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Abstract

The case-cohort study involves two-phase sampling: simple random sampling from an infinite super-
population at phase one and stratified random sampling from a finite cohort at phase two. Standard
analyses of case-cohort data involve solution of inverse probability weighted (IPW) estimating
equations, with weights determined by the known phase two sampling fractions. The variance of
parameter estimates in (semi)parametric models, including the Cox model, is the sum of two terms:
(i) the model based variance of the usual estimates that would be calculated if full data were available
for the entire cohort; and (ii) the design based variance from IPW estimation of the unknown cohort
total of the efficient influence function (IF) contributions. This second variance component may be
reduced by adjusting the sampling weights, either by calibration to known cohort totals of auxiliary
variables correlated with the IF contributions or by their estimation using these same auxiliary
variables. Both adjustment methods are implemented in the R sur vey package. We derive the limit
laws of coefficients estimated using adjusted weights. The asymptotic results suggest practical
methods for construction of auxiliary variables that are evaluated by simulation of case-cohort
samples from the National Wilms Tumor Study and by log-linear modeling of case-cohort data from
the Atherosclerosis Risk in Communities Study. Although not semiparametric efficient, estimators
based on adjusted weights may come close to achieving full efficiency within the class of augmented
IPW estimators.
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1 Introduction

Two phase stratified sampling designs were proposed by Neyman (1938) for estimation of the
finite population mean of a target variable that was difficult to measure. The average amount
of money spent on food by each family residing in a given district was mentioned as a possible
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target of inference. At the first phase, a large sample is drawn from the population. Information
on an auxiliary variable, easier to measure but correlated with the target variable, is collected
and used to stratify the sample. At phase two, random sub-samples are drawn without
replacement from each stratum for measurement of the target variable. The technique is widely
used in survey sampling to reduce costs.

Two phase designs have also been proposed for use in epidemiology. They are particularly
valuable when a large cohort (the phase one sample) is under surveillance for a disease event
of interest and sampling from the cohort is required to obtain information on additional
covariates. White (1982) proposed stratifying the second phase of sampling on both disease
status and exposure when more information was needed on confounding factors. She argued
that, when both disease and exposure were rare, this was more efficient than the standard case-
control design that stratified on disease status alone. Borgan et al. (2000) considered exposure
stratified versions of the case-cohort study (Prentice, 1986).

In these epidemiologic applications, the target of inference is not a finite population mean but
rather parameters in a probability model —an infinite “superpopulation” from which the cohort
is regarded as constituting a phase one random sample. For the stratified case-control study
the parameters of interest are odds ratios, exponentiated coefficients in a logistic regression
model. For the stratified case-cohort study they are hazard ratios, exponentiated coefficients
in the Cox (1972) proportional hazards model, and often also the baseline hazard function.

Current standard practice for estimation of regression coefficients in the Cox model is solution
of a Horvitz and Thompson (1952) inverse probability weighted (IPW) version of the Cox
(1975) partial likelihood equations (Barlow, 1994; Barlow et al., 1999; Borgan et al., 2000).
Survey statisticians advocate this approach on grounds that when the model is misspecified,
as is generally the case, it consistently estimates the parameters that would be estimated by
fitting the “wrong” model to the cohort were complete data available fot it (Binder, 1992). The
Horvitz-Thompson approach is known to be inefficient, however, sometimes seriously so
(Robins et al., 1994). One reason is that it often ignores much of the information available for
the cohort. The Atherosclerosis Risk in Communities (ARIC) investigators, for example,
conduct numerous stratified case-control and case-cohort studies nested in their cohort of
15,972 subjects sampled from four U.S. communities (The ARIC Investigators 1989).
Information on standard risk factors for cardiovascular disease is available for nearly the entire
cohort from interviews, bioassays and imaging studies conducted at baseline. Additional
information on candidate genes or biomarkers is collected for a phase two cohort random
sample (CRS), also known as a sub-cohort, that is stratified on demographic factors and
sometimes also on carotid wall thickness. Even when enriched by disease cases that occur
outside the CRS, the phase two sample typically contains no more than 10-15% of the cohort.
ARIC analyses have ignored information on adjustment factors available for the great majority
of potential controls.

Recently improved communication between biostatisticians and survey methodologists has led
to a better understanding of the two phase sampling designs used in epidemiology and to
improved methods of analysis. Statistical efficiency may be enhanced by adjustment of the
standard Horvitz-Thompson sampling weights, either by calibrating the weights to cohort totals
of auxiliary variables (Deville and Sarndal, 1992) or by using these variables to estimate the
weights (Robins et al., 1994). We describe some theory and methods for calibration and
estimation of weights when fitting semiparametric models that apply a fortiori to the fitting of
parametric models. The resulting improvements in precision are illustrated by fitting a log-
linear model to data from an ARIC study of coronary heart disease (Ballantyne et al., 2004).
A companion paper for epidemiologists (Breslow et al., 2009) investigates the corresponding
gains in efficiency of hazard ratios estimated from the ARIC data. By simulation of case-cohort
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samples from the National Wilms Tumor Study (NWTS) (D’Angio et al., 1989; Green et al.,
1998), we also illustrate the problems that may occur when one attempts to use too many
auxiliary variables for calibration or estimation of the weights.

