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SUMMARY
In cluster randomized trials, it is commonly assumed that the magnitude of the correlation among
subjects within a cluster is constant across clusters. However, the correlation may in fact be
heterogeneous and depend on cluster characteristics. Accurate modeling of the correlation has the
potential to improve inference. We use second-order generalized estimating equations to model
heterogeneous correlation in cluster randomized trials. Using simulation studies we show that
accurate modeling of heterogeneous correlation can improve inference when the correlation is high
or varies by cluster size. We apply the methods to a cluster randomized trial of an intervention to
promote breast cancer screening.

1. INTRODUCTION
In cluster randomized trials, social units or “clusters” of individuals are randomized to
intervention and control conditions [1,2]. Responses of individuals within the same cluster are
correlated, and analytical methods for cluster randomized trials typically assume an
exchangeable, or compound symmetric, correlation structure within cluster. The usual measure
of correlation is the Pearson correlation coefficient between pairs of responses in the same
cluster, referred to as the intraclass correlation coefficient or ICC, and frequently denoted ρ.

When analyzing data from cluster randomized trials it is typically further assumed that the ICC
is constant across all clusters in the study. However, in many studies there is diversity in cluster
characteristics that could lead to differing levels of correlation in different clusters. In some
cases, heterogeneity may occur by design, such as when one arm involves independent subjects
and the other consists of clustered subjects [3]. In other cases, there may be variability in the
effect of the intervention from cluster to cluster, leading to a higher variance and thus a higher
ICC in the intervention group [4,5]. Other characteristics, such as cluster size, type or location,
or presence of familial relationships, may also affect the degree of correlation of the responses.

Heterogeneity in the ICC is especially a concern for group-based interventions, in which
subjects participate in educational, psychosocial or behavioral programs delivered in group
settings. Such group-based interventions are common in health and medical research; examples
include exercise interventions in the elderly [6,7], kidney disease management [8], smoking
cessation programs [9], and HIV risk reduction programs [10]. The groups in these trials are
likely to have differing degrees of cohesion a priori due to social connections or lack thereof,
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and differing degrees of interaction among participants, either by design or due to differences
in delivery, may further increase heterogeneity in the correlation of responses.

Our research was motivated by a group-based intervention study, the Breast Cancer Education
Program for Samoan Women [11], a cluster randomized trial designed to increase rates of
mammogram usage in women of Samoan ancestry funded by the California Breast Cancer
Research Program. In the trial, Samoan churches were randomized to intervention and control
conditions. At churches allocated to the intervention arm, women participated in group
educational sessions intended to create a group dynamic leading to consensus about
mammography usage; the control condition was usual care, with no group activities. The
outcome was self-reported receipt of a mammogram at follow-up. Fitting the conventional
exchangeable correlation model with constant ρ to the data set using generalized estimating
equations (GEE) gave an estimated ICC of 0.19. However, separate analyses of the two
intervention arms yielded estimated ICCs of 0.06 for the control arm and 0.34 for the
intervention arm, indicating that the ICC varied with treatment assignment.

Thus there is reason to believe that in many cluster randomized trials, the ICC may vary among
clusters, contrary to the common assumption of a single ρ common to all clusters. The existence
of heterogeneity in the ICC raises the questions of whether and how the correlation should be
modeled. A number of advantages may accrue from modeling heterogeneous correlation. First,
accurate modeling of correlation structure can improve statistical inference on mean parameters
through, most notably, gains in efficiency [12,13,14]. Increased efficiency is especially
important for cluster randomized trials, which can be expensive to conduct and are less efficient
than individually-randomized trials due to the design effect [15]. In many studies, the
correlation structure itself may have scientific importance; for example, the degree of
correlation among group-therapy participants may be an outcome of interest. A further
advantage is that more nuanced estimates of ICC obtained from correlation modeling can be
used to improve the design of future studies.

