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Abstract
Carcinogenesis is a multistage process, involving oncogene activation and tumor suppressor gene inactivation as well
as complex interactions between tumor and host tissues, leading ultimately to an aggressive metastatic phenotype.
Among many genetic lesions, mutational inactivation of p53 tumor suppressor, the “guardian of the genome,” is the
most frequent event found in 50% of human cancers. p53 plays a critical role in tumor suppressionmainly by inducing
growth arrest, apoptosis, and senescence, as well as by blocking angiogenesis. In addition, p53 generally confers the
cancer cell sensitivity to chemoradiation. Thus, p53 becomes the most appealing target for mechanism-driven anti-
cancer drug discovery. This review will focus on the approaches currently undertaken to target p53 and its regulators
with an overall goal either to activate p53 in cancer cells for killing or to inactivate p53 temporarily in normal cells for
chemoradiation protection. The compounds that activate wild type (wt) p53 would have an application for the treat-
ment of wt p53-containing human cancer. Likewise, the compounds that change p53 conformation frommutant to wt
p53 (p53 reactivation) or that kill the cancer cells with mutant p53 using a synthetic lethal mechanism can be used to
selectively treat human cancer harboring a mutant p53. The inhibitors of wt p53 can be used on a temporary basis to
reduce the normal cell toxicity derived from p53 activation. Thus, successful development of these three classes of
p53 modulators, to be used alone or in combination with chemoradiation, will revolutionize current anticancer thera-
pies and benefit cancer patients.
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Introduction
Cancer is usually associated with aberrant cell cycle progression and
defective apoptosis induction due to the activation of proto-oncogenes
and/or inactivation of tumor suppressor genes [1]. The evolving mo-
lecular events often provide the intervening candidate targets for the
development of cancer therapy. One of the most promising targets
is p53, a well-established and frequently mutated tumor suppressor
in human cancer. Since its first discovery in 1979 as an oncogene
[2,3], and particularly after its rediscovery as a tumor suppressor gene
in 1989 [4,5], p53 has been the hot spot gene for cancer biologists
seeking to elucidate the mechanisms of tumor formation and to vali-
date it as a potential cancer therapy target [6–8].
It is well known now that p53 acts biochemically as a transcription

factor and biologically as a powerful tumor suppressor. Under normal,
unstressed conditions, p53 protein remains undetectable due to its
short half-life. The p53 instability is primarily controlled by its nega-
tive regulator Mdm2, which, as an E3 ubiquitin ligase, targets p53 for
proteasome-mediated degradation [9,10]. Other E3 ubiquitin ligases,
which are also implicated in p53 degradation, are Pirh2 and COP1
[11,12]. Another source of p53 instability comes from its own physical
property with a melting temperature slightly above body temperature
[13]. p53 responds to a wide variety of cellular stresses including geno-
toxic damages, oncogene activation, and hypoxia [14,15] and is activated
on posttranslational modifications by phosphorylation, acetylation,
ubiquitination, and methylation [16–18]. Activated p53 then performs
its two well-known biological functions: inducing apoptosis or inducing
growth arrest [15,19]. The p53-induced apoptosis is mediated by the
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mitochondrial pathway through transcription-dependent or transcription-
independent mechanisms and by the death receptor pathway through
transcriptional activation of FAS and KILLER/DR5 [8,19,20]. p53
also transcriptionally represses cell survival genes such as Bcl-2, survivin,
IGFR, Mcl-1, and PIK3CA [21–24] through multiple mechanisms
[25]. Conversely, p53-induced growth arrest is mainly mediated
through up-regulation of p21, Gadd45, 14-3-3σ, and PTGFβ among
others, through a direct DNA binding and transactivation [8,26].
Other p53-involved anticancer mechanisms include induction of cellu-
lar senescence [27,28], inhibition of angiogenesis [29,30], and regula-
tion of autophagy [31]. Although the major function of p53 is the
“killer,” p53 is also implicated in some cases as a “healer” to enhance
the cell survival [21,32].

Given the central role of p53 in cancer prevention and suppression
and in chemosensitization or radiosensitization, p53 has to be abro-
gated during carcinogenesis for most cancers to arise. Indeed, p53 is
inactivated by point mutations in more than 50% of human cancers
(see http://www.iarc.fr/p53) with a majority of mutations occurring in
the DNA binding domain, which either change wt p53 conformation
(conformation mutants, e.g., 175H, 249S, 281G) or abolish its DNA
contact (contactmutants, e.g., 248W, 273H) [33]. Furthermore, in can-
cer carrying a wt p53, p53 is often nonfunctional as a result of either
being degraded by overexpressed Mdm2 [9,10] or being excluded from
the nucleus where p53 acts as a transcriptional factor [19,34,35]. In this
Figure 1. Current approaches for p53 targeting: p53, the “guardian of th
domains. The transactivation domain (TD) and proline-rich domain (PD)
domain at the central of themolecule, whereas the oligomerization dom
p53 plays a pivotal role in tumor suppression by inducing growth arres
Wild-typep53 also confers the sensitivity of cancer cells to chemoradiati
drug discovery. As illustrated in the figure, three classes of p53 targetin
are the compounds that activate or restorewild-type p53 function and c
compounds reactivates and rescues themutant p53with an application
of inhibiting wt p53 and can be used during chemoradiation to block p
review, we aimed to discuss various approaches 1) to activate wt p53, 2)
to reactivate mutant p53 or selectively kill cancer cells with mutant p53,
and 3) to temporarily inhibit wt p53 for normal cell protection (see Fig-
ure 1 and Table 1). Successful clinical development of these three classes
of novel compounds would eventually revolutionize the current cancer
therapies to benefit a majority of cancer patients.
Targeting p53 Itself