A proposal is made for construction of auxiliary variables with the goal of achieving
approximate optimality within the class of augmented IPW estimators (Wang and Chen,
2001). We do not consider semiparametric efficient methods of estimation that make greater
use of the assumptions of the fitted model, usually at the price of introducing bias if the model
does not hold. Such methods are reasonably well developed for logistic regression analysis of
stratified case-control data when the covariates available for the entire cohort are all discrete
(Scott and Wild, 1997; Breslow and Holubkov, 1997). Semiparametric efficient methods for
estimation of hazard ratios from stratified case-cohort samples, which pose greater
computational problems, are currently under development; see, for example, Nan (2004);
Scheike and Martinussen (2004); Zeng and Lin (2007).

2 Properties of Horvitz-Thompson Estimators

This section reviews results of Breslow and Wellner (2007). Suppose N subjects are sampled
at random from an infinite population and indexed by i = 1, ..., N. These subjects constitute
the (main) cohort following the first phase of sampling. Denote by V € V a vector of random
variables that is observed for all cohort members. Suppose V is partitioned V =V, U--U vs and
the cohort is divided correspondingly into J strata, with the it" subject in stratum j if V; € V.
Let Nj denote the number of subjects in the jhstratum, j=1, ..., J, 50 N=Nj + ... + N3. For
the epidemiologic designs, one stratum typically consists of the disease cases while the
remaining strata contain the controls. At the second phase of sampling n; < N; subjects are
sampled at random without replacement from the jt stratum, with sampling for different strata
conducted independently. Additional variables are observed for the n = nq + ... + nj subjects
sampled at phase two. Let W € w denote the vector of random variables that are potentially
available for the cohort, namely, V plus the additional variables known only for the n subjects
sampled at phase two. We denote by Zy = o[Wy, ..., Wy] the sigma field of information
potentially available for everyone. An important aspect of this formulation for the case-cohort
study is that it accomodates random sampling of both cases and controls. Often cases (and
controls) are absent from the phase two sample because some data are missing by chance rather
than by design, for example, because of uninformative biological samples (Mark and Katki,
2006). The methods described herein still apply provided that such absence is random within
defined strata.

Let & be a binary indicator of whether (& = 1) or not (& = 0) the it subject is sampled at phase
two and let z; = Pr(& = 1) be the probability of such sampling. Thus, if j(i) denotes the stratum
of the ith subject, z; = Nj(i)/Njc)- Furthermore, for any pair i # ',

Wiy = Pr(f-:f-,:l): Wi Rl Yj(_'.,)_ .y
S - (D)= (0

J

def { ”iﬂ,":NIsz gL if j) # @)

(1)

The goal of the investigation is to make inferences about parameters in a (superpopulation)

model for a random variable X = X(W) € & which is completely observed for subjects in the
CRS butin general only partially observed for those in the cohort. The model may be parametric
or semiparametric. In the latter case it is specified by probability distributions Py, for X that
are indexed by a Euclidean parameter 6 € ® C RP and an infinite dimensional parameter 5 €
Z. The paradigm is the Cox model, where 6 denotes the vector of regression coefficients and
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1 the baseline cumulative hazard function. We denote by Pg = Py, ,, the “true” model and use
operator notation Pf = Ep f (X) for expectations.

Let £y, denote the usual parametric likelihood score for § and By, denote the score
operator (Begun et al., 1983) that maps one dimensional submodels for 7, indexed by directions
h € # from which 5’s in the submodel approach #q, into the corresponding score functions.
If X was known for all N cohort subjects, parameters could be estimated by solving likelihood
equations (van der Vaart, 1998, Sect. 25.12)

PN .50.1120 ()

PNB()_,]/’[=OV/’[ eH )

for estimators (éN, ;7~N), where Py denotes empirical measure based on Xy, ..., XN. Assumptions

are made at least sufficient to guarantee that \/ﬁ(éN -6, ﬁ[\, —10) is asymptotically Gaussian.
For two phase data, Py in (2) and (3) is replaced by IPW empirical measure defined by

N
P::%Z.f_iéxi’
im1 i 4)

where Jy; is Dirac measure that puts unit mass on X;, and the solution is denoted by (6, 7).
When applied with the Cox model this leads to an IPW version of the so called Breslow

(1974) estimator of the cumulative hazard function and to the same IPW version of the partial-
likelihood equations that has been proposed by Binder (1992) and Lin (2000), among others.