The greatest need for research on modeling correlated data is in the area of generalized linear
models for nonnormal response data, where methods are less well developed than in the normal
linear model case. A popular method of analyzing correlated response data in the generalized
linear model context is GEE [16]. First-order GEE or GEE1 models parametrize the marginal
mean and account for the dependence among units in a cluster by specifying a working
correlation structure for the observed responses. GEE1 is designed to focus on the marginal
mean, treating the correlation structure as a nuisance. Correspondingly, implementations of
GEE1 typically allow a limited number of prespecified working correlation structures (e.g.,
autoregressive(1), exchangeable, independent, m-dependent, unstructured and user-specified
fixed in SAS Version 9.1), and these structures are constant across all clusters. An advantage
of GEE1 is that the mean parameters are consistently estimated regardless of whether the
correlation structure is correctly specified, so long as the mean is correctly specified [16].
However, efficiency can be lost when the working correlation structure is not correct [16,17,
18,19,20,21].

A number of extensions to incorporate covariates into covariance structures, termed second-
order GEE or GEE2, have been proposed. These include a joint parameter estimation approach
[17], a quadratic exponential model approach [22], scale parameter modeling [19], and mean,
scale and correlation modeling with separate equations [23]. GEE2 offers the opportunity to
specify and estimate more accurate models of correlation structure and thus its application may
yield efficiency gains and other benefits for cluster randomized intervention trials. However,
cluster randomized intervention trial data is a novel application for GEE2, and work is needed
in several areas. First, methods of adapting GEE2 to such applications, including correlation
modeling strategies, are needed. Also lacking are studies of the performance of GEE2 in this
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context; there is a need to determine whether hypothesized gains in efficiency of estimation of
mean parameters do in fact occur, and whether statistical inference is improved. Empirical
investigations through real data analysis examples are also needed.

In this paper, we present a method of modeling heterogeneous correlation structure in cluster
randomized trials using GEE2. We present simulation studies comparing heterogeneous ICC
modeling to the conventional homogeneous ICC model in terms of bias, variance, mean
squared error (MSE) and empirical power. We apply the methods to data from our motivating
example, the Breast Cancer Education Program for Samoan Women, and conclude with a
discussion of the implications of heterogeneous correlation in cluster randomized intervention
trials.

Throughout, we focus on binary response data. We use the three-estimating-equation (3EE)
GEE2 method of Yan and Fine [23], which has separate estimating equations with separate
link functions and linear predictors for the mean, scale and correlation. All models were fit
using the R package geepack [24] (downloaded from http://cran.r-project.org/ in February
2007). R code for applying the methods is available from the first author.

2. MODEL
In this section, we present a brief description of second-order generalized estimating equations
for generalized linear models and present a method of heterogeneous correlation modeling for
cluster randomized trial data. For further details on GEE, the reader is referred to Hardin and
Hilbe [25].

Suppose we have K clusters indexed by i, with clusters assumed to be independent. Each cluster
has ni subjects, whose outcomes are collected in the vector . Each observation

Yij is associated with a p-dimensional covariate vector . Using a generalized
linear model framework [26], the marginal regression model for the mean,

, where g is a known link function and β is an unknown p-dimensional
vector of regression coefficients to be estimated. The marginal variance is Cov(Yij) = ϕυ(μij)
where υ is a known function and ϕ is a scale parameter which may need to be estimated or may
be specified as fixed.

If observations within clusters were independent, the covariance of responses within the ith
cluster, Cov(Yi), could be expressed as

(1)

where the identity matrix I has dimension ni × ni and Ai = diag(υ(μi1), …, υ(μini)) is a diagonal
matrix of variances of the elements of Yi. To handle correlated responses, GEE1 replaces the
identity matrix with a more general correlation matrix,

(2)

where R(α), of dimension ni × ni, is referred to as the working correlation matrix of Yi. The
correlation matrix is estimated through the parameter vector α. When the observations within
a cluster are assumed to be equally correlated, as is the case for most cluster randomized trial
data, α is a scalar and the working correlation matrix is taken as
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(3)

an exchangeable or compound symmetric structure.