Targeting wt p53 — To Activate
The approaches include the use of chemoradiation to activate endoge-

nous wt p53, of gene therapy to introduce wt p53 or modified adeno-
virus to kill cancer cells with mutant p53, and of synthetic peptides or
nongenotoxic small molecules to activate endogenous wt p53.

Chemoradiation. Conventional anticancer therapies target p53 be-
cause almost all genotoxic anticancer drugs as well as ionizing radiation
(IR) cause the substantial DNA damage, which triggers p53 activation
and stabilization [36]. Early preclinical studies using both in vitro cell
and in vivo tumor models showed that cells or tumors with a wt p53
are more sensitive to chemoradiation [37,38]. The early clinical studies
further showed that mutant p53 confers chemoresistance in patients
with ovarian cancer [39,40], breast cancer [41,42], gastric and colorectal
e genome,” consists of 393 amino acidswith four distinct functional
is located at the N-terminus, the DNA binding andmutation hot spots
ain (OD) and regulatory domain (RD) at the C-terminus. On activation,
t, apoptosis, and senescence, as well as by blocking angiogenesis.
on. Thus, p53becomesanappealing therapeutic target for anticancer
g compounds have been identified and characterized. The first class
an be used in human cancers harboring awt p53. The second class of
in human cancers carrying a p53mutation. The third class is capable
53 activation in normal cells, thus reducing cytotoxicity.
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cancer [43], and hematological malignancies [42]. Extensive follow-up
studies in both preclinical and clinical settings showed that in general,
cancer cells with a wt p53 aremore sensitive to chemoradiation [44–47],
but there are quite few exceptions. For example, breast cancer patients
with a transcription-deficient mutant p53 had a better response to che-
motherapy than patients with a wt p53 [48]. The same was true for
MCF7 breast cancer cells and HCT116 colon cancer cells with p53
either abrogated or deleted, as a result of increased cellular vulnerability
to G2 checkpoint abrogators [49,50]. In multiple head and neck cancer
cell lines, the absence of p53 appeared to be associated with radiosensi-
tivity [51]. Furthermore, the p53 status determined the cellular response
to chemotherapy in an anticancer drug–dependent manner. Colon can-
cer cells with the p53 gene deleted was found to be more sensitive to the
DNA-damaging agent, doxorubicin, but wasmuchmore resistant to the
antimetabolite 5-fluorouracil [52]. Taken together, these data indicate
that because of the nature of tumor heterogeneity, the cellular response
to chemoradiation is not solely determined by wt p53. However, under-
standing such responses in conjunction with p53 status would help the
rational design of anticancer therapies to maximize their efficacy.

Gene therapy

To reintroduce wild-type p53. Because p53 function is lost in
many cancers, it is logical to restore p53 function by reintroducing wt
p53.One common gene therapy approach is the use of viruses to deliver
p53. An early study, using retrovirus-mediated gene transfer of wt p53
into human lung cancer cells, showed the inhibition of tumor growth
both in vitro and in vivo [53]. Gene therapy using human wt p53,
delivered by replication-defective adenovirus (Ad-p53) for better trans-
duction efficiency and lower toxicity, has been extensively studied in the
preclinical and clinical settings with an impressive anticancer activity,
resulting from p53-induced growth arrest and apoptosis [54]. The
Ad-p53, under the brand name of Gendicine, or Advexin, has been
currently in clinical use inChina since 2003 [55] or in phase 1 to 3 clini-
cal trial in the United States, respectively [7]. The results showed that
Gendicine/Advexin is well tolerated in patients and efficacious in the
treatment of numerous cancers, particularly head and neck cancer and
lung cancer, as a single agent or in combination with chemotherapy or
radiation therapy [7,56,57].

To eliminate mutant p53–containing cancer cells by adeno-
virus. Another p53-related gene therapy is the use of an E1B-deleted
adenovirus, designated as ONYX-015, which selectively replicates in
p53-deficient cancer cells and subsequently lyse the cells [58]. Preclini-
cal studies showed that ONYX-015 has antitumor activity both in vitro
and in vivo, particularly in combination with chemotherapy or radia-
tion therapy [59,60]. Clinical trials revealed that ONYX-015 had a
marginal antitumor activity when administrated alone, but a significant
effect when combined with standard chemotherapies in a number of
human cancers [56,61,62].