s * -1 ) '/T
Denote the efficient information by /0=F0 [(1 ~ Bo(ByBo) 30)50[0]and the efficient influence

-~ N_l X - * 2 - - - -y
function by €o=I, (1 — Bo(BBo) 'B(',) to, where Bj is the adjunct of By. Invertibility of the
information operator BB is implicit in the assumption that # is estimable at a VN rate. The
principal result of Breslow and Wellner (2007, p. 94) is

VN, - 60)= VN(@y — )+ VN(@, — 6,)
= VNP, Lo+ VN(PZ — B,)o+op(1). ®)

The first term on the right hand side of (5) represents the usual asymptotic expansion for the
unobservable estimator dy. It converges in distribution to G (g, where G is the Pyp-Brownian
bridge (van der Vaart and Wellner, 1996, Sect. 2.1). Conditionally on Xy, and hence considered
as a random function only of the sampling indicators &, the second term converges similarly
by virtue of the weak convergence
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1_ .
Pig, in @)
Pj

J
VNE, - B, w )
J=1 (6)

Here & is a (Donsker) class of functions that contains the likelihood scores for (6, ) in a
neighborhood of (6, #70); vj = lim Nj/N is the fraction of the population in stratum j; p; = lim
nj/N;j is the limiting samping fraction; and ©; denotes the Brownian bridge process restricted to
stratum j, i.e., based on the distribution Pqj;(-) = E(-|V € V). Furthermore, the processes {G,
Gi, ..., &} are mutually independent.

The asymptotic variance of dy is thus the sum of two components, one corresponding to each
phase of sampling. The first component is the usual variability of an estimator based on random
sampling from an infinite population (model) assuming no missing data. It is not amenable to
modification using methods described here. The second component, which is amenable to
improvement, represents the additional variability stemming from the fact that some
components of X are observable only at phase two. It is the normalized design based variance
of the standard Horvitz-Thompson estimator of an unknown finite population total, namely,
the total of the efficient influence function (IF) contributions for all N phase one subjects.
Similar results have appeared in the sample survey literature for estimation of Euclidean
parameters by solving estimating equations that contain no nuisance functions (Rao et al.,
2002; Rubin-Bleuer and Kratina, 2005). Equations (5) and (6) provide the extension to
semiparametric models under two-phase stratified sampling, with the semiparametric efficient
influence function £g playing the role of the ordinary parametric IF. For phase two subjects the
IF contributions £g(X;) may be approximated with negligible error from the observed x; by
dfbeta’s (Therneau and Grambsch, 2000, p. 155) defined by

def ~
dfbeta; = f(aNﬁN,(Xi). )

Explicit formulae are available for the Cox model (Cain and Lange, 1984; van der Vaart,
1998, Sect. 25.12.1). Values may be obtained from standard statistical packages as a type of
residual following a model fit. In R, for example, they are obtained with the command db<-
resid(nodel .fit, type="dfbeta’).

3 Calibration and Estimation of the Weights

Survey statisticians are adept at improving estimates of finite population (here, cohort or phase
one) totals when auxiliary variables, closely correlated with the target variable, are available
for the entire population. We consider £y(x;) to be the vector of target variables, denote by z;
N
= z(vj) a g-vector of auxiliary variables and set zlolzzi:lz,-_ Some suggestions for choice of
the z; are given later. The idea behind calibration is to modify the design weights d,-=7r,?l to new
weights w; = g;d; such that the w; and d; are as close as possible yet the phase one totals z;o; of
the auxiliary variables are exactly estimated. If G(w, d) denotes a distance measure, the problem

N
is thus to minimize Zizl,&G(wi. d;) subject to the constraints
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N

— def

Ztot = ZfiWiZi:Ztot
i=1 (8)

known as the calibration equations. Here we consider G(w, d) = (w—d)2/2d and G(w, d) =w
log(w/d)—w+d, the Poisson deviance. See Deville and Sarndal (1992) for other possibilities.

Let 1 be a g-vector of Lagrange multipliers corresponding to the constraints (8). For G(w, d)
= (w—d)2/2d, solution of the constrained minimization problem by standard calculus yields
gi = 1 — ATz; which, when substituted into (8), leads to an explicit solution for A:

Ay :[ZfidiZiZ;T] [Zfidizi - th) '
i=1 =1

(9)
The estimator obtained with the resulting weights is known as the generalized regression or

GREG estimator (Sérndal et al., 1989). When used to estimate a finite population total

N -
Y=) . Vivia

the GREG estimator is the finite population sum of the fitted values plus the Horvitz-Thompson
estimator of the sum of the residuals.