Expressions (2) and (3) together specify the conventional assumption of an exchangeable
correlation structure of constant magnitude across clusters, and such models can be fit using
GEE1. GEE2 extends GEE1 to allow covariates in the covariance model, thus allowing
correlation structure and/or magnitude to depend on cluster or subject characteristics. When
the correlation matrix varies by cluster, the covariance model may be expressed as

(4)

where Ri(α) depends on covariates. A general approach for linking the correlation parameters
to a linear predictor has been suggested by Yan and Fine [23]. Take the upper diagonal elements
of Ri and arrange them into a ni(ni − 1)/2 × 1 vector ρi of pairwise correlations between the
elements of Yi, with ρiT = (ρi,12, ρi,13, …, ρi,1ni, ρi,23, …, ρi,ni−1ni). A model for ρi is

(5)

where h is a known link function, Wi is a covariate matrix with dimension ni(ni − 1)/2 × q and
α is a vector of correlation parameters to be estimated, of length q. When the correlation
structure is exchangeable, then all elements of ρi are equal and we have

(6)

where wi is a vector of length q.

Taking h as the identity function would allow ρi to range from −∞ to +∞. A mathematically
tractable transformation that restricts correlation coefficients to the interval (−1, 1) is the Fisher

transformation, , which makes a convenient link function. Using the inverse
link function, we obtain

(7)

This approach can be viewed as a generalization of the homogeneous ICC and independence
models. Homogeneous ICC is a special case in which α is a scalar and wi = 1 for all i. The ICC

would then be given by the scalar quantity , constant across clusters. Independence
of responses within a cluster can be viewed as a special case with ρi = 0, and can be specified
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by coding wi as a zero vector. With appropriate coding of wi, it is possible to specify mixed
correlation structures with, for example, independence in some clusters and covariate-
dependent compound symmetry in others.

The scale parameters ϕ can also be modeled as a function of covariates with a separate link
using 3EE GEE2. In our application, we model binary data and set the scale parameter to unity.

Yan and Fine [23] present estimating equations and an alternating Fisher scoring method for
the 3EE GEE2 approach. They show that {K1/2(β̂ − β)T ,K1/2(α ̂ − α)T ,K1/2(ϕ̂ − ϕ)T} is
asymptotically normal under regularity conditions with mean zero and covariance matrix
consistently estimated. Thus this approach provides standard errors for the mean, correlation
and scale parameters. Options for the variance estimator include the robust sandwich estimator,
analogous to the sandwich estimator used for GEE1, and jackknife estimators that have better
performance for small samples (K ≤ 30).

3. SIMULATION STUDIES
We investigated the performance of heterogeneous ICC modeling for cluster randomized trial
data using simulation experiments, in which we generated data sets with heterogeneous
correlation structure and compared the performance of the conventional homogeneous ICC
model to the performance of heterogeneous ICC modeling in terms of statistical inference. All
simulation scenarios were designed as two-arm cluster randomized trials with a binary outcome
variable. We presumed that correlation modeling is more likely to be applied when correlation
levels are high and there are relatively large numbers of clusters, and selected simulation
settings accordingly. The method of Emrich and Piedmonte [27] was used to generate the high-
dimensional multivariate binary variables.

We conducted two sets of simulation scenarios. Set I simulated clusters of equal size, with 30
subjects per cluster and 30 clusters per arm. For mean and correlation parameter specification,
we used a 4 × 3 factorial design, with four levels of correlation, all heterogeneous: very high
(each arm has 10 clusters with ρ = 0.20, 10 with ρ = 0.40 and 10 with ρ = 0.80), high (each
arm has 10 clusters with ρ = 0.10, 10 with ρ = 0.20 and 10 with ρ = 0.40), moderate (each arm
has 10 clusters with ρ = 0.05, 10 with ρ = 0.10 and 10 with ρ = 0.20), and low (each arm has
10 clusters with ρ = 0.02, 10 with ρ = 0.04 and 10 with ρ = 0.08), crossed with three levels of
(πc, πt), the true proportions of successes in the control and treatment arms, specified as (0.40,
0.60), (0.25, 0.45) and (0.10, 0.30).

The second set of simulation scenarios was motivated by our data application and other similar
trials, which have clusters of varying sizes. Set II simulated clusters of unequal size, with each
arm of the trial having 1, 2, 3, 4, 5 and 10 clusters of sizes 50, 30, 20, 15, 10 and 5, respectively.
The true proportions of successes in the control and treatment arms were 0.25 and 0.45,
respectively, in all scenarios. The ICC was varied as a function of treatment arm (treatment vs.
control) or cluster size (small, defined as 5–15 subjects per cluster, vs. large, defined as 20–50
subjects per cluster). In particular, we specified four scenarios, with

(8)

equal to

(9)
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Pilot studies showed that the standard deviations in the simulations were in the range of 0.15
to 0.30 for the various scenarios. On this basis, we chose a Monte Carlo sample size of 500,
which would lead to standard errors of means on the order of 0.007 to 0.013. Thus we generated
500 simulated data sets for each scenario.