Small molecules. Reactivation of p53 and induction of tumor cell
apoptosis (RITA) was identified through a cell proliferation assay using
a pair of isogenic cancer cell lines differing in p53 status [63]. Biochemi-
cally, RITA bound to p53 at the N-terminal domain with a high affinity.
Although an initial study showed that RITA could block p53-Mdm2
binding [63], a subsequent in vitro study using nuclear magnetic reso-
nance suggested that it might not disrupt p53-Mdm2 binding [64]. Bio-
logically, RITA suppressed tumor cell growth both in vitro and in vivo
by inducing massive apoptosis in a p53-dependent manner in multiple
cancer cell models [63]. A recent mechanistic study revealed that RITA,
through activating p53, abrogates key oncogenic pathways. Specifically,
RITA-activated p53 causes the transcriptional repression of antiapop-
totic proteins, including Mcl-1, Bcl-2, survivin, and MAP4, downregu-
lates oncogenic proteins, c-Myc, cyclin E, and β-catenin, and blocks the
AKT pathway at multiple levels [65]. Thus, RITA can be further devel-
oped as a single agent or used in combination with chemoradiation for
effective cancer therapy through p53-mediated abrogation of cancer cell
survival and oncogenic pathways.

Targeting wt p53 — To Inhibit
Chemotherapy or radiation therapy kills cancer cells, but at the same

time causesmany adverse effects because of normal cell toxicity, resulting
at least in part from p53 activation and apoptosis induction in normal
proliferating cells/tissues, such as bone marrow, lymphoid organs, hair
follicles, and epithelium lining of the small intestine. Temporary block-
age of p53 activation in normal cells during the treatment of p53-
deficient tumors should reduce these adverse effects [66]. Because p53
induces apoptosis through transcription-dependent and transcription-
independent, but mitochondria-dependent mechanisms [20], two
classes of small molecules have been identified, which target either
p53 transcriptional activity or p53-mitochondrial binding activity, re-
spectively. The first class of compound, designated as Pifithrin (PFT)-α,
reversibly inhibits p53-dependent transcriptional activation and apoptosis
and protects mice from the lethal dose of IR without promoting tumor
formation [67]. The second class of compound, designated as PFT-μ, in-
hibits p53 binding to mitochondria by reducing p53-binding affinity to
Bcl-xL and Bcl-2 without affecting p53 transactivation. Similar to PFT-α,
PFT-μ also protects primary mouse thymocytes from p53-mediated
Table 1. Structure of Small-Molecule p53 Activators, Reactivators, and Inhibitors.
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apoptosis on exposure to radiation and protects mice from radiation-
induced lethal hematopoietic syndrome [68]. Thus, these two classes of
compounds could be further developed for clinical use in combination of
chemoradiation during the treatment of cancers, particularly those with
p53 mutation or deletion for normal cell protection.

Targeting Mutant p53 – To Rescue
Because p53mutation occurs in ∼50% of human cancers, an effective

cancer therapy would be the reactivation of p53 mutants. The rescue
strategies vary dependent on the mutation types. In tumors harboring
a DNA-contact mutant, the attempts were to introduce the functional
groups that create new contacts or to stabilize the scaffolding positioning
in the remaining contact sites [69,70]. The functions of conformation
mutants can be restored by specific small peptides or small molecules
that aid the proper folding of the unfolded p53 conformation [70].

Synthetic peptides

CDB3. CDB3 is a short synthetic nine-residue peptide (REDE-
DEIEW), derived from p53-binding protein 2 (53BP2 or ASPP), a
known p53-binding protein that interacts with the p53 core domain
and upregulates p53-dependent transactivation [71]. It was identified
through a rational approach searching for small molecules that bind
to p53 core domain and stabilize p53 [72]. The notion behind this
approach is that a peptide binding with higher affinity to a properly
folded state than to an unfolded form of the mutant will shift the equi-
librium toward the active wild-type conformation. The in vitro studies
showed that CDB3 indeed restored the sequence-specific DNA bind-
ing to various p53 mutants by stabilizing them in a bioactive confor-
mation [72]. CDB3 also restored the transcriptional activity of two hot
spot p53 mutants, R273H and R175H, for transactivation of two p53
target genes,Mdm2, p21 [73]. Furthermore, CDB3 induced the accu-
mulation of wt p53 and sensitized cancer cells to radiation [73].
Although as a small peptide, CDB3 will likely have poor bioavailability,
it can serve as a lead for the further development of p53-reactivating
small molecules.

p53 C-terminal peptide. In addition to CDB3, several other
studies demonstrated that short synthetic peptides derived from the p53
C-terminal region (peptide 46) can reactivate mutant p53 through stabi-
lization of the core domain folding and/or establishment of novel DNA
contacts [74,75]. Although the exact mechanism of action is still unclear,
these peptides were indeed shown to rescue the function of endogenous
mutant p53 proteins, leading to growth inhibition, apoptosis, and sup-
pression of solid tumor growth in an in vivo animal tumor model [76].

Small molecules

CP-31398. CP-31398 was the first small molecule that has ac-
tivity to change p53 conformation from mutant to wild type. It was
identified through a chemical library screening based on an in vitro bio-
chemical assay that detects wt or mutant p53 conformation through
two specific antibodies [77]. CP-31398 was found to stabilize the core
domain and enhance transcriptional activity of p53 in living cells [77],
but the detailed mechanism of action of CP-31398 remains elusive.
Nuclear magnetic resonance studies failed to detect any binding of
CP-31398 to the p53 core domain [78]. CP-31398 had no effect on
p53-Mdm2 binding, did not cause DNA damage response, or induce
p53 phosphorylation at Ser 15 or 20, but rather it increasedwt p53 levels
by reducing p53 ubiquitination [79]. Biologically, CP-31398 induced
growth arrest and apoptosis in a number of human cancer cell lines both
in vitro and in vivo [77,80] and inhibited UVB-induced skin carcino-
genesis [81]. Furthermore, CP-31398 seems to have other targets in ad-
dition to p53 because it could induce cell death in both p53-dependent
and -independent manners [70].