When G(w, d) is the Poisson deviance, solution of the minimization problem gives g; = exp
(—ATz;) and the calibration equations, now solved iteratively for 1, become

N
Zfiexp(—/lTZi)diZi:Zml-
i=1

Under standard regularity assumptions (Isaki and Fuller, 1982) applicable to design based
inference, Deville and Sarndal (1992, p. 379) show that the solution generally satisfies

N
/lN:B;,l [Zfidizi - Zlot]
i=1

+0p(n’l ), where (10)
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1 ~
—B,=—
N © N

N
Zfidfz,'ziT] % PyZZ").
i=1 (11)

When g,:exp(—?f,fz,-) the calibrated weights are always positive (with GREG they may not be)
and the resulting estimator is known as the (generalized) raking estimator. Since under mild

regularity conditions (see Sect. 7, Appendix) /lN 0,,( ) the g; converge to 1 and hence the
estimated w; converge to the design weights d;.

The asymptotic properties of the estimator dy (£y) based on calibrated weights may be derived
from results in Breslow and Wellner (2008) by letting the Lagrange multipliers 4 play the role
of “nuisance” parameters a. Regardless of which distance function is used for calibration
(Deville and Sarndal, 1992), one finds

F((M—eo w G,

+Z\/_

i [0 = QZ
(12)

Here @Z2=Po ([OZT) Py 'zZNz is the least squares projection of each component of EO onto
the linear subspace of L(Pp) spanned by components of Z. Hence the effect of calibration on
the (asymptotic) phase two component of variance is to replace £q by the residual after its
(population) least squares regression on Z. The Appendix contains a brief derivation of (12).

The asymptotic variance of the calibration estimator could be further reduced if we replaced
Q in the j" summand of (12) by Qj=P0|j(EoZT)P6|;(ZZT), the projection with respect to the

conditional distribution of the data in stratum. This is because, with Var;/=Po;/** = P§ f,
QjZ minimizes Varj (o — AZ) among all linear functions of Z. Consequently, instead of
calibrating to the overall total, one might consider calibrating to the subtotals of z within each
stratum. This is accomplished by defining a new q x J vector of calibration variables by

~ ~ ~T ~ ~T
~T - -1
Z =1Z{Z, ---Z]]where Z; = 1(V € ¥))Z and setting Q=P (foz )PO ZZ) Then
- J o N
0z :ijl 1V € V)QiZ and 5,(t — QZ) = &1 — Q;Z) as desired. However, since this may
greatly increase the number of calibration variables, the increased variability in the weights
may result in an estimator with increased rather than reduced finite sample variance in all but
the largest samples. See Sect. 5 below.

Biostatisticians (Robins et al., 1994) have also suggested adjustment of the sampling weights
to improve efficiency, namely, by estimating the weights using a correct parametric model =
(zi; @) = Pr(& = 1|Z; = z;). For two-phase stratified sampling the model is rendered correct by
including the J binary stratum indicators among the adjustment variables z. Logistic regression
is typically used for z(zj; &), in which case the estimating equations for a become
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eyl i=1 (13)

where w; = p(z; an) T denotes the weight estimated for subject i. Note the parallel with the
calibration equations (8): the weights appear on opposite sides. Results of Breslow and Wellner
(2008) may again be used to derive the asymptotic distribution of dy (ay) under two-phase
stratified sampling. See the Appendix for a brief derivation of the weak convergence

~ 7~ (>
W@V@\,) - H()) > G50+J§l V)4 / #‘\Jl ([() = ijZ) where

< -1
R=Py(1 — m0)toZ" (Pomo(1 — m0)ZZT) . (14)

Note that R is also a projection matrix, now of components of Eo onto the linear span of zgZ
wuf) 1Po(52)

Previous discussions of Horvitz-Thompson methods with estimated weights have derived their
properties for Bernoulli sampling, whereby the N phase one subjects are selected independently
for membership in the phase two sample with known sampling probabilities zy(v) (Robins et
al., 1994; Mark and Katki, 2006). This facilitates comparison of asymptotic properties in terms
of influence functions. Using the asymptotic expansions in the Appendix, which hold for both

sampling schemes, the influence function under Bernoulli sampling for the estimator based on
calibrated weights is readily shown to equal

with respect to the distribution P, defined by P, f=P0(

iZ’o(x) = éﬂQZ(")
mo(v) mo(v) (15)

where 7o(v) = pj for v € V.. The asymptotic phase two variance under Bernoulli sampling is

7 ~ ®2
therefore ijl Wiy - Pf)/PJ'POU(&J - QZ) . The limit laws under the two sampling
schemes, however, are subtly different. The asymptotic phase two variance implied by (12)

J ~
for two phase stratified sampling, namely, ZFI VViyJ(1 = pj)/p;Var; (50 = QZ), is less than
that for Bernoulli sampling.

