb = 7 appears to be sufficient for describing the
‘mountain’ part of the PDF, but in order for the better ‘tail’ description, we need larger Lp such
as 40 in that figure. In part (b), we show the PDFs for two different numbers of links. As one
can expect, when the number of links is 128, the resulting end-to-end distance distribution
becomes more concentrated toward the left side.

6.2 The interdependent pairwise energy chain model
We now demonstrate the interdependent pairwise energy model case. Among various
polymers, from natural to artificial ones, polypeptide chains are of special interest these days.
Hence we take polypeptides as examples of the interdependent pairwise energy model. In order
to generate end-to-end distance distributions, we need a 2-D energy map. One can find a way
to compute the energy map from first principles using Lennard-Jones potentials [1], or using
MD simulations [42]. In general, MD simulation can be trusted more than just using Lennard-
Jones potentials. However, in this paper, we generate Ramachandran-like plots as a probability
distribution of torsional energy. The purpose of this example is to show that the proposed
method can generate end-to-end distance distributions for any type of pairwise energy function,
which justifies the usage of Ramachandran-like plots. We also utilize the simplified geometric
model for a polypeptide chain based on the same reason above. All the information about bond
angles and bond lengths of peptide units are borrowed from [41]. The hard-sphere contact
distances are also borrowed from [41]. As for hard-sphere radius for residues (alanine and
valine), we treat CH3 to be approximately of the same size as C, from the fact that, according
to [1], the radius of CH2 are greater than that of C by only 0.15 Å. Fig. 7 shows the
Ramachandran-like plot for each dipeptide, alanine and valine. We treat these maps as the
exponential of the torsional potential energy, e−Ei,i+1(αi,αi+1)/kBT and the height of each allowed
(gray) region is set at 2. In Fig. 8 is shown the resulting end-to-end distance PDF for a
polyalanine chain with 16 residues.

As mentioned earlier, the small value of bandwidth B, which is for the classical Fourier series
approximation of the exponential of the torsional potential energy, is good enough for
describing the corresponding PDF, and so is the bandwidth Nb for Fourier transform matrix
for SE(3). In order to verify our method, we performed MC simulation for polyalanine with
16 residues. In the MC sampling, since the probabilities within the allowable region are the
same, we randomly select a set of pairs of φ, ψ angles to generate as many conformations of a
polyalanine chain as possible given computing/time constraints. In practice, we generate 106

conformations to generate the histogram of the end-to-end distance. In Fig. 9 is shown pairwise
energy model. In order to generate end-to-end distance distributions, we need a 2D energy
map. One can find a way to compute the energy map from first principles using Lennard-Jones
potentials [1], or using MD simulations [42]. In general, MD simulation can be trusted more
than just using LennardJones potentials. However, in this paper, we generate Ramachandran-
like plots as a probability distribution of torsional energy. The purpose of this example is to
show that the proposed method can generate end-to-end distance distributions for any type of
pairwise energy function, which justifies the usage of Ramachandran-like plots. We also utilize
the simplified geometric model for a polypeptide chain based on the same reason above. All
the information about bond angles and bond lengths of peptide units are borrowed from [41].
The hard-sphere contact distances are also borrowed from [41]. As for hard-sphere radius for
residues (alanine and valine), we treat CH3 to be approximately of the same size the comparison
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between the result from MC simulation and that from our method. One can observe good
agreement between both the results, though MC is not able to give the exact PDF in this
situation. We believe this happens for two reasons: first, the conformational space is too large
to allow for sufficient sampling; and second, random number generators in software packages
(in this case Matlab) are not truly random, and this lack of true randomness becomes noticable
as the number of samples becomes very large. Also in Fig. 10 one can see that the PDFs
corresponding to different energy becomes different. Looking at Fig. 11, which shows the
resulting end-to-end distance PDF for polyalanine chains with different number of links, one
can also see that when the number of links is 128, the resulting end-to-end distance distribution
becomes more concentrated toward the left side.

6.3 The comparison with other chain models
In this section, we demonstrate the comparison between the end-to-end distance distribution
from other chain models distribution and that from the proposed method.

One can find the formula of the spatial distribution for the Gaussian chain model and the freely-
joint chain model in [1,3]. Following the notation in [1], the end-to-end distribution for the
Gaussian chain is expressed as

(68)

and for the N-link freely-joint chain model

(69)

where r denotes the end-to-end vector and r denotes the end-to-end distance. <r2> corresponds
to the mean square of the end-to-end distance. From these functions, one can obtain the PDFs
of the end-to-end distance as

(70)

First we compare the freely-joint chain model and the Gaussian chain model with the freely-
rotating chain model from the proposed method. In this example, the number of links is 20 and
the bond angle for the freely-rotating chain model is π/4. Referring to Table 1, we find that
<r2>= 0.2502. In Fig. 12, we show the result of comparison among these three different models.
As one can see, different chain model generates different PDF of the end-to-end distance when
the length of a chain is relatively short.