We fit two correlation models to each data set using 3EE GEE2, the conventional constant ρ
model, designated C, which entails the correlation model h(ρi) = α, and a model with properly
specified covariates in the correlation model, designated M. For example, for ICC varying by
treatment arm in Set II, Model M specified h(ρi) = α0 + α1Ti, where Ti is the indicator function
having value 1 if the subject is assigned to the intervention group and 0 otherwise. For all
models, we used a logit link for the mean, with log[pi/(1 − pi)] = β0 + β1Ti. The proportions
(0.40, 0.60), (0.25, 0.45) and (0.10, 0.30) correspond to β1 of 0.81, 0.90 and 1.35, respectively.
The variance function was specified as binomial, and the scale was fixed at the value 1.

We estimated bias as the mean of β̂1 − β1 over the 500 replications and relative bias as the
mean of (β̂1 − β1)/β1. The dispersion of bias was characterized by the 2.5th and 97.5th
percentiles. The empirical variance of β̂1, V̂ar(β̂1), was used to estimate efficiency and MSE.
Relative efficiency was estimated as the mean of [V̂ar(β̂1) for M]/[V̂ar(β̂1) for C]. Relative
MSE was estimated as the mean of [V̂ar(β̂1) + (β̂1 − β1)2 for M]/[V̂ar(β̂1) + (β̂1 − β1)2 for C].
The empirical coverage probability (ECP) for 95% confidence intervals for β1 was also
calculated using the empirical variance. The power to reject the null hypothesis that β1 equals

0 was estimated as  where I is the indicator function having value 1 if
 and 0 otherwise, and  is the robust sandwich estimator.

Table I presents the results for the first set of simulation scenarios. Bias tended to be higher
under correlation modeling (M) compared to the conventional model (C), and was highest for
scenarios with β1 = 1.35. Increases in efficiency under correlation modeling were evident for
all very high and high correlation scenarios, as well as the moderate correlation scenario with
β1 = 0.81. The greatest efficiency gain was achieved under very high correlation with β1 =
0.81, which had a decrease in empirical variance of 22%. Most of these scenarios also showed
a reduction in MSE; however, these gains were more modest due to the increase in bias.

For the very high and high correlation scenarios, the null hypothesis was correctly rejected at
slightly higher rates when the correct correlation model was used. The very high correlation
scenario with β1 = 0.81 had the largest increase in power, with an 11% difference.

For the moderate and low correlation scenarios, there appeared to be little advantage to using
the correct correlation model compared to the conventional model in terms of statistical
inference; in fact, for the low correlation scenarios, MSE was 5–10% higher when using the
correct correlation model.

Empirical coverage probabilities were close to the nominal level for all scenarios. For all
scenarios, the 2.5th and 97.5th percentiles of bias were similar for the correct and the
conventional models. The very high correlation scenarios had the most dispersed distributions
of bias (2.5th and 97.5th percentiles on the order of −0.8 and 0.8, respectively), while the low
correlation scenarios had the least dispersed (2.5th and 97.5th percentiles on the order of −0.3
and 0.3, respectively).

Table II presents the results for the second set of simulation scenarios. In the scenarios in which
the ICC varied by treatment arm, there were no differences in performance of the two modeling
strategies. However, in the scenarios in which the ICC varied by cluster size, the correlation
modeling strategy was superior in terms of efficiency, MSE and power. Relative efficiencies
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were 0.81 and 0.83, and the correlation modeling approach correctly rejected the null
hypothesis at rates that were 7–11% higher compared to the conventional modeling approach.
Empirical coverage probabilities were close to the nominal level for all scenarios. The 2.5th
and 97.5th percentiles of bias were similar for M and C for all scenarios, and were on the order
of −0.6 and 0.7, respectively.