Expression (15) shows immediately how to choose z. Selecting z°Pt = E({g|V = v), we find
Qz9Pt = 79Pt and conclude that the class of calibrated IPW estimators contains the optimal
member of the class of augmented IPW estimators considered by Robins et al. (1994),Wang
and Chen (2001) and Mark and Katki (2006). Influence functions for this class take the form
(15) with Qz(v) replaced by ¢(v), an arbitrary function of v, and the choice ¢ = z°P* minimizes
the asymptotic variance. Similarly, the influence function when weights are estimated using
auxiliary variables z has the form (15) where Qz is replaced by Rzpz. To obtain the optimal
influence function, therefore, one would include the variables z0PYzy(v) together with the
stratum indicators as predictors of the weights.

Calculation of zPt= E(EO|V =v) requires knowledge of the conditional distribution [X|V], which
is generally unavailable. One approach to approximating z°Pt s to specify parametric regression
models for the components of £y on V (Robins et al., 1994, Sect. 2.7) and to estimate the
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parameters by IPW regression of the dfbeta on V using the second phase data. Kulich and Lin
(2004) proposed an alternative “plug in” method for approximating the conditional expectation
that we adopt here. It is likely to be most useful when there are only one or two partially missing
variables. The steps are as follows:

1. Using (linear or logistic) regression models fitted by IPW to the phase two data,
develop and fit parametric models to predict each partially missing variable (known
only at phase two) given variables v known for all.

2. Use the models in step 1 to impute values X; for everyone in the phase one sample;
variables already known for everyone are used in their original form.

3. Fitthe interest model Py ,(X) to the phase one sample using the imputed values X;.

4. Construct auxiliary variables z as imputed dfbetas (7) from the model fitted in step 3;
these are estimates of zoPt,

5. Estimate 6 using weights adjusted to the z;.

Examples of this approach are given in the companion paper (Breslow et al., 2009) and in Sect.
5 below.

An interesting special case arises when V is discrete with K > J levels, say V € {1, ..., K}.
Define ZT = (1(V = 1), ..., 1(V = K)). Then both calibration and estimation lead to the same
adjusted weights, namely, the inverse sampling fractions within each of the K strata defined
by levels of V. This is a finer stratification than that actually used for sampling. Since

07=)"" Poy(tp)l(V=k)

—E(£o|V) , where Py is defined analogously to Pgj;, it follows that Horwitz-
Thompson estimation based on the finer stratification yields the most efficient estimate within
the augmented IPW class. Survey statisticians refer to this method as post-stratification.

4 Log-linear Modeling

We first consider log-linear modeling of multinomial outcomes 6 corresponding to occupancy
of one of L cells (€ =1, ..., L) in a multidimensional table, with calibration to marginal totals
rather than to IF contributions in a regression model. The outcome for subject i is

6,7:(6,;1 ,.++»0,,) where ¢; o = 1 if the subject occupies cell £, otherwise d; ¢ = 0. Redefine X to
denote a L x p design matrix (p < L), without the intercept to maintain identifiability, and let
0 € © C RP be a parameter vector such that, with x, denoting the ¢t row of X,

pr(6)=Pr(occupy cell £|6)
exp(x¢6)
Z,e,:]CXP(Xmﬁ) ' (16)

The fully parametric model Py(o) thus has likelihood

=

L

tik@=[ [[ [tpie@n.

i=1 (=1
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Our results for semiparametric models and two-phase stratified samples apply to this situation
with £, denoting the ordinary (parametric) influence function rather than the semiparametric
efficient one. Details have been worked out by Kovacevic and Rai (2002) for joint model-
design based inference for parameters in log-linear models under more general sampling
designs. With p(#) defined by p"(6) = (p1(6), .., p(6)) denoting the vector of cell occupancy

N
probabilites under the model, the likelinood score is £9=XT[0—p()]. With OZZ,:J %i denoting
the (unobserved) vector of table frequencies for the phase one sample, the MLE 6y would be
obtained from (2) as the solution to Py g(d;) = XT[O — p(A)N] = 0. The equation to be solved

— . N
for dy is instead P~ 65=X" [ 0" = p(®)N| where O ZZ _,&m'8i denotes the estimated vector

N _
of frequencies and v ZZ ST : (=N for two-phase stratified sampling) is the estimated phase
one total. Thus one simply fits the log-linear model to the estimated table of frequencies.

s T
Iy=Pylyt,
With =XTdiag{p,(0)[ 1 — p,(6)]}X denoting the parametric information and

59 ‘XT[(S p(0)] the parametric influence function, one can use equations (5) and (6) to
determlne the asymptotic variance of dy. The phase one component of variance is estimated
by (NIgy) ™t or more robustly

by

VarPHS -1
1 -1 T

- XI‘
NN - 1)

20”(61 ~P)er =P

where p = p(dy) and e denotes the L-vector with one in the ¢ position and zeroes elsewhere.
Similarly, if O; ; denotes the number of phase two subjects in stratum j observed to occupy
cell € of the table, then the phase two component of variance is estimated by

Ve, =7l ‘XT| zlen”/f,{, S IXIE‘V‘ where
\T
2 -
Sj ”J_l Z 0[](3( _ﬁ(j)) (E( 75(]))

and p0) is the observed vector of cell occupancy fractions in stratum j.