Next, we compare the Gaussian chain model with our examples in previous sections. That is
to say, we take the freely-rotating chain model, the independent energy chain model, and the
interdependent pairwise energy chain model to compare with the Gaussian chain model when
the length of a chain is large. Particularly, in this example we take the number of links is 128
and the bond angle is π/4 for the freely-rotating chain model. As for independent energy chain
model, we utilize the same example in the first subsection. Also we take the polyalanine chain
in the second subsection as an example of the interdependent pairwise energy chain model. As
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for the Gaussian chain model, we first compute <r2> from the results of the proposed method,
and then obtain the Gaussian chain distribution from Eqs. (68) and (70). In Fig. 13 we show
the results of comparison between each of the three different chain models and the Gaussian
chain model. As one can see, these figures verify that all classical linear chain models behave
as the Gaussian chain as the length of a chain becomes very large.

7 Conclusions
In this paper, we have presented a unified method to generate the probability density function
of the end-to-end distance for discrete-chain polymer models. Our method is based on previous
work which utilizes the generalized convolution and extends it by employing the Fourier
transform for SE(3). The proposed method is general enough to be applied to any of classical
polymer chain models. We have formulated the proposed method for three different discrete
polymer chain models: the freely-rotating model, the independent torsional energy model, and
interdependent pairwise energy model. We have also developed efficient implementation
method, particularly for the interdependent pairwise energy model, by approximating the
exponential of the torsional potential function with the classical Fourier series. We have
demonstrated the versatility of the proposed method by numerical examples. We expect that
this method, which can generate both one-dimensional marginal PDFs and multi-dimensional
PDFs (e.g., PDF for end-to-end distance and orientation of the distal end of a polymer chain),
can be useful in a wider range of conformational studies on polymer chains, including artificial
polymer chains and natural ones such as polypeptide and single-stranded RNA molecules.
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Fig. 1.
Pictorial explanation of the concept of convolution. The second function is swept and weighted
by the first. If the full distribution of positions and orientations of two adjacent segments of a
polymer chain, F1 and F2, are known, then the concatenation of the segments yields a chain
with distribution F1 * F2.
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Fig. 2.
Schematic diagram of one link. Reference frame is attached so that the local z axis coincides
with each link. αi is the ith torsional angle, and β0 is the ith bond angle. These are described
using ZXZ Euler angles.
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Fig. 3.
Schematic diagram of a polypeptide chain. The torsion angle of the C–N bond is nearly fixed
as 180°. In numerical examples, βω and βω1 are assumed 63.8° and 58.3°, respectively.
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Fig. 4.
Plot of the resulting end-to-end distance probability density functions for the freely-rotating
model. The number of links is set to be 20. θ denotes the bond angle of the polymer chain. The
continuous line corresponds to the case when θ= π/4, and the dotted line to the case when θ =
π/6. In the simulations, the band width of the Fourier transform for SE(3) and upper limit of
integration with respect to frequency factor p are denoted as Nb and Lp, respectively, and Nb
= 12 and Lp = 50 are used in the case of θ = π/4, and Nb = 16 and Lp = 60 are used in the case
of θ = π/6.
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Fig. 5.
The plot of torsional potential energy and its exponential used in the example of the independent
energy model. (a) the torsional potential energy, (b) exponential of the torsional potential
energy.
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Fig. 6.
Plot of the resulting end-to-end distance probability density functions for the independent
energy model. All the monomer chains are assumed to be identical, with β0 = 75.1°. (a) The
plot of PDFs with different Nb and Lp. It shows that as Nb and Lp get larger, one can describe
the corresponding PDF better. (b) The plot of PDFs with different number of links. From this
figure, one can see that the PDF for chains with a large number of links gets more concentrated
on the left side.
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Fig. 7.
The Ramachandran-like plots of approximate models for dipeptide used in the numerical
examples. (a) Alanine dipeptide. (b) Valine dipeptide. Gray represents allowed regions.
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Fig. 8.
Plot of the resulting end-to-end distance probability density functions for the interdependent
energy model. This corresponds to the case of a poly-alanine chain. The number of links is 16
in both cases. It shows that lower value of Nb and B is good enough to describe the
corresponding PDF of the end-to-end distance.
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Fig. 9.
Comparison of the result from the proposed method with MC sampling. In MC sampling,
106 conformations are randomly selected to generate histogram which is equivalent to PDF of
the end-to-end distance. Both the cases correspond to polyalanine with 16 residues.
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Fig. 10.
Comparison of two different polypeptides with the same number of links. In this figure, the
number of links is set to be 16.
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Fig. 11.
Plot of the resulting end-to-end distance probability density functions for the polyalanine chain
for different number of links. As one can see, the larger the number of links, the more
concentrated to the left side the resulting plot becomes.
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Fig. 12.
Comparison among the Gaussian chain, the freely-joint chain, and the freely-rotating chain
model. The number of links is set to be 20. As one can see, the resulting PDFs are different
according to each model.
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Fig. 13.
(a) Comparison between the Gaussian chain and the freely-rotating chain model. (b)
Comparison between the independent energy chain model and the Gaussian chain model. (c)
Comparison between the interdependent pairwise energy chain model (polyalanine) and the
Gaussian chain model. In all cases, the number of links is set to be 128. It shows that when the
length of polymer chain is very long, then the freely-rotating chain model, the independent
energy chain model, and the interdependent pairwise energy chain model all become the same
as the Gaussian chain.
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Table 1

The comparison of the mean squares of the end-to-end distance.

θ from our model from Eq. (66)

π/4 0.2502 0.2502

π/6 0.4687 0.4688
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