PRIMA-1 and MIRA-1. p53 reactivation and induction of
massive apoptosis (PRIMA-1) and mutant p53 reactivation and induc-
tion of rapid apoptosis (MIRA-1) are two classes of compounds with
unique chemical structures that were identified through a cell-based
screening for compounds that suppress the growth of tumor cells
expressing an exogenous mutant p53 [82,83]. The compounds were
found to restore the sequence-specific DNA binding and change the
mutant p53 conformation to wild type, leading to transactivation of
p53 target genes [82,83]. In contrast to both CP-31398 and CDB3,
PRIMA-1 does not activate wild-type p53. A recent mechanistic study
revealed that PRIMA-1 is converted to a decomposition product that
forms covalent thiol adducts on mutant p53 to restore its tumor sup-
pressor activity [84]. Biologically, both compounds showed antitumor
activity inmultiple cancer cell lines and in vivo xenograft tumors harbor-
ing a mutant p53 without apparent normal tissue toxicity [82–84]. Fur-
thermore, PRIMA-1 was found to be active against p53-null cancer cell
lines through a mechanism involving the JNK pathway and heat shock
protein 90 [85,86]. Finally, PRIMA-1 or its analog, PRIMA-1(met),
sensitized lung cancer cells or prostate cancer cells to adriamycin or
radiation, respectively [87,88] and inhibited in vivo xenograft tumor
growth [89].

Ellipticine. Ellipticine and its derivatives were initially identified
in the drug sensitivity profiling of theNCI-60 cancer cell line panel to be
more effective against tumor cells with a mutant p53 [90]. An ellipticine
derivative, 9-hydroxyellipticine was found to increase the transcription
of p21 and Bax and to induce G1 arrest in a mutant p53-dependent
manner [91]. The detailed follow-up work showed that ellipticine
changed the p53 conformation from mutant to wild type, restored
the sequence-specific DNA binding and transactivation of p53-driven
luciferase reporter, and activatedmutant p53 to induce p53 target genes,
p21 and Mdm2 in mouse xenograft tumor tissues [92]. Furthermore,
ellipticine was recently identified to increase nuclear localization of
both wt and mutant p53 in a manner independent of DNA damage
[93]. Because the ellipticine series of compounds has many off-target
activities including promoting p27 degradation [94], it is unlikely to
be further developed for the clinic use.

WR-1065. WR-1065 (aminothiol) is an active metabolite of
the cytoprotector amifostine and acts as a classic scavenger of reactive
oxygen species [95]. WR-1065 was found to activate both wt and mu-
tant p53 and increase the expression of p53 target genes in a manner
independent of DNA damage [96,97].

P53R3. p53R3 is a recently identified small molecule that re-
stores the sequence-specific DNA binding of p53 mutants (R175H
and R273H) after screening a small library of compounds using an
in vitro gel shift assay [98]. The compound was found to enhance the
recruitment of both wt and mutant p53 to target promoters and to in-
duce the expression of a number of p53 target genes. Biologically, the
compound induces mutant p53-dependent growth arrest and sensitizes
TRAIL-induced cell death in multiple glioma cell lines [98].
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Targeting Mutant p53 – To Kill

Synthetic lethality for p53 mutation. Synthetic lethality is a situa-
tion where a cancer-associated mutation itself is nonlethal but renders
cancer cells susceptible to a second hit that becomes lethal on inactiva-
tion [99,100]. In the case of p53, which is mutated in 50% of human
cancer, application of a synthetic lethality strategy to identify chemical
compounds that selectively kill human cancer cells harboring a mu-
tant p53 will be of significant importance for the discovery of a novel
class of anticancer drugs (Figure 2). Synthetic lethality has been shown
in a number of human cancer cells with deletion of PTEN or DPC4,
mutation of K-Ras or B-Raf, and overexpression of c-Myc [101–105],
demonstrating the feasibility of using synthetic lethality strategy for
anticancer drug discovery. The p53 synthetic lethal drugs, if identified
and developed, can be used 1) for cancer treatment to selectively kill
mutant p53-containing cancer cells and 2) for chemoprevention to elimi-
nate mutant p53-containing cancer-prone cells, at the early stage of
carcinogenesis. Furthermore, p53 synthetic lethal drugs should have,
in theory, minimal adverse effects, because normal cells do not contain
a p53 mutation.
A “synthetic lethal-like” screeningwas conducted in a panel of 60NCI