As an illustration, we studied the association between high density lipoprotein-cholesterol
(HDL-C) and lipoprotein-associated phospholipase A, (Lp-PLAy) using data from the ARIC
case-cohort study of Ballantyne et al. (2004). Measurements on HDL-C were available for the
entire cohort of 12,345 participants who had plasma collected at their second follow-up visit
and were free of coronary heart disease (CHD) at that time. Levels of Lp-PLA, were determined
by assay of the stored plasma samples for the 604 who developed CHD during the 6-8 years
of additional follow-up and for 732 controls who had been sampled for the cohort random
sample after stratification on gender, age and ethnicity (two levels each). The ARIC
investigators were interested in whether their data would support the finding by Persson et al.
(2007) of a negative association between Lp-PLA,, a new biomarker of inflammation, and the
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well known risk factor HDL-C. Sampling weights for the nine sampling strata ranged from 1.2
for the stratum consisting of the CHD cases to 32 for white female controls under age 55. (The
CHD cases were effectively sampled at less than 100% since some plasma samples were
uninformative.)

All statistical analyses were carried out using the R sur vey package (Lumley, 2004) available
from http://cran.r-project.org/. Table 1A shows the frequencies for the cross-classification of
the two risk factors, estimated together with their standard errors using standard sampling
weights. They were obtained using IPW estimates of population means that are implemented
in the svyt ot al function. Note that the marginal HDL-C totals of the frequencies estimated
using standard weights do not agree with the actual (integral) HDL-C totals for the cohort.

To formally assess the statistical significance of the clearly negative association, we fit a log-
linear model with a term for a linearxlinear interaction. The design matrix was specified as

01 0 01 0 0 10
00 1 001 0 01
x=<l 00 0 1 11 0 00
00 0 000 1 11
1 0 -1 000 -1 0 1

The first four columns of X (rows of XT) describe the standard independence model, a log-
linear model with main effects for rows (HDL-C) and columns (Lp-PLAy). The interaction
term in the last column corresponds to the single degree of freedom linear by linear association
test for dependence in a two-way table. Fitting the model using svyl ogl i n, the interaction
coefficient was —0.5323 with standard error 0.0734 yielding a test statistic Z2 = 52.6, p = 4 x
10713, Expanding the model to saturation and testing for dependence using a Wald statistic
yielded y2 = 60.1, DF = 4, p = 3 x 10712, Most of the association was explained by the linear
interaction.

Table 1B shows the tabular frequencies estimated after calibration of the weights to the
marginal totals of HDL-C using the generalized raking procedure described in Sect. 3. These
are the classical raking estimates that are proportionally adjusted to the known marginal totals
(Deming and Stephan, 1940) so that the estimated and actual marginal (HDL-C) totals do now
agree. The standard errors of the estimated marginal totals reflect only the binomial sampling
variability at phase one; the phase two component is zero. With one minor exception where
the estimated frequency also increased, the standard errors of frequencies in the cross-
classification decreased markedly. There was no meaningful change in the precision of
estimation of the marginal totals of Lp-PLA,, reflecting the fact that no phase one information
about this margin was utilized. Fitting the interaction model with calibrated weights led to a
slightly more significant linear by linear association test, Z2 = 54.0, p = 2 x 10713, but there
was virtually no change in the 4 DF test (42 = 60.2).

Results of estimating the table frequencies using estimated weights (not shown) were similar
to those obtainned with calibrated weights in terms of precision. The estimated marginal HDL-
C totals were 3412.9, 6014.9 and 2915.2, however, and hence differed from the actual totals
shown in the margin of Table 2B. Nonetheless, the phase two contributions to the SEs of the
marginal totals were still neglible if not absolutely zero. For the three levels of HDL-C, the
SEs reported by svyt ot al were 49.693, 55.534 and 47.190, whereas the SEs based only on
phase one variability were 49.687, 55.527 and 47.184.

See the companion paper for Cox regression analyses of the ARIC data.
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5 Simulation Study of Cox Regression Modeling

To study the effect of different methods of adjustment of sampling weights on the performance
of Cox regression coefficients estimated with the svycoxph function, we used data on N = 3,
915 NWTS patients that were also considered in the the companion paper. The data and sample
R code are available from the website http://faculty.washington.edu/norm/software.html.
These data were also used by Kulich and Lin (2004), whom we follow in choice of models, to
illustrate their “combined, doubly weighted” estimator. The goal was to estimate hazards
associated with prognostic variables in a failure time analysis, with event-free survival (time
from diagnosis to disease progression or death) as the endpoint. The most important prognostic
factor was histologic subtype, classified as favorable (FH) or unfavorable histology (UH).
Information on histology was available both from the central pathology reference laboratory
and from the institution where the patient was treated. This made possible the simulation of
exposure stratified case-cohort studies (Borgan et al., 2000), treating the central pathology
measurement as known only for the phase two sample and the institutional pathology
measurement as one of the variables used for stratification of the sample and adjustment of the
weights. The Cox model was first fit to the entire cohort, yielding the normally unobservable
6 for comparison with the two-phase estimates gy Mean squared differences (6y — On)?
averaged over 10,000 phase two samples provided an empirical estimate of the phase two
variance component.