These simulation studies are necessarily limited since only a finite number of scenarios can be
reasonably explored. However, the results suggest that modeling heterogeneous ICC can have
an impact on statistical inference for cluster randomized trials under some circumstances. In
particular, benefits may accrue when levels of correlation are high and/or correlation varies by
cluster size. On the other hand, there are circumstances in which improvements in inference
do not occur. We did not see improvements in statistical inference when levels of correlation
were low or correlation varied only with treatment assignment, in the context of the particular
parameter specifications in our simulations. In fact, MSE was higher in low correlation
scenarios when the correct correlation model was used.

4. APPLICATION
To illustrate the methods in a real data analysis context, we apply heterogeneous ICC modeling
to our motivating application, the Breast Cancer Education Program for Samoan Women. This
study, conducted between July 1998 and June 2001 by the National Office of Samoan Affairs,
the University of California Irvine and the University of California Los Angeles, was designed
to test the effectiveness of a culturally appropriate breast cancer education program tailored to
women with Samoan ancestry, who were found in previous studies to have low rates of
mammogram use [28]. In the trial, 61 Samoan churches in southern California were randomized
to intervention or control conditions. Subjects from churches in the intervention arm
participated in a series of culturally-tailored interactive group discussion sessions with a health
educator; the control condition was usual care, with subjects receiving educational materials
after the follow-up survey. The primary outcome was self-reported receipt of a mammogram
between the baseline and follow-up surveys, which were eight months apart.

The data set consisted of 776 subjects, with the number of subjects per church ranging from 1
to 42. The median cluster size was 13, with comparable distributions of cluster sizes in each
arm. Rates of self-reported receipt of mammography were 38.7% in the control arm and 47.3%
in the intervention arm. As previously discussed, fitting a GEE1 model with an exchangeable
working correlation structure to the entire data set gave an estimated ICC of 0.19, whereas
fitting models to the control and intervention arms separately gave estimated ICCs of 0.06 and
0.34, respectively, motivating the application of correlation modeling.

We fit correlation models to the data using 3EE GEE2, assuming compound symmetry within
each cluster but allowing the magnitude of the correlation to depend on cluster-level covariates.
To identify covariates potentially affecting correlation magnitude, we considered the nature of
the intervention and the implications of variation in cluster size. Based on our arm-specific
analyses and the fact that the intervention entailed extensive interactions among the participants
which were lacking in the control arm, we considered treatment arm, coded as Ti equal to 0 for
control and 1 for intervention, as a covariate. We also considered cluster size as a covariate,
since in this church-based trial, congregations of different size had differing levels of resources
and leadership involvement, which may have affected within-group cohesion. In addition, the
study investigators had observed based on past experience that different group sizes produce
different group dynamics. We used the dichotomous variable Si to identify clusters as large
(defined as over 15 subjects from the church electing to participate, coded as Si = 1) or small
(15 or fewer subjects, Si = 0). We also considered an interaction between treatment and cluster
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size, based on the concern that the degree of consensus engendered by the intervention might
vary with cluster size. In sum, we evaluated the following correlation models:

Model 1. Compound symmetry, constant across clusters:

(10)

Model 2. Compound symmetry with magnitude depending on treatment arm:

(11)

Model 3. Compound symmetry with magnitude depending on cluster size category:

(12)

Model 4. Compound symmetry with magnitude depending on treatment arm and cluster
size category:

(13)

Model 5. Model 4 with a treatment × cluster size interaction:

(14)

The marginal mean was modeled using the logit link, ln[pi/(1 − pi)] = β0 + β1Ti. Thus β̂1 gives
the estimated intervention effect on the log odds scale. We found that estimates of ρi obtained
using the linear link h(ρi) = ρi and using the inverse Fisher transformation (7) were essentially
identical and the choice of link function did not affect the model fitting; thus we used the linear
link for the correlation model. The scale parameter was fixed at 1. Standard errors were obtained
using robust sandwich variance estimators, which are provided for the mean, correlation and
(when allowed to vary) scale parameter estimates when using 3EE GEE2.

The results are presented in Table III. The difference in overall unadjusted response rates in
the study was a modest 8.6%; hence it is not surprising that the intervention effect was not
significantly different from zero under any model. However, there is a suggestion of a trend
toward a slightly stronger intervention effect estimate (increasing β̂1 and ), slightly smaller
standard error, and smaller p-value with greater allowance for heterogeneity in the correlation
model.