cancer cell lines in an attempt to identify compounds that selectively
inhibited the growth of cancer cells devoid of p53 [106]. Few classes
of compounds were identified, and the only “popular” hit was paclitaxel,
an inhibitor of microtubule polymerization [106]. It was speculated that
microtubule-associated protein 4, a p53 transcriptional repressed target,
may mediate the sensitivity of cells lacking p53 activity to paclitaxel-
Figure 2. Synthetic lethality for p53 mutation: Synthetic lethality
refers to the situation in which the cancer-associated mutation itself
is nonlethal but renders cancer cells susceptible to the second hit,
which results in lethal phenotype. Because p53 is most frequently
mutated inmore thanhalf of humancancer cells, it is feasible in theory
to use this strategy to identify drug candidates that preferentially kill
cancer cells with a p53 mutation. The p53 synthetic lethal drugs, if
identified and developed, should have a minimal toxicity to normal
cells and can be used for cancer chemoprevention and treatment of
mutant p53–containing cancers.
induced cell killing [107]. Another drug that selectively inhibited
p53-deficient tumor cell growth is metformin, a diabetic drug, with
the mechanism associated with activation of AMP kinase and inhibition
of oxidative phosphorylation, which created an environment more vul-
nerable to mutant p53 cells [108].

Small molecules that abrogate the G2/M checkpoint control can be
considered to act through the synthetic lethal mechanism against p53
mutation. The hypothesis is based on the fact that p53-deficient cells
have abrogated G1 checkpoint control (lack of p53-mediated p21 in-
duction in response to DNA damage), and thus, further abrogation of
G2 checkpoint control will selectively kill p53-deficient cancer cells
through the induction of mitotic catastrophe. This turns out to be the
case. UCN01, a potent G2 checkpoint abrogator sensitized p53 mutant
cancer cells to IR by abrogating G2 checkpoint control, whereas cancer
cells with wt p53 were much more resistant [109]. Similarly, our pre-
vious work showed that PD0166285, a potent Wee-1 kinase inhibitor
that abrogated G2 checkpoint control, selectively sensitized p53 mutant
cancer cells to radiation [110]. A recent study from Vogelstein’s group
further supported this notion of synthetic lethality. Transcription pro-
files of four paired colon cancer cell lines, isogenic for p53 deletion or
mutation, revealed a consistent up-regulation of polo-like kinase 1
(PLK-1), a well-known protein that regulates G2/Mcheckpoint control,
in p53-deficient lines after exposure to IR. Consistently, p53-deficient
cells are much more sensitive to PLK-1 inhibitors when combined with
p53 activators, such as radiation and Nutlin-3. Furthermore, in vivo
xenograft tumor studies showed that a PLK-1 inhibitor used as a single
agent caused significant regression of p53-null tumors [111]. These
studies highlight the feasibility of using synthetic lethal mechanism
for effective cancer therapy.

We have recently attempted to identify novel small molecules that
act through synthetic lethal mechanism to selectively kill cancer cells
with a mutant p53 mutation. We conducted this p53 synthetic lethal
screening using a well-characterized p53 temperature-sensitive model
in which p53-null H1299 cells were transfected with a temperature-
sensitive mutant p53A138V (H1299-p53ts). The p53 in these cells
adopts a mutant conformation when grown at 39°C and a wild type
conformation at 32°C. Temperature shifting from 39 to 32°C restores
the wild type p53 conformation that induces growth arrest but not
apoptosis [112,113]. Screening of both chemical and natural product
libraries was conducted at both temperatures, and the compounds that
selectively killed cells at 39°C (mutant p53 status), but not at 32°C (wt
p53 status), were subjected to the secondary counterscreening. In the
counterscreening, we used H1299-neo vector control cells at both
temperatures to filter out potential false-positives derived merely from
temperature shifting. Candidates that showed selective killing of
H1299-p53ts at 39°C only were identified, and they are being further
characterized (unpublished data). A disadvantage of this type of screen-
ing is the lack of mechanism of drug action, which will need follow-up
study to identify the “second” target that is synthetically lethal to p53
mutation. The ideal situation would be to conduct simultaneously
the same screening using a small interfering RNA (siRNA) library, lead-
ing to identification of the “second” target.

Elimination of cancer cells with the gain-of-function p53 mu-
tants. During the validation of our candidate hits, identified from
this p53 synthetic lethal screening, we serendipitously found that car-
diac glycoside drugs, such as digoxin and ouabain, reduced the p53
levels in a time- and dose-dependent manner in a subset of cancer cell
lines but not in immortalized normal cell lines. The drug sensitivity to
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p53 reduction is cancer cell line–dependent but independent of p53
status of a wild type or mutants. A mechanistic study revealed that the
drug-induced p53 decrease neither occurs at the messenger RNA level
nor is due to enhanced degradation, which is a commonmechanism for
p53 regulation. Rather, it occurs at the protein level as a result of reduced
de novo synthesis of p53 protein. The drug-induced p53 reduction can
be rescued by the inhibitors of Src andMEK, suggesting an involvement
of Src/mitogen-activated protein kinase signaling pathways, initiated on
the drug binding to Na+/K+-ATPase [114]. Given the fact that glyco-
side drugs are being used in clinic for the treatment of congestive heart
failure [115] and that cardiac glycosides are inactive against wt p53 in
normal cells, but potently active in the elimination of mutant p53 in
some cancer cells, the drugs may have utility in the treatment of human
cancers harboring a gain-of-function p53 mutant [116,117].