Phase two sampling was stratified on the basis of institutional histology, stage of disease
(low=l, 11 vs high=I1l, V), age at diagnosis (babies vs 1+ year olds) and whether (cases) or not
(controls) the patient had relapsed or died before the end of follow-up. All cases and all but
the three largest control strata were included in their entirety in the phase two sample: 120 of
452 FH control babies with low stage disease; 160 of 1,620 1+ year old controls with low stage
disease; and 120 of 914 1+ year old controls with high stage disease were sampled at random
for phase two. This provided 660 phase two controls for comparison with the 669 cases and a
phase two sample size of n = 1, 329. The Cox model contained terms for histology (UH), age
as a linear spline with separate slopes for babies (Ageg) and older children (Age;), a binary
indicator of high vs low stage, tumor diameter (cm) and interactions between stage and diameter
and between histology and the two age terms.

Auxiliary variables for calibration and estimation of the weights were constructed using the
procedure described at the end of Sect. 3. For each of the 10,000 simulated phase two samples
we first used the svygl mfunction with standard sampling weights to predict histology (central
pathology) based on a logistic regression model containing terms for institutional (local)
histology (the main predictor), stage, age greater or less than 10 years, study (NWTS-3 vs
NWTS-4) and an interaction between local UH and stage. The logistic regression coefficients
were then used in conjunction with phase one data to yield a predicted probability of having
UH for each of the 3,915 phase one subjects. The Cox model was fit using the ordinary
coxph procedure with this predicted probability in place of the binary UH covariate. Estimated
IF contributions (dfbetas) were extracted, augmented by 1 to ensure that they were positive,
and used as the auxiliary variables z for calibration. For estimation the dfbetas were divided
by the known sampling probabilities before adding 1, and combined with the stratum indicators
in the prediction equation.

Here is a brief summary of results of the initial simulation study as reported in the companion
paper (Breslow et al., 2009). Calibration again used the raking procedure. Mean values of the
regression coefficients were nearly identical for the three case-cohort estimation methods
(standard, calibrated and estimated weights) and close to those estimated for the entire cohort.
Both calibration and estimation reduced the phase two variance components, sometimes to
negligible levels. For example, the phase two standard error of the Ageg coefficient was reduced
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from 0.162 with standard weights to 0.037 with calibrated and to 0.061 with estimated weights.
The phase two SE for the UH main effect was reduced by 29% with calibration and to 28%
with estimation. There were lesser reductions for the interaction with Agey.

Additional simulations based on only 1,000 replications were carried out to determine whether
the modification of the auxiliary variables suggested in the paragraph following equation (12)
in Sect. 3, intended to reduce the asymptotic phase two variance further under two phase
stratified sampling, would actually improve estimates in finite samples. This increased the
number of adjustment variables from 8, the number of terms in the Cox model, to 32 in view
of the four sampling strata. Substantial numerical difficulties were experienced with the larger
number of adjustment variables, particularly for calibration. The sur vey option to force
convergence of the iterative solution of the calibration equations, by returning the weights after
200 iterations, was required to prevent otherwise frequent failure of the algorithm but led to
outliers in the estimated regression coefficients and the failure of the svycoxph procedure in
2 samples. This increased the phase two variability in comparison with calibration based on a
smaller number of variables.

Results are shown in Table 2. The column labeled Cox SE shows the robust (Lin and Wei,
1989) standard errors for the Cox model fit to the entire cohort. These were noticeably larger
than the model based standard errors, reflecting a lack of proportionality for several covariates.
The phase one variance components estimated by svycoxph also are the robust versions,
emphasizing the sample survey view that the goal is to approximate the results of fitting a
possibly misspecified model to the entire cohort. The columns labeled SE for the various two-
phase case-cohort methods are averages of the total estimated standard errors, incorporating
both phase one and phase two variability. The columns labeled RMSE contain the empirical
phase two standard errors. For most coefficients, in stark contrast to results obtained with just
8 adjustment variables, the RMSE using calibrated weights were larger even than with standard
sampling weights. The svycoxph procedure returned regression coefficients for all 1,000
replicates when weights were determined by estimation, but they too had slightly larger RMSE
than those obtained with fewer adjustment variables. On the other hand, they were more
accurate than estimates obtained using standard weights. Qualitatively similar results were
obtained when the adjustment variables were limited to the 24 corresponding to the three strata
sampled at less than 100%.