The intraclass correlation coefficient estimates are informative about patterns of correlation in
the data. As expected, there is evidence of heterogeneity of the ICC by treatment arm. Model
2 yielded estimates of 0.06 and 0.34 for the control and intervention arms, respectively; these
are the same as the estimates obtained using separate analyses for each arm. Model 1, which
is the conventional model assuming a ρ of constant magnitude across all clusters, yielded an
estimated ICC of 0.19, which can be viewed as an average across the treatment arms which
masks the difference between the arms.

Coefficient estimates for the cluster size category indicator Si in Model 3 through 5 suggest
correlation may have been higher in larger clusters. The difference in correlation between small
and large clusters was not statistically significant at the 0.05 level in any model, but unless the
correlation is quite high or the sample size is large, there is clearly a strong risk of Type II error
in using Wald statistics for inference about correlation parameters.
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There was no evidence of a significant interaction between treatment and cluster size (Model
5), and the estimates from Models 4 and 5 are very close, suggesting that the interaction term
can be safely dropped.

In Models 2, 4 and 5, Wald tests would fail to reject the null hypothesis that the ICC is zero in
the clusters in the control arm. Removing statistically insignificant terms would imply zero
correlation, which is generally an untenable assumption for cluster randomized trials. Thus
models that assume correlation in all clusters will generally be preferred. For this data analysis,
considering the correlation parameter estimates in the context of theoretical expectations, we
would consider Models 2 or 4 to be suitable models for the correlation structure of the data.

In this real data application, the ICC clearly varies by treatment arm, and parameter estimates
are slightly different when correlation modeling is used. In Set II of the simulation studies, we
did not find a difference in inference when correlation modeling was applied to simulated data
with ICC varying by treatment arm, for the particular settings used in the simulation. Since the
true parameter values in the real data application are unknown and surely differ from the
settings used in the simulation, it is difficult to ascertain whether or not the differences seen
with correlation modeling reflect true improvements in inference.

Overall, the exercise of fitting and comparing candidate correlation models for this data
suggests that correlation modeling in the context of cluster randomized trials may be beneficial
in several respects. Inference on the mean parameters, in particular the intervention effect, did
not appear to be negatively impacted and may have been slightly sharpened when the
correlation structure was more accurately modeled. In addition, correlation modeling was
helpful in identifying predictors of correlation. These predictors are useful in interpreting the
impact of the intervention and for designing future studies. For example, if a future study were
to be restricted to large clusters only, the sample size would need to be increased to achieve
adequate power.

5. DISCUSSION
Current approaches to analyzing data from cluster randomized trials typically assume that the
clusters are homogeneous with respect to the intraclass correlation coefficient. Here we present
a different view, that the sample may contain subsets of clusters with correlations of different
magnitude. Modeling and estimating the correlation structure can yield several benefits,
including increased efficiency and power in some cases, and better understanding of the
determinants of intraclass correlation.

Our findings suggest that any increases in efficiency and power are likely to be modest, and
are more likely to occur when correlation is high or varies by cluster size. Improvements in
statistical inference will not accrue uniformly across all scenarios. In our low correlation
scenarios, MSE was slightly increased when the correct correlation model was fit. However,
there may be other benefits of using a more accurate correlation model. Modeling the
correlation can provide insights into the intervention mechanism. In our data application,
correlation modeling revealed that treatment assignment was a strong predictor of higher
correlation magnitude. This finding is consistent with the behavior-theoretic framework of the
intervention, which was designed to create a group dynamic which was not fostered in the
control condition. From another point of view, this may be interpreted as variability of the
intervention effect from cluster to cluster. In contrast, fitting the conventional constant ρ model
yielded an estimate of the ICC that was a compromise between the control and intervention
groups. This estimate did not characterize either group nor provide insights about the
intervention.
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Another application of correlation modeling for cluster randomized trials, suggested by a
reviewer, is as part of a sensitivity analysis. In particular, one could use these methods to assess
whether different assumptions about the correlation affect inference on the mean parameters.
Our analyses in Section 4 can be viewed as an illustration of this type of application.