Targeting p53 Regulators – To Activate p53

Mdm-2 (Murine Double Minute-2, Hdm2 in Human)
Another effective approach to activate wt p53 is to inhibit its nega-

tive regulators. The best-known naturally occurring p53 inhibitor is its
downstream target, Mdm2 [118]. Mdm2 encodes a 90-kDa protein
that was first identified as the gene responsible for the spontaneous
transformation of immortalized murine BALB/c 3T3 cells [119]. It
contains a p53 binding domain at the N-terminus and a RING domain
at the C-terminus. Mdm2 inhibits p53 through two well-characterized
mechanisms: 1) Mdm2 binds to p53 at the N-terminus and blocks p53
transactivation activity and 2) Mdm2 acts as an E3 ubiquitin ligase to
promote p53 degradation. In addition, Mdm2 also exports p53 out of
nucleus where p53 acts as a transcription factor [34,120]. Mdm2 is
overexpressed in approximately 7% of human cancers with a much
higher incidence in soft tissue tumors, such as osteosarcoma [121]. Both
in vitro and in vivo studies indicated that oncogenic activity of Mdm2
ismainly attributable to its binding and degrading p53 [122,123]. Thus,
inhibition of Mdm2 in this subset of human cancer should reactivate
p53 to induce cell killing. Indeed, this notion was supported by many
proof-of-concept studies, including 1) the blockage of the interaction
between Mdm2 and p53 with synthetic peptides or monoclonal anti-
bodies [124] and 2) reduction of Mdm2 levels with antisense oligo-
nucleotides or siRNA [125]. So far, two classes of small molecules
have been identified, which either disruptMdm2-p53 binding or inhibit
Mdm2 E3 ubiquitin ligase activity to reactivate wt p53.

Small Molecules that Disrupt Mdm2-p53 Interaction
Historically, it has been difficult to develop small-molecule inhibitors

that disrupt large protein-protein interactions. However, the crystal
structure of the Mdm2-p53 peptide binding revealed that the binding
relies on the contact of the p53 peptide side chains of Phe19, Trp23,
and Leu26 with the N-terminus of Mdm2 (amino acids 17-125) in
a deep hydrophobic pocket [126], which made it possible for small
molecules to disrupt binding. Several classes of structurally distinctive
compounds have been reported to disrupt Mdm2-p53 binding
[127,128]. These compounds include Nutlins, benzodiazepinediones
(BDAs), and an Mdm2 inhibitor (MI) series of spiro-oxindoles deriva-
tives, including MI-63, MI-219, and MI-43 [127,129–133].

Nutlins. The nutlin series was the first class of small molecules,
identified through a screening of a diverse library that disrupted
Mdm2-p53 peptide binding. This series of compounds effectively ab-
rogatesMdm2-p53 interaction through a high-affinity binding toMdm2
[129] with a high selectivity for Mdm2 over Mdmx, a homologue of
Mdm2 [127]. Nutlin-3, an analog of the series, induced p53 levels, ac-
tivated p53 transcription activity, and has a broad activity against cancer
cells harboring a wt p53 both in vitro and in vivo [129]. Examples include
colon and breast cancer cell lines and osteosarcoma cells [129], lympho-
blastic leukemia [134], and retinoblastoma [135]. In combination with
chemoradiation, Nutlin-3 showed synergistic activity against prostate
cancer [136], lung cancer [137], lymphocytic leukemia [138,139], and
neuroblastoma [140]. Nutlin-3 also showed some normal cell protective
activity against chemotherapy by inducing cell cycle arrest [141,142].
Furthermore,Nutlins showed a direct antiangiogenic and antiosteoclastic
activity, which may have an application for tumors harboring a mutant
p53 [143].

Benzodiazepinedione. Benzodiazepinedione (BDA) and its deriv-
atives were identified through a chemical library screening using a mini-
aturized thermal denaturation-based assay. X-ray crystal structure
confirmed that the BDA interacts with the p53-binding pocket of
Mdm2 [130]. The compounds increased the p53 transcriptional activity,
inhibited the proliferation of cancer cells in a wt p53–dependentmanner,
and synergized with doxorubicin to inhibit tumor cell growth both
in vitro and in vivo [130,133].

MI series. The MI series of spiro-oxindole compounds, including
MI-219,MI-63, andMI-43, were discovered through structure-based de-
sign byDing et al. [131] bymimicking all fourMdm2-contacting residues
(Phe19, Trp 23, Leu 22, and Leu 26) on p53. The MI series of com-
pounds, with MI-219 being the most potent, bind toMdm2 with a high
affinity. The drug-induced disruption ofMdm2-p53 binding caused p53
accumulation leading to up-regulation of many p53 target genes and to
induction of apoptosis in a number of human cancer cell lines derived
from breast, colon and prostate cancers in vitro in a wt p53–dependent
manner. MI-219 as a single agent also caused a complete inhibition of
xenograft tumor growth in vivo at a dose that has no obvious toxicity to
animals [127,144,145].

We tested the efficacy of MI-43 against human lung cancer cells and
found that the compound preferentially inhibited the growth of wt
p53-containing cells over p53-null cells. MI-43 induced the growth
arrest at both G1 and G2 phases of the cell cycle, at the low concen-
tration as a result of p21 induction and apoptosis at the high concen-
tration due to Puma/Noxa induction. Importantly, MI-43 was much
less toxic to normal lung cells than cancer cells. Finally, when used in
combination, MI-43 sensitized chemoresistant A549 cells to etoposide-
induced apoptosis [132].