6 Discussion and Conclusions

This paper has reviewed statistical properties of Horvitz-Thompson estimators of Euclidean
parameters in semiparametric models with two-phase stratified samples, derived the
corresponding properties for modified estimators where the sampling weights are adjusted by
calibration or estimation, and illustrated the methods by log-linear and Cox regression
modeling of stratified case-cohort data. A limitation of the results of van der Vaart (1998) for
the Cox model, which were used by Breslow and Wellner (2007) and apply therefore to those
reported here, is that time-dependent covariates were excluded from consideration. This is
currently also a limitation of the svycoxph function in the sur vey package, at least so far as
correct estimation of the variance in concerned. Work is in progress to modify svycoxph so
that it will calculate the variances correctly when multiple time slice records are included in
the survival analysis for each phase two subject. This will provide the extension needed to deal
with time-dependent covariates. We think it likely that the asymptotic results hold for this
situation and in fact much more generally. We are hopeful that a general theory for estimation
of parameters in semiparametric models can be developed for sample survey designs along the
lines of what Lin (2000) has provided for the Cox model.
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The asymptotic properties of estimators with weights adjusted using calibration and estimation
are very similar. Finite sample performance of the two methods of adjustment was also very
similar in the initial simulation results for the NWTS cohort as reported in the companion paper.
An advantage of calibration for the survey statistician is that information on the auxiliary
variables is not needed for everyone in the cohort (phase one sample). Only the totals over the
cohort are required. The more detailed information is required for estimation of the sampling
probabilities.

Our asymptotic results suggested the possibility of improvement by using stratum specific
versions of the imputed IF contributions for calibration of the weights. Robins et al. (1994)
likewise noted that, so far as asymptotic variances are concerned, increasing the number of
auxiliary variables used to estimate the weights can only reduce (or at least never increase) the
asymptotic variance of the estimators. As the simulations reported here illustrate, however,
actual performance in finite samples may be quite different. Adjustment based on calibration
was particularly susceptible to numerical problems caused by a large number of auxiliary
variables. In practical work, standard or estimated sampling weights should be used when the
calibration algorithm fails to converge. Options for calibration that bound the discrepancy
between design and calibrated weights have been implemented in the R sur vey package and
further work exploring the finite sample properties of estimators using such weights would be
desirable. 1t would also be of interest to compare our “plug in” method of approximating the
optimal auxiliary variables z°Pt to other methods of estimating the conditional mean.

Methods for improving the analysis of data from two phase stratified samples have now been
implemented in the flexible sur vey package of the freely available R statistical system. There
is no longer any excuse for epidemiologists and statisticians to waste valuable information by
inefficient analysis of data from stratified case-control and case-cohort studies.
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7 Appendix

Here we provide a brief outline of the derivation of (12) for the calibration estimator. For in a
neighborhood of the limiting value Ay = 0 denote modified weights by

7 (=r,' [ 1 - A"z], where ;' (v) are known sampling weights depending on v. Define
classes of functions

10400, €)= 255 Co(x) and
l//2;0.,,.,1.h(W, ‘f): ,ﬁ B().I]h(x)

foro e @, n € =, andh € j{, and let ?’1;9’,1’,1 = PO V1 0., (W, f) and 9’2; O7.4h = PO v2: g’n’i’h(w,
¢) denote their expectation. Then

¥14= 79 Povoman] o= — Po (60Z") and
Woah=50r Povaonan|,_o= — Po(BohZ"), he .

Substituting these expressions for the analogous quantities ¥; , and ¥5.,h in Breslow and
Wellner (2008, Sect. 3) and reworking the calculations there shows that

\/N Oy (’/?N) - 90)
= VN (6,(0) - )
= B (EOZT) VN, +o,(1).

From (6), (9) and (11), assuming n 1 oo faster than VN as N 1 oo, we find
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VNA,=B~' VNP~

J
1-p;
_PN)Z+01,(1)'\MZ\/V_j p’@,B-‘z
= P
while from (5) and (6)
VN (6,,(0) ~ ) ~ Gty
J
l-p; _ ~
IR “Gjto-
=1 Pi

Combining the last three equations yields the desired result (12).

The limit law for dy based on estimated weights is derived similarly. From Breslow and Wellner
(2008, eq. 18) one concludes for either Bernoulli or two-phase stratified sampling

\/N(EN@N) - 90)
= W@\N(%) - 90)
= Py (Eo(l — 71'0)2) VN@,

—ap)top(l).

A Taylor expansion with remainder of ay about ag in (13) leads to

N
VN@, — @p)=[ Poro(1 — m)ZZ" ] IW;L&'

= mo(vi)1Z+op(1).

Combining these two equations with (5) we find

\/N @@‘v) - 00)
=VNP, £
+ VNP~
_P,) (EO = noRZ) +o,(1)

and the conclusion (14) follows from the arguments in Breslow and Wellner (2007, Sect. 4).
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