The estimates and predictors of ICC derived from correlation modeling are also useful for the
design of future studies. A persistent difficulty in designing cluster randomized trials has been
the scarcity of reliable estimates of ρ, which are necessary in order to determine the variance
inflation factor measuring the amount by which one should increase a variance estimate to
allow for the clustering effect [2]. Few studies report ρ, perhaps in large part because it is
regarded as a nuisance. Expressly modeling the ICC gives this important parameter more
prominence. The confidence intervals for the ICC such as are derived from 3EE GEE2 may
also improve study design; Turner et al. [29] have shown that averaging power across
uncertainty in the ICC may be superior to using a point estimate.

If the ICC is expected to vary by treatment arm or other covariates, and will be modeled as
such in the final analysis, then prudence dictates that this variation in ICC should be accounted
for at the design stage of the study when the sample size requirements are estimated. Sample
size formulae for the case in which ρ varies by group, developed in the context of case-control/
family sampling designs, are presented by [30] and may be useful for this purpose.

Selection of correlation models in GEE2, while not a primary focus of our research, is an
important topic and an active area of research. 3EE GEE2 provides Wald statistics which may
be used for variable selection for the linear predictor of the correlation. However, unless the
number of clusters is quite large, there is a danger that important predictors will be discarded
as insignificant. In addition, Wald test statistics have been shown to behave in an aberrant
manner under some circumstances [31]. Another alternative for correlation model selection is
the quasilikelihood information criterion, proposed by Pan [32]. Other goodness of fit criteria
which could be explored further are discussed by Zheng [33]. The choice of correlation model
should also be guided by clinical or theoretical expectations.

Our work has focused on group-based intervention trials, which typically involve large
numbers of small clusters. Other types of cluster randomized trials include community
intervention trials, which typically involve a relatively small number of communities each
enrolling a large number of subjects. These trials tend to have much lower ICCs, often on the
order of 0.01 to 0.001 [2]. These trials may also be prone to heterogeneity in the ICC given the
inherent diversity among communities in characteristics which may be associated with
correlation. Furthermore, when the number of randomized units is small, randomization may
fail to achieve balance across treatment arms. For these reasons, correlation modeling may be
considered for community-randomized studies. Such studies may call for somewhat different
modeling strategies and will often require different variance estimation approaches (e.g.,
jackknife variance estimation when the number of clusters is less than or equal to 30 [23]), and
present an area for future research.

We conclude by noting that 3EE GEE2 is not the only available method for modeling
heterogeneous intraclass correlation. Alternating logistic regression is another approach to
covariate-dependent correlation structure modeling which can be used in the context of
generalized estimating equations [34]. Generalized linear mixed models (GLMMs) are an
alternative to GEE for fitting correlated data with a nonlinear link function for the mean; an
example of a multi-level logistic model for cluster randomized trial data, with two between-
cluster variance components, is provided in [4]. In such models, interval estimates of variance
parameters can be examined to investigate the extent of overlap, similar to comparison of
confidence intervals for the ICCs in 3EE GEE2. Both GLMM and 3EE GEE2 can be
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computationally intensive when fitting complex correlation models. Bayesian methods are
another alternative; see, for example, [5], who fit a Bayesian version of the model used by
[4] to the same data.
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Table II

Simulation results (Set II) comparing correlation modeling (M) with conventional assumption of exchangeable
correlation of constant magnitude (C). ECP is empirical coverage probability for 95% confidence intervals for
β1. Details of the simulation settings are provided in the text.

ρ varying by treatment arm ρ varying by cluster size

(ρc,sm ρt,sm
ρc,lg ρt,lg

) (0.05 0.35
0.05 0.35) (0.35 0.05

0.35 0.05) (0.05 0.05
0.35 0.35) (0.35 0.35

0.05 0.05)
Bias (M) 0.02 0.07 0.01 0.03

Bias (C) 0.01 0.07 0.02 0.04

Rel. Bias (M) 0.02 0.07 0.01 0.04

Rel. Bias (C) 0.02 0.08 0.02 0.04

Rel. Eff. 0.99 0.98 0.81 0.83

Rel. MSE 1.00 0.98 0.87 0.90

Emp. power (M) 0.82 0.81 0.92 0.88

Emp. power (C) 0.81 0.81 0.85 0.77

ECP (M) 0.96 0.95 0.95 0.95

ECP (C) 0.95 0.94 0.95 0.94
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