Mdm2 E3 ubiquitin ligase inhibitors

HLI98. The HLI98 series of compounds was identified through
the high-throughput screening of a chemical library using an in vitro
Mdm2 autoubiquitination assay [146]. The follow-up experiment
showed that HLI98C, an analog, indeed inhibited Mdm2 E3 ligase
activity. In the cell-based assays, the compound stabilized p53 and
Mdm2 and activated p53-dependent transcription and apoptosis. The
compound was much more efficacious against cancer cells with wt p53,
although it demonstrated some p53-independent cytotoxicity [146]. Al-
though the evidence of in vivo antitumor activity for HLI98C was lack-
ing [146], this proof-of-concept study did indicate that an Mdm2 E3
ligase inhibitor, which has selective activity against wt p53–containing
cancer cells, can be identified.
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Two concerns should be borne in mind in the clinical development
of Mdm2-based inhibitors for anticancer therapy. The first is the thera-
peutic window because the compounds would also induce p53 in
normal cells to cause some adverse effects. Second is the Mdm2 itself,
which is accumulated after compound treatment as a result of p53
activation. In addition to targeting p53, Mdm2 interacts with a num-
ber of other proteins, such as p73, p63, E2F1, and HIF1α [147–149].
A recent study also showed that Mdm2 caused the accumulation
of XIAP to inhibit apoptosis [150]. These p53-independent but
Mdm2-dependent effects would eventually affect the efficacy of this
class of compounds.

SirT1/SirT2
SirT1 and SirT2 are two members of the NAD+-dependent class III

histone deacetylases with a total of seven members in humans
[151,152]. SirT1 and SirT2 catalyze the reaction between an acetylated
lysine with NAD+, leading to the production of deacetylated lysine, 2′-
O-acetyl-ADP-ribose, and nicotinamide [153]. It is well established
that acetylation of p53 at lysine 382 enhances p53 DNA binding
activity [154]. Thus, SirT1-catalyzed deacetylation of p53 at lysine
382 would deactivate and destabilize p53 [155–157]. These studies
established that SirT1 is yet another negative regulator of p53.

Tenovin-1 and Tenovin-6. This series of compounds was identified
in a cell-based screening for compounds that activate p53, using a p53-
driven transactivation assay [158]. Tenovins stabilized wt p53, induced
p53-dependent cell cycle arrest and apoptosis, and suppressed xenograft
tumor growth in vivo as a single agent [158]. Mechanistically, Tenovins
are nongenotoxic agents and do not induce DNA damage. Rather, they
inhibited NAD-dependent deacetylase SirT1/T2, thus restabilizing and
reactivating p53. Tenovins, therefore, are a novel class of p53-activating
agents that can be further developed for clinical use as well as for the
study of sirtuin function as biological tools.

JJ78:12. This series of compounds was also identified by Lain et al.
[158] in the same reporter assay used for p53 activator screening. The
JJ78:12 series contains much more potent p53 activators with a nano-
molar dose range and showed clear anticancer activity both in vitro and
in vivo. Mechanistically, this series of compounds caused tubulin
depolymerization and may not be further developed for clinical use be-
cause of their high cytotoxicity, resulting from tubulin poison [159].
Interestingly, our effort in screening for compounds that change p53
conformation from mutant to wt using a luciferase reporter–based
H1299-p53 temperature-sensitive model [112,113] led to the identifi-
cation of a series of microtubulin poison compounds, including noco-
dazole, albendazole, parbendazole, and mebendazole (unpublished
data), suggesting a nonspecific or indirect nature of p53 activation by
this class of compounds.

Targeting Other p53 Family Members
p53 has two family members, p73 and p63 with significant sequence
homology among them [160,161]. Like p53, both p73 and p63 bind
to the p53-specific DNA binding motif, transactivate p53 downstream
target genes, and suppress tumor cell growth by inducing growth arrest
and apoptosis [160,161]. The tumor suppression activity of p73 and
p63 was further demonstrated in a mouse knockout study, which
showed various tumor predispositions on heterozygous deletion of either
gene [162]. Unlike p53, p73 or p63 is rarely mutated in human cancers
[163] but could be inactivated by binding to a subset of p53 mutants
[164]. Targeting p73 and p63 has been proposed for cancer therapy
[165,166] with approaches including gene therapy, small peptides,
and small molecules.

Gene Therapy
Like the gene therapy approach using wt p53, the same approach has

been extended to its family members, p73 and p63. The adenovirus-
mediated transduction of p63 and p73 into tumor cells was found to be
an alternatively efficient gene therapy approach both in vivo and in vitro
[167,168], especially when tumors are resistant to p53-mediated gene
therapy [168,169]. Ad-p73 demonstrated a significant cytotoxicity
against multiple cancer cell lines tested by inducing both growth arrest
and apoptosis [169]. Ad-p73 also sensitized p53 mutant–containing
cells to adriamycin with a higher efficiency than Ad-p53 [169]. The
apoptosis-inducing effects of Ad-p63γ were also found to be greater
than those of wild-type p53 in osteosarcoma cells with Mdm2 ampli-
fication [168].

Small Peptides

Short-interfering mutant p53 peptides. One activity of gain-of-
function p53 mutants is to physically interact with, sequester, and in-
activate p73 [170,171]. Short-interfering mutant p53 (SIMP) peptides
were designed based onmutant p53/p73 binding regions. Indeed, SIMP
effectively disrupted the protein complex of mutant p53/p73 and re-
stored the p73 function. Biologically, SIMP sensitized mutant p53-
containing tumor cells to adriamycin and cisplatin. Notably, the effects
of SIMPs aremutant p53-specific and had no effect on cancer cells either
with a wt p53 or with a p53-null [172].

37AA. This peptide consists of 37 amino acids from p53 after a non-
contiguous fusion of evolutionarily conserved boxes II and III on the
DNA binding domain of p53. The 37AA induced cell death through
activation of p53/p73 target genes in p53-null cells. Further studies
revealed that 37AA was able to bind to iASPP, an inhibitory member
of the ASPP family, resulting in the release TA-p73 (a p73 isoform)
from iASSP/TA-p73 complex. Anticancer activity of 37AA was further
demonstrated in a colon cancer xenograft model, in which 37AA was
driven by an expression vector and delivered in dendrimer-based nano-
particles [165,173].

Small Molecules
Wang et al. [174] recently identified a number of small molecules in a

screening for activating p53 target genes and apoptosis in p53 mutant–
containing cells. The follow-up studies using an siRNA-silencing
approach confirmed that some of these compounds mediated their
activity through transactivating p73. Although the detailed mechanism
is unknown, these compounds had anticancer activity when assayed
in vivo using the p53-null HCT116 xenograft tumor model [174].

Reactivate transcriptional activity. Reactivate transcriptional activity
(RETRA) was identified in a cell-based screening for compounds that
reactivate the transcriptional activity of p53 in mutant p53–containing
cells [175]. Follow-up studies showed that RETRA activates a number
of p53 target genes and selectively inhibited the growth of mutant p53-
containing cancer cells both in vitro and in mouse xenografts. Mechanis-
tic studies in mutant p53–containing cells revealed that the compound
increased the p73 levels and released p73 from complexing with mutant
p53. Importantly, RETRA is active against mutant p53–containing
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cancer cells without affecting normal cells. Taken together, these stud-
ies demonstrated that reactivation of p73 from p53-null or p53 mutant
cells is a promising approach for effective cancer therapy.
Conclusions and Future Perspectives
Cancer is a complex disease with multiple genetic and epigenetic altera-
tions. Genetic alterations in any given cancer, even those originating
from the same tissue/organ, could have a dramatic difference. Con-
versely, cancers derived from different tissues/organs may have similar
alterations in a given signaling pathway. Thus, an effective personalized
cancer therapy requires a thorough understanding of genetic and epige-
netic alterations of each individual cancer, followed by rational design of
combinational therapies targeting these altered molecules and path-
ways. These drugs, if further developed from p53 lead compounds de-
scribed in this review (Table 1), will revolutionize the current cancer
therapies by targeting p53 and its regulators on an individual tumor
basis. For example, for wt p53–containing tumors, chemoradiation
can be used in combinationwith p53-activating drugs. Similarly, chemo-
radiation in combination with p53-reactivating drugs or drugs acting
through a synthetic lethal mechanism could increase the efficacy against
tumors with a mutant p53. The synergistic effect on cancer cell killing
of p53 drugs–chemoradiation combination allows a lower dose regimen
of routine chemoradiation to reduce normal cell/tissue toxicity. Another
approach to reduce normal cell/tissue toxicity is to use p53 inhibitors
on a temporary basis during chemoradiation therapy. Furthermore,
p53 drugs can be used in combination with other to-be-developed
mechanism-driven drugs to achieve a synergistic effect by targeting the
same signaling pathway both upstream and downstream. One example
will be the combination of Nutlins or MI-219, which activates p53, but
with an adverse effect of Mdm2 accumulation [127,132,144], with
Smac mimetic drugs, which disrupt XIAP-caspases inhibitory binding
to release activated caspases [176–178]. A recent report showed that
Mdm2 causes the accumulation of XIAP [150]. This mechanism-driven
combination would lead to apoptosis induced by p53 being fully exe-
cuted with activated caspases. Furthermore, as we gain a better under-
standing of p53 signaling pathways, additional p53-related targets,
upstream and downstream of p53, can be identified and validated for
future discovery of novel compounds that target p53 signaling path-
ways [26,179].

Finally, as the old proverb goes, “prevention is the best medicine.”
Chemoprevention is a widely accepted concept, aiming to kill cancer-
prone cells at the early stage of carcinogenesis to prevent tumor forma-
tion in the first place. Nontoxic natural products from vegetables, teas,
and fruits as chemoprevention agents have been extensively studied,
and some promising components have been advanced to clinical trials
[180–183]. Although our current effort in discovery of p53 drugs is
mainly focused on cancer therapy, one promising future direction will
be to identify and fully develop natural products, that act through a
synthetic lethal mechanism to kill cancer-prone cells with p53 muta-
tions, as chemoprevention drugs. Thus, p53 provides us many oppor-
tunities in our fight against cancer, a deadly disease to humankind